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There are infinitely many primes

Start with q1 = 2. Supposing that qj has been defined for

1 ≤ j ≤ k , continue the sequence by choosing a prime qk+1 for

which

qk+1 | 1 +
k
∏

j=1

qj .

Then ‘at the end of the day’, the list q1, q2, q3, . . . is an infinite

sequence of distinct prime numbers.
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Tree of possibilities
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Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin

suggested two possible unique sequences.

The first is to take q1 = 2, then define recursively qk to be

the smallest prime dividing 1 + q1q2 . . . qk−1.

i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139,

2801, 11, 17, 5471, 52662739, . . .

It is conjectured that the first Mullin sequence touches all

the primes eventually.

Not much is known of this sequence.
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Second Euclid-Mullin Sequence

The second Mullin sequence is to take q1 = 2, then define

recursively qk to be the largest prime dividing

1 + q1q2 . . . qk−1.

i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339,

4680225641471129, . . . .

Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19,

23, 29, 31, 37, 41, 47, and 53 are missing from the second

Euclid-Mullin sequence.

Booker in 2012 showed that infinitely many primes are

missing from the sequence.

Booker’s proof uses deep theorems from analytic number

theory such as the Burgess inequality.
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5 is not in the second Euclid-Mullin sequence

Suppose 5 is in the second Euclid-Mullin sequence.

Therefore there exists n such that

5|qn = 1 + q1q2 + . . . qn−1 and with 5 being the largest

prime divisor of qn.

Since q1 = 2 and q2 = 3, then (qn, 6) = 1.

Therefore qn = 5α for some α ≥ 1.

Now 5α ≡ 1 (mod 4) while 1 + q1q2 . . . qn−1 ≡ 3 (mod 4).

Contradiction!
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Squares

Consider the sequence

2, 5, 8, 11, . . .

Can it contain any squares?

Every positive integer n falls in one of three categories:

n ≡ 0, 1 or 2 (mod 3).

If n ≡ 0 (mod 3), then n2 ≡ 02 = 0 (mod 3).

If n ≡ 1 (mod 3), then n2 ≡ 12 = 1 (mod 3).

If n ≡ 2 (mod 3), then n2 ≡ 22 = 4 ≡ 1 (mod 3).
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Squares

Consider the sequence

2, 5, 8, 11, . . .

Can it contain any squares?

Every positive integer n falls in one of three categories:

n ≡ 0, 1 or 2 (mod 3).

If n ≡ 0 (mod 3), then n2 ≡ 02 = 0 (mod 3).

If n ≡ 1 (mod 3), then n2 ≡ 12 = 1 (mod 3).

If n ≡ 2 (mod 3), then n2 ≡ 22 = 4 ≡ 1 (mod 3).
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Squares and non-squares

Let n be a positive integer. For q ∈ {0, 1, 2, . . . , n − 1}, we call q

a square modn if there exists an integer x such that x2 ≡ q

(mod n). Otherwise we call q a non-square.

For n = 3, the squares are {0, 1} and the non-square is 2.

For n = 5, the squares are {0, 1, 4} and the non-squares

are {2, 3}.

For n = 7, the squares are {0, 1, 2, 4} and the non-squares

are {3, 5, 6}.

For n = p, an odd prime, there are p+1
2 squares and p−1

2

non-squares.
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Least non-square

How big can the least non-square be?

Let g(p) be the least non-square modulo p.

p Least non-square

3 2

5 2

7 3

11 2

13 2

17 3

19 2

23 5

29 2

31 3
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p Least non-square

7 3

23 5

71 7

311 11

479 13

1559 17

5711 19

10559 23

18191 29

31391 31

422231 37

701399 41

366791 43

3818929 47
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An elementary bound for g(p)

Let g(p) be the least non-square mod p.

Theorem

g(p) ≤ √
p + 1.

Proof.

Suppose g(p) = q with q >
√

p + 1. Let k be the ceiling of p/q.

Then p < kq < p + q, so kq ≡ a mod p for some 0 < a < q,

and therefore kq is a square modulo p. Since q >
√

p + 1, then

p/q <
√

p, so k is at most the ceiling of
√

p <
√

p + 1 < q.

Therefore k is a square modulo p. But if k and kq are squares

modulo p, then q is a square modulo p. Contradiction!
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Consecutive squares or non-squares

Let H(p) be the largest string of consecutive nonzero squares

or non-squares modulo p.

For example, with p = 7 we have that the nonzero squares are

{1, 2, 4} and the non-squares are {3, 5, 6}. Therefore H(7) = 2.

p H(p)

11 3

13 4

17 3

19 4

23 4

29 4

31 4

37 4

41 5
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An elementary bound for H(p)

Sketch of a proof that H(p) < 2
√

p.

The largest string of non-squares is < 2
√

p.

Suppose {a + 1, a + 2, . . . , a + H} are all squares mod p.

For n a non-square, na + n, . . . , na + Hn are non-squares.

If Hn > p, then H(p) ≤ n − 1. Therefore

H(p) ≤ max {p/n, n − 1, 2
√

p}.

If n ∈ (
√

p/2, 2
√

p] we have H(p) < 2
√

p.

Let k be the largest integer such that k2g(p) ≤ √
p/2.

(k + 1)2g(p) > 2
√

p ≥ 4k2g(p) implies (2k + 1) > 3k2

which is false for each k ≥ 1. Therefore there is a

non-square in the interval (
√

p/2, 2
√

p], yielding

H(p) < 2
√

p.
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Legendre-Jacobi Symbol

(

a

p

)

=



















1, if a is a nonzero square modulo p,

−1 if a is non-square modulo p,

0 if p|a

Theorem (Quadratic Reciprocity)

For p and q distinct odd primes,

(

p

q

)(

q

p

)

= (−1)(
p−1

2 )( q−1
2 ).
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Theorem

Let Q1,Q2, . . .Qr be the smallest r primes omitted from the

second Euclid-Mullin sequence, where r ≥ 0. Then there is

another omitted prime smaller than

122

(

r
∏

i=1

Qi

)2

.

Using the deep results of Burgess, Booker showed that the

exponent can be replaced with any real number larger than
1

4
√

e − 1
= 0.178734 . . . , provided that 122 is also replaced by

a possibly larger constant.
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Proof Sketch

Let X = 122(
∏r

i=1 Qi)
2. Assume there is no prime missing from

[2,X ] besides Q1, . . . ,Qr . Let p be the prime in [2,X ] that is last

to appear in the sequence {qi}.

Let n be such that qn = p. Then 1+q1 . . . qn−1 = Q
α1

1 . . .Qαr
r pα.

Let d be the smallest number satisfying the following

conditions:

(i) d ≡ 1 (mod 4),
(ii) d ≡ −1 (mod Q1 . . .Qr )

(iii)

(

d

p

)

=

(−1

p

)

.

Using the Chinese Remainder Theorem and the bound on

H(p) yields that d ≤ X .

Given the conditions on d and using that d ≤ X shows that

d is both a square and a non-square mod

1 + q1q2 . . . qn−1. Contradiction!
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Thank you!
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