The primes that Euclid forgot

Enrique Treviño

joint work with Paul Pollack

Oberlin Number Theory Seminar March 10, 2014

There are infinitely many primes

Start with $q_{1}=2$. Supposing that q_{j} has been defined for $1 \leq j \leq k$, continue the sequence by choosing a prime q_{k+1} for which

$$
q_{k+1} \mid 1+\prod_{j=1}^{k} q_{j}
$$

Then 'at the end of the day', the list $q_{1}, q_{2}, q_{3}, \ldots$ is an infinite sequence of distinct prime numbers.

Tree of possibilities

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_{1}=2$, then define recursively q_{k} to be the smallest prime dividing $1+q_{1} q_{2} \ldots q_{k-1}$.
- i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, ...
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take $q_{1}=2$, then define recursively q_{k} to be the largest prime dividing $1+q_{1} q_{2} \ldots q_{k-1}$.
- i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, $23,29,31,37,41,47$, and 53 are missing from the second Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- Booker's proof uses deep theorems from analytic number theory such as the Burgess inequality.

5 is not in the second Euclid-Mullin sequence

- Suppose 5 is in the second Euclid-Mullin sequence.
- Therefore there exists n such that $5 \mid q_{n}=1+q_{1} q_{2}+\ldots q_{n-1}$ and with 5 being the largest prime divisor of q_{n}.
- Since $q_{1}=2$ and $q_{2}=3$, then $\left(q_{n}, 6\right)=1$.
- Therefore $q_{n}=5^{\alpha}$ for some $\alpha \geq 1$.
- Now $5^{\alpha} \equiv 1(\bmod 4)$ while $1+q_{1} q_{2} \ldots q_{n-1} \equiv 3(\bmod 4)$.
- Contradiction!

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n=0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0,1$ or $2(\bmod 3)$.
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares and non-squares

Let n be a positive integer. For $q \in\{0,1,2, \ldots, n-1\}$, we call q a square $\bmod n$ if there exists an integer x such that $x^{2} \equiv q$ $(\bmod n)$. Otherwise we call q a non-square.

- For $n=3$, the squares are $\{0,1\}$ and the non-square is 2 .
- For $n=5$, the squares are $\{0,1,4\}$ and the non-squares are $\{2,3\}$.
- For $n=7$, the squares are $\{0,1,2,4\}$ and the non-squares are $\{3,5,6\}$.
- For $n=p$, an odd prime, there are $\frac{p+1}{2}$ squares and $\frac{p-1}{2}$ non-squares.

Least non-square

How big can the least non-square be?
Let $g(p)$ be the least non-square modulo p.

p	Least non-square
3	2
5	2
7	3
11	2
13	2
17	3
19	2
23	5
29	2
31	3

p	Least non-square
7	3
23	5
71	7
311	11
479	13
1559	17
5711	19
10559	23
18191	29
31391	31
422231	37
701399	41
366791	43
3818929	47

An elementary bound for $g(p)$

Let $g(p)$ be the least non-square $\bmod p$.
Theorem
$g(p) \leq \sqrt{p}+1$.

Proof.

Suppose $g(p)=q$ with $q>\sqrt{p}+1$. Let k be the ceiling of p / q. Then $p<k q<p+q$, so $k q \equiv a \bmod p$ for some $0<a<q$, and therefore $k q$ is a square modulo p. Since $q>\sqrt{p}+1$, then $p / q<\sqrt{p}$, so k is at most the ceiling of $\sqrt{p}<\sqrt{p}+1<q$. Therefore k is a square modulo p. But if k and $k q$ are squares modulo p, then q is a square modulo p. Contradiction!

Consecutive squares or non-squares

Let $H(p)$ be the largest string of consecutive nonzero squares or non-squares modulo p.
For example, with $p=7$ we have that the nonzero squares are $\{1,2,4\}$ and the non-squares are $\{3,5,6\}$. Therefore $H(7)=2$.

p	$H(p)$
11	3
13	4
17	3
19	4
23	4
29	4
31	4
37	4
41	5

An elementary bound for $H(p)$

Sketch of a proof that $H(p)<2 \sqrt{p}$.

- The largest string of non-squares is $<2 \sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares $\bmod p$.
- For n a non-square, na $n n, \ldots, n a+H n$ are non-squares.
- If $H n>p$, then $H(p) \leq n-1$. Therefore $H(p) \leq \max \{p / n, n-1,2 \sqrt{p}\}$.
- If $n \in(\sqrt{p} / 2,2 \sqrt{p}]$ we have $H(p)<2 \sqrt{p}$.
- Let k be the largest integer such that $k^{2} g(p) \leq \sqrt{p} / 2$.
- $(k+1)^{2} g(p)>2 \sqrt{p} \geq 4 k^{2} g(p)$ implies $(2 k+1)>3 k^{2}$ which is false for each $k \geq 1$. Therefore there is a non-square in the interval $(\sqrt{p} / 2,2 \sqrt{p}]$, yielding $H(p)<2 \sqrt{p}$.

Legendre-Jacobi Symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cc}
1, & \text { if } a \text { is a nonzero square modulo } p \\
-1 & \text { if } a \text { is non-square modulo } p \\
0 & \text { if } p \mid a
\end{array}\right.
$$

Theorem (Quadratic Reciprocity)
For p and q distinct odd primes,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)} .
$$

The primes that Euclid forgot

Theorem

Let $Q_{1}, Q_{2}, \ldots Q_{r}$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \geq 0$. Then there is another omitted prime smaller than

$$
12^{2}\left(\prod_{i=1}^{r} Q_{i}\right)^{2}
$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than $\frac{1}{4 \sqrt{e}-1}=0.178734 \ldots$, provided that 12^{2} is also replaced by a possibly larger constant.

Proof Sketch

Let $X=12^{2}\left(\prod_{i=1}^{r} Q_{i}\right)^{2}$. Assume there is no prime missing from $[2, X]$ besides Q_{1}, \ldots, Q_{r}. Let p be the prime in $[2, X]$ that is last to appear in the sequence $\left\{q_{i}\right\}$.
Let n be such that $q_{n}=p$. Then $1+q_{1} \ldots q_{n-1}=Q_{1}^{\alpha_{1}} \ldots Q_{r}^{\alpha_{r}} p^{\alpha}$. Let d be the smallest number satisfying the following conditions:
(i) $d \equiv 1(\bmod 4)$,
(ii) $d \equiv-1\left(\bmod Q_{1} \ldots Q_{r}\right)$
(iii) $\left(\frac{d}{p}\right)=\left(\frac{-1}{p}\right)$.

- Using the Chinese Remainder Theorem and the bound on $H(p)$ yields that $d \leq X$.
- Given the conditions on d and using that $d \leq X$ shows that d is both a square and a non-square mod
$1+q_{1} q_{2} \ldots q_{n-1}$. Contradiction!

Thank you!

