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Abstract

In this paper we use the Classification of the Finite Simple Groups, the O’Nan–
Scott Theorem and Aschbacher’s theorem to classify the primitive permutation
groups of degree less than 4096. The results will be added to the primitive
groups databases of GAP and Magma.

1. Introduction and history

The study of primitive permutation groups has a long and rich history. The
earliest reference to primitive groups is in the work of Ruffini in 1799 where he
divided non-cyclic permutation groups into intransitive, imprimitive and prim-
itive cases while trying (unsuccessfully) to prove the insolubility of the general
quintic equation. In 1871 Jordan [15] made one of the first attempts at classi-
fying the primitive groups up to degree 17, one of his many significant achieve-
ments relating to primitive groups. Some of Jordan’s enumerations were later
corrected by Cole [5] and Miller [24, 25, 26, 27, 28, 29, 30] in the last years
of the 19th century. The work of Martin [23] in 1901 and Bennett [2] in 1912
completed the classification up to degree 20.

At this stage the lists of groups were getting too big to work with by hand
without a high chance of error and little significant progress was made until the
birth of symbolic computation in the 1960s. Sims [35] classified all the primitive
groups up to degree 50 as well as correcting the exisiting classifications. The full
lists were never published but were available to the mathematical community
and eventually formed one of the earliest databases in computational group the-
ory. Further important developments were made following the announcement of
the Classification of the Finite Simple Groups. In 1988 Dixon and Mortimer [7]
used the O’Nan–Scott Theorem to classify all non-affine primitive permutation
groups of degree less than 1000: the numbers of affine groups of these degrees
are too large to be handled without computers. These groups were made into a
database in GAP by Thießen [37] together with the soluble affine type groups of
degree less than 255, which were classified by Short [34].
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More recently Eick and Höfling [9] classified all soluble affine groups of de-
gree less than 6561 and Roney-Dougal and Unger [33] classified all affine groups
of degree less than 1000. In 2005 Roney-Dougal [32] classified all primitive
permutation groups of degree less than 2500, simultaneously checking and cor-
recting the existing results. As a consequence we shall only consider primitive
permutation groups of degree greater than 2499.

This paper extends the classification of the primitive permutation groups
up to degree 4095, using the framework of the O’Nan–Scott Theorem and with
Aschbacher’s theorem and CFSG as important tools. Section 2 sets out some
notation and basic ideas that will be needed throughout the paper. The follow-
ing sections treat each O’Nan–Scott class in turn, explaining in detail how the
primitive groups are found. For some of the classes it is possible to automate
almost all of the process while for others it is necessary to perform some the-
oretical calculations to reduce the computational burden. Section 7 discusses
the methods used to ensure accuracy in computation and presentation and the
final section contains the tables of primitive groups. The groups will be added
to the databases of GAP [10] and Magma [4].

2. Preliminaries and notation

We begin by setting up some notation and stating a few results which will
be needed later in the paper. A useful reference for more details is [8].

Throughout all groups are finite and d denotes the degree of a permutation
group, n is a non-zero positive integer, p is a prime and q is a prime power. We
use the notation αg to denote the action of a group element g on α. A group G
acting on a set Ω is transitive if for all α, β in Ω there exists some g ∈ G such
that αg = β. A subset ∆ of Ω is a block for G if for all g ∈ G either

∆g = ∆ or ∆g ∩∆ = ∅.

The action of G is primitive if it is transitive and all blocks are trivial, that is
either |∆| = 1 or ∆ = Ω. A group which is not transitive is intransitive and a
transitive group which preserves a non-trivial block is imprimitive.

The socle of a group G is the subgroup generated by its minimal normal
subgroups. If G is primitive then Soc(G) is isomorphic to the direct product of
one or more copies of a simple group T . A group G is almost simple if

T ∼= Inn(T ) � G ≤ Aut(T )

for some nonabelian simple group T .

Theorem 1 (O’Nan–Scott Theorem). Let G be a primitive permutation group
of degree d, and let H := Soc(G) ∼= Tm with m ≥ 1. Then one of the following
holds.

1. H is regular and
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(a) T is cyclic of order p and |H| = pm. Then d = pm and G is isomorphic
to a subgroup of the affine general linear group AGLm(p). We call G
an “affine type” group.

(b) m ≥ 6, the group T is non-abelian and G is a group of “twisted wreath
product type”, with d = |T |m.

2. H is non-regular and non-abelian and
(a) m = 1 and G is almost simple.
(b) m ≥ 2 and G is permutation isomorphic to a subgroup of the product

action wreath product P o Sm/l of degree d = nm/l. The group P is
primitive of type 2.(a) or 2.(c) of degree n and Soc(P ) ∼= T l.

(c) m ≥ 2 and G is a group of “diagonal type” with d = |T |m−1.

We can see immediately that there are no twisted wreath product type
groups of degree less than 4096 and so this class is not considered further.
We examine the other cases in the order above.

Let G be an almost simple classical group, and assume that if G contains
a graph automorphism then Soc(G) /∈ {S4(2i),PΩ+

8 (q)}. Then Aschbacher’s
theorem [1] states that any subgroup of G lies in one of nine Aschbacher classes
Ci for i ∈ {1, . . . , 9}. Each Ci is described in detail in [16]. A group is AS-
maximal if it is the stabilizer in the classical group of the geometry associated
with the Aschbacher class.

In Section 4 heavy use will be made of C1 and so we give a definition of this
class. Let G be a classical group acting on the vector space V . A subgroup H of
G which preserves a proper non-trivial subspace of V is reducible. Otherwise H
is irreducible. The Aschbacher class C1 of G consists of all reducible subgroups
of G. If H is a maximal C1 subgroup of G stabilising U ≤ V then the restriction
of the form to U is either nondegenerate or identically zero.

We classify groups up to permutation isomorphism, using the fact that sub-
groups of Sd are permutation isomorphic if and only if they are conjugate in
Sd. If two maximal subgroups of a group G are conjugate in Aut(G) then the
images of the actions of G on their cosets are permutation isomorphic. The
primitive groups are partitioned into cohorts, where two groups are in the same
cohort if their socles are permutation isomorphic.

If a (projectively) almost simple group G with socle T has a maximal sub-
group M for which M ∩T is a proper, non-maximal subgroup of T then M is a
novelty. If T ≤ M then M is a triviality and corresponds to a non-faithful ac-
tion. Otherwise M is an ordinary maximal subgroup. The index of any novelty
in G is greater than the index of the largest ordinary maximal subgroup of G.

We use the notation of [16] for all groups with a few exceptions. The linear,
symplectic and unitary simple groups are denoted Ln(q), S2m(q) and Un(q)
respectively. The stabilizer of α under the action of G is denoted by Gα and the
centre of G by Z(G). We write Inn(G) for the inner automorphism group of G,
and Out(G) = Aut(G)/ Inn(G). A group is CS if it has computable subgroups
in Magma V2.14–12.

The following is well known (for example [16, Proposition 2.9.1]). We will
treat the following groups as the right hand side of the isomorphism.
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Theorem 2. The following classical groups are not simple: L2(q) for q ≤ 3,
PΩ±

2 (q), PΩ+
4 (q), U3(2). With the exception of these and (possibly isomorphic)

groups given below, all groups Ln(q), S2m(q), Un(q) and PΩε
n(q) (where ε ∈

{+,−, ◦}) are simple. Furthermore, the list below includes all isomorphisms
between pairs of classical or alternating groups.
L2(4) ∼= L2(5) ∼= A5 L3(2) ∼= L2(7) L2(9) ∼= S4(2)′ ∼= A6

L4(2) ∼= A8 U2(q) ∼= S2(q) = L2(q) U4(2) ∼= S4(3)
PΩ2m+1(2i) ∼= S2m(2i), i ≥ 1 PΩ3(q) ∼= L2(q), q odd PΩ5(q) ∼= S4(q), q odd
PΩ−

4 (q) ∼= L2(q2) PΩ+
6 (q) ∼= L4(q) PΩ−

6 (q) ∼= U4(q)

This completes the notation and preliminary results required. We now treat
each O’Nan–Scott class in turn.

3. Affine type groups

In this section we classify the primitive permutation groups of affine type of
degree 2500 ≤ d < 4096. Throughout, let V = Fk

p be a vector space.

Definition 3. The affine general linear group AGLk(p) consists of all functions
f : V → V given by f(v) = va + u where u ∈ V and a ∈ GLk(p). The maps
with a = 1 generate T � AGLk(p).

The subgroup T is regular and equal to the socle of AGLk(p). The group
AGLk(p) is a split extension of T ∼= V by the stabilizer in AGLk(p) of 0V . Thus
AGLk(p) ∼= V : GLk(p).

A primitive group G is of affine type if G ≤ AGLk(p) and Soc(G) ∼= T . The
action of the normalizer N = NSd

(T ) on T is permutation isomorphic to the ac-
tion of AGLk(p) on V . If a group G such that T ≤ G ≤ N is primitive then G0V

is naturally isomorphic to an irreducible subgroup of GLk(p). So classifying the
primitive permutation groups of affine type of degree 2500 ≤ d < 4096 corre-
sponds to classifying the irreducible subgroups of GLk(p) with 2500 ≤ pk = d <
4096. Two groups of affine type T :K1 and T :K2 are permutation isomorphic if
and only if the irreducible subgroups K1,K2 ∈ GLk(p) are conjugate in GLk(p).

Case k = 1. In this case, all subgroups K of F∗p = GL1(p) are irreducible.
There is one conjugacy class of affine type groups for each divisor of p− 1.

Case k > 1. Here (k, p) ∈ {(2, 53), (2, 59), (2, 61), (5, 5)}. For the first
three of these can directly compute representatives for each conjugacy class of
the irreducible subgroups of GLk(p). The corresponding subgroups of AGLk(p)
are constructed by taking semidirect products of the irreducible subgroups with
their natural modules.

The group GL5(5) is somewhat larger. First we calculate its trivial maximals;
in GL5(5) there is a unique proper subgroup M := SL5(5):2 containing SL5(5).
We let L be the union of the class representatives of the non-trivial irreducible
maximal subgroups of GL5(5), M and SL5(5): note that these are the maximal
subgroups that do not contain SL5(5). We then let L1 be the union of the class
representatives of the irreducible subgroups of each member of L. Finally, we
check L ∪ {GL5(5),M,SL5(5)} for conjugacy under GL5(5), and discard any
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duplicates. This method avoids a large enough part of the subgroup lattice to
make the computation manageable.

These computational methods serve to prove the following theorem.

Theorem 4. Let G be a primitive permutation group of affine type of degree
2500 ≤ d < 4096. If d is prime then G ∼= d : r where r divides d− 1. Otherwise
d = pk for (p, k) ∈ {532, 592, 612, 55} and G ∼= T : K where T ∼= Fk

p and K is an
irreducible subgroup of GLk(p). The numbers of primitive soluble and insoluble
affine groups of non-prime degree 2500 ≤ d < 4096 are given in Table 2.

4. Almost simple groups

Next we classify the primitive almost simple groups of degree 2500 ≤ d <
4096. The groups with alternating socle are considered first, followed by the
groups with classical, exceptional and finally sporadic socle.

Faithful primitive actions of a group G correspond to conjugacy classes of
core-free maximal subgroups of G. Hence we can classify the almost simple
primitive permutation groups of degree 2500 ≤ d < 4096 by finding the maximal
subgroups of almost simple groups of index in that range.

We consider the families of simple groups in turn and create a list of groups
T which are potential socles of primitive almost simple groups of the correct
degrees. Let P (G) denote the smallest d such that G has a faithful primitive
permutation action of degree d. The following is well known.

Lemma 5. If G is an almost simple group with socle H then P (G) ≥ P (H).

4.1. Alternating and Symmetric groups
For d > 4, the groups Ad and Sd in their natural action form a single cohort

of improper primitive groups. We do not consider these further.

Proposition 6. Let G be An or Sn. If G has a faithful non-natural primitive
action of degree 2500 ≤ d < 4096 then n ≤ 91. If the point stabilizer Gα of this
action is transitive on {1, . . . , n} then Gα is primitive and 10 ≤ n ≤ 12.

Proof. Since 6! < 2500 we may assume that n ≥ 7. Let X be a proper
subgroup of An with X 6= An−1 and assume that either X is maximal in An or
else X = Y ∩An where Y is a maximal subgroup of Sn.

Case 1: Suppose that X is primitive in its action on {1, . . . , n}. By
Bochert’s theorem [14, Satz 2.4.6]

|Sn : X| > b(n + 1)/2c!

so |Sn : X| < 8192 implies n < 15. We use Magma to find the indices of the
primitive maximal subgroups of An and Sn for 7 ≤ n ≤ 14. Only the groups
A10, A11, A12 and S10 have primitive maximal subgroups of index in the range
2500 ≤ d < 4096; each has one conjugacy class of such subgroups of index
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2520. Note that in fact the point stabiliser in this action of S10 has primitive
intersection with A10 (in the natural action).

Case 2: Suppose that X is imprimitive on {1, . . . , n}. Let k be the size of
some non-trivial block for X, so that 1 < k < n, and set m := n/k. We have
seen in case 1 that there is no maximal primitive Y ≤ Sn such that X = Y ∩An

is imprimitive. Therefore without loss of generality X is an index 2 subgroup
of Sk oSm and |X| = (k!)m(m!)/2. Hence

|An : X| = |Sn : Y | = (mk)!/(k!)mm! = f(m, k).

The function f(m, k) increases monotonically in both variables and the reader
may check that for (m, k) ∈ {(2, 7), (3, 3), (4, 2), (5, 2)} the value of f(m, k) is
less than 2500, whilst for (m, k) ∈ {(2, 8), (3, 4), (4, 3), (5, 3), (6, 2)} the value of
f(m, k) is greater than 4095. Hence there is no n such that An or Sn has an
imprimitive maximal subgroup of index 2500 ≤ d < 4096.

Case 3: Finally, suppose that X acts intransitively on {1, . . . , n}. By [32,
proof of Prop. 4.2] the group X has no orbit of length 1. Let Γ be the smallest
orbit of X and set k := |Γ| ≤ n/2. Then X ≤ (Sk ×Sn−k) ∩An, so

|X| ≤ k!(n− k)!/2

and

|An : X| = |Sn : Y | ≥ n!/k!(n− k)! =
(

n

k

)
≥

(
n

2

)
.

The upper bound |An : X| < 4096 implies that n < 92.

The intransitive maximal subgroups of An and Sn are well understood.

Theorem 7. Let G be a primitive almost simple group of degree 2500 ≤ d <
4096 with socle An. Then G appears in Table 3.

4.2. Classical groups
Recall that a simple classical group takes one of the following forms: lin-

ear, Ln(q); symplectic, S2m(q); unitary, Un(q); orthogonal in odd dimension,
PΩ2m+1(q) and orthogonal in even dimension, PΩε

2m(q) with ε ∈ {+,−}. Using
[16] to find P (Cln(q)) where Cln(q) is a simple classical group, we determine
the maximum values of n and q such that P (Cln(q)) < 4096.
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Table 1: Socles of almost simple classical groups with P (Cln(q)) < 4096

Group n q Non-CS
Ln(q) n = 2 q ≤ 4093

n = 3 q ≤ 61
n = 4 q ≤ 13
n = 5 q ≤ 7
n = 6 q ≤ 5 L6(4), L6(5)
n = 7 q ≤ 3
n = 8 q ≤ 3 L8(3)
9 ≤ n ≤ 12 q = 2

S2m(q) m = 2 q ≤ 13
m = 3 q ≤ 5 S6(4), S6(5)
m = 4 q ≤ 3 S8(3)
5 ≤ m ≤ 6 q = 2 S12(2)

Un(q) n = 3 q ≤ 13
n = 4 q ≤ 7
n = 5 q ≤ 3 U5(3)
6 ≤ n ≤ 7 q = 2 U7(2)

PΩ2m+1(q) m = 3 q ≤ 5 PΩ7(5)
m = 4 q = 3 PΩ9(3)

PΩ+
2m(q) m = 4 q ≤ 3 PΩ+

8 (3)
5 ≤ m ≤ 6 q = 2 PΩ+

12(2)

PΩ−
2m(q) m = 4 q ≤ 3

5 ≤ m ≤ 6 q = 2 PΩ−
12(2)

Lemma 8. Let G be an almost simple classical group with P (G) < 4096. Then
the socle H of G appears in Table 1.

Proof. By Lemma 5 it suffices to consider the simple classical groups. The
formulae for P (H) are given in [3, 16] and are all monotonically increasing in
each variable.

Linear. The groups L2(q) for q ≤ 5 are either soluble or have already been
considered by Theorem 2. If q 6∈ {(2, q) : q odd, 7 ≤ q ≤ 11} ∪ {(4, 2)} then
the minimal degree of a non-trivial permutation representation of Ln(q) is (qn−
1)/(q − 1). All of the exceptions are groups of order less than 4095 apart from
L4(2) ∼= A8 which has already been considered. Hence the largest values of n
and q for which P (Ln(q)) < 4096 are as given in Table 1.

Symplectic. We assume that m > 1 and (m, q) 6= (2, 2) by Theorem 2.
The minimal degree of a non-trivial permutation representation of S2m(2) is
2m−1(2m − 1) for m ≥ 3. With the exception of P (S4(3)) = 27, if m ≥ 2 and
q ≥ 3 then P (S2m(q)) = (q2m − 1)/(q − 1).
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Unitary. We assume that n > 2 and (n, q) 6∈ {(3, 2), (4, 2)} by Theorem 2. If
q 6= 2, 5 then P (U3(q)) = q3+1, whilst P (U3(5)) = 50. If q 6= 2 then P (U4(q)) =
q4 + q3 + q + 1. Now let n ≥ 5. When n is even P (Un(2)) = 2n−1(2n − 1)/3.
Otherwise

P (Un(q)) = (qn − (−1)n)(qn−1 − (−1)n−1)/(q2 − 1).

Orthogonal, odd dimension. We assume that m ≥ 3 and q is odd by The-
orem 2. Then P (PΩ2m+1(3)) = 3m(3m − 1)/2 and P (PΩ2m+1(q)) = (q2m −
1)/(q − 1) for q ≥ 5.

Orthogonal, plus and minus types. We assume that m ≥ 4 by Theorem 2.
Then P (PΩ+

2m(2)) = 2m−1(2m − 1) and P (PΩ+
2m(3)) = 3m−1(3m − 1)/2. For

q ≥ 4 and ε = +, or for all q and ε = −

P (PΩε
2m(q)) = (qm − ε)(qm−1 + ε)/(q − 1).

In general, the primitive almost simple groups with CS socles can be created
computationally, by constructing their maximal subgroups. The group L12(2)
is CS but is extremely large, so will be dealt with in Lemma 14.

4.2.1. Reduction of actions
For some of the remaining classical groups G, we shall show that all irre-

ducible subgroups have index > 4095. We use [12, 13] to construct maximal
reducible subgroups of G.

Proposition 9. Let H be one of the following classical simple groups

L6(4),L6(5),L8(3),S6(5),S8(3),U5(3),U7(2),PΩ9(3),PΩ+
12(2),PΩ−

12(2).

Then all faithful primitive actions of H of degree less than 4096 are on the cosets
of reducible subgroups.

Proof. Throughout let X be a proper irreducible subgroup of H of largest
possible order. For each H we find X or an upper bound on the order of X and
hence show that |H :X| > 4095.

Linear. H = Ln(q) with (n, q) ∈ {(6, 4), (6, 5), (8, 3)}. For each group n is
even and greater than 4 so Soc(X) = Sn(q) by [20, Theorem 5.1]. This implies
that X = NH(Sn(q)) ≤ NPGLn(q)(Sn(q)) = PGSpn(q).

Symplectic. Let H = S6(5) or S8(3). Then by [20, Theorem 5.2], the group
X = (SL2(5) o S3)/2 or S4(9).2, respectively.

Unitary. For H = U5(3) the group X = NH(PΩ5(3)) = PSO5(3) by [20,
Theorem 5.3]. For H = U7(2) ∼= SU7(2) either X = (GU1(2) o S7) ∩ SU7(2) or
|X| < 218 by [20, Theorem 5.3, (iii)].
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Orthogonal, odd dimension. Let H = PΩ9(3) ∼= Ω9(3). By [20, Theorem
5.6] and divisibility consideridations one of the following holds

1. X = (GO3(3) o S3) ∩ Ω9(3);
2. Soc(X) = A10;
3. |X| < 322.

For case (2) let Y := Soc(X) = A10. Then CX(Y ) � X, so if this central-
izer were non-trivial, there would be some minimal normal subgroup N of X
contained in CX(Y ). Then N ≤ Soc(X) ∩ CX(Y ) = Z(Y ) = 1, which is a
contradiction. Hence CX(Y ) = 1, so X embeds in Aut(Y ), namely S10.

Orthogonal, even dimension. By [20, Theorems 5.4, 5.5] if Soc(H) = PΩ+
12(2)

∼= Ω+
12(2) then X = GU6(2).2 and if Soc(H) = PΩ−

12(2) ∼= Ω−
12(2) then X ≤ S13.

For each of the above cases the index of X in H is greater than 4095.

Let H be one of the simple groups listed in Proposition 9. For each almost
simple group with socle H the results of [12, 13] are used to construct gen-
erators of conjugacy class representatives of reducible subgroups. If the index
of a potentially maximal subgroup lies in the range 2500 ≤ d < 4096 then we
use Magma to check whether the corresponding permutation representation is
primitive and keep those that are. This is described in detail below.

Linear. Let H = Ln(q) with (n, q) ∈ {(6, 4), (6, 5), (8, 3)}. We construct the
stabilizers of k-spaces for 1 ≤ k ≤ n/2 and the novelty reducible maximals of
the extension of H by the duality automorphism for 1 ≤ k < n/2. The formulae
for the corresponding group orders are found in [16, Propositions 4.1.17, 4.1.4,
4.1.22]. The only reducible subgroups of appropriate index are the stabilizers in
L6(5) and L8(3) of a 1-dimensional subspace of index 3906 and 3280 respectively,
both of which are maximal.

Symplectic. Let H = Sn(q) with (n, q) ∈ {(6, 5), (8, 3)}. We construct the
stabilizers of a totally singular k-space for 1 ≤ k ≤ n/2 and a non-degenerate
k-space for 2 ≤ k < n/2 with k even. The group orders are calculated using [16,
Propositions 4.1.19, 4.1.3]. The 1-dimensional subspace stabilizers in S6(5) and
in S8(3) have index 3906 and 3280, respectively, and both of these are maximal.
All other stabilizers have index greater than 4095.

Unitary. Let H = Un(q) with (n, q) ∈ {(5, 3), (7, 2)}. We construct the sta-
bilizers of isotropic k-spaces for 1 ≤ k ≤ n/2 and of non-degenerate spaces for
1 ≤ k < n/2. By [16, Propositions 4.1.18, 4.1.4] the only groups of appropriate
index are the stabilizers in U7(2) of an isotropic 1-space and a non-isotropic
1-space of index 2709 and 2752, respectively, both of which are maximal.
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Orthogonal, odd dimension. Let H = PΩ9(3). We find the stabilizers of
totally singular k-spaces for 1 ≤ k ≤ 4 and of non-degenerate k-spaces of plus
and minus type for 1 ≤ k < 9 and k odd. The group orders are found in [16,
Propositions 4.1.20, 4.1.6]. The groups of appropriate index are the stabilizers
of a totally singular 1-space and a non-degenerate 8-space of plus or minus type
of index 3280, 3321 and 3240, respectively, and all of these are maximal.

Orthogonal, even dimension. Let H = PΩ+
12(2) or PΩ−

12(2). We find the
stabilizers of the following subspaces: A totally singular k-space for 1 ≤ k ≤ r,
where r = 6 or 5, respectively; a non-degenerate k-space of odd dimension,
plus type or minus type for 1 ≤ k ≤ s, where s = 5 or 6, respectively; and a
non-singular 1-space. By [16, Propositions 4.1.20, 4.1.6, 4.1.7] none of these has
index in the required range.

We conclude:

Theorem 10. Let G be a primitive group of degree 2500 ≤ d < 4096, with socle
H one of the groups in Proposition 9. Then G appears in Tables 4 or 5.

4.2.2. Actions on irreducible subgroups
We classify the primitive permutation representations of degree 2500 ≤ d <

4096 of S6(4), S12(2), PΩ7(5) and L12(2) using Aschbacher’s theorem [1]. The
group PΩ+

8 (3) is analysed separately [17]. The AS-maximals for classes C1 to C8

are given in [16, Section 4] and we find all potential maximals for subgroups in C9

using [22] and [11], which together list all absolutely irreducible representations
of simple groups of small dimension.

Lemma 11. Let G := S6(4). If M is a maximal subgroup of an almost simple
group with socle G of index less than 4096 then M has index less than 2500.

Proof. The stabilizers of a totally singular k-space for k ∈ {1, 2, 3} have index
1365, 23205 and 5525 respectively. The stabilizer of a non-degenerate 2-space
has index 69888. The groups in C2 and C3 have index greater than 4095, and
Aschbacher classes C4, C6 and C7 are empty for groups with socle S6(4). In C5

the stabilizer of a subfield of F4 of index 2 has index ≈ 3× 106. The C8 groups
PGO±

6 (4) are maximal and have index 2080 and 2016 respectively. Potential
maximal subgroups in C9 that are not groups of Lie type in defining characteris-
tic have socle U3(3), 2.J2, 2.L2(13), 2.L2(5) and 2.L2(7), by [11]. For each group
M in this list |S6(4)|/|Aut(M)| > 4095. Potential maximals which are groups
of Lie type in defining characteristic are L4(2), L4(4), U4(2), U4(4) and G2(4)
by [22]. However U4(4) ∼= PΩ−

6 (4) and L4(4) ∼= PΩ+
6 (4), which are both in C8,

and if M is one of L4(2), U4(2), or G2(4) then |S6(4)|/|Aut(M)| > 4095.

Lemma 12. Let G := S12(2) ∼= Aut(S12(2)). If M is a maximal subgroup of
G of index less than 4096 and at least 2500 then M is the stabilizer of a totally
isotropic 1-space of index 4095;
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Proof. The stabilizer of a 1-space has index 4095 whilst all other totally sin-
gular k-space stabilizers have index greater than 4095. The stabilizers of a
non-degenerate k-space for k ∈ {2, 4} both have index greater than 4095. The
AS-maximals in C2 all have index greater than 4095. There are two AS-maximal
groups in C3, namely S6(4).2 and S4(8).3, both of which have index greater than
4095. There are no groups in Aschbacher classes Ci with 4 ≤ i ≤ 7 for groups
with socle S12(2). In class C8 the AS-maximals are PGO+

12(2) of index 2080 and
PGO−

12(2) of index 2016. Let G be a C9 maximal. Then one of Soc(G) ∼= A13,
Soc(G) ∼= A14 or |G| < 236 holds by [20, Theorem 4.1]. Hence the smallest
possible index of G is |S12(2)|/14! > 4095.

Lemma 13. If M is a maximal subgroup of an almost simple group G with socle
PΩ7(5) and M has index less than 4096, then M stabilizes a totally singular 1-
space, |G:M | = 3906 and NS(M ∩ PΩ7(5)) is maximal in all almost simple
groups S with socle PΩ7(5).

Proof. The stabilizer of a totally singular k-space has index 3906 when k = 1
and when k ≥ 2 the index is greater than 4095. For 1 ≤ k ≤ 5 the stabilizer
of a non-degenerate k-space (with k odd) has index > 4095. The only AS-
maximal group in C2 has shape 26.A7 and index ≈ 109. There are no groups in
Aschbacher classes Ci with 3 ≤ i ≤ 8 for groups with socle PΩ7(5). Potential
C9 maximals that are not groups of Lie type in defining characteristic have
socle A8, S6(2), L2(7), L2(8) and U3(3) by [11]. For each group M in this list
|PΩ7(5)|/|Aut(M)| > 4095. The only potential maximal subgroup of Lie type
in defining characteristic is G2(5) ∼= Aut(G2(5)) by [22], which has index greater
than 4095.

Lemma 14. Let G be an almost simple group with socle L12(2). If M is a
maximal subgroup of G of index 2500 ≤ d < 4096 then M is the stabilizer in G
of a totally isotropic 1-space and has index 4095.

Proof. The stabilizer in G of a totally singular k-space for 2 ≤ k ≤ 10 has
index greater than 4095. The stabilizers in G of a totally isotropic 1-space and
a totally isotropic 11-space have index 4095 and are conjugate in Aut(L12(2)).
Thus the novelty C1 maximals all have index greater than 4095. Aschbacher
classes Ci, with 5 ≤ i ≤ 7 are empty for groups with socle L12(2) and all
subgroups in classes C2, C3, C4 and C8 have index greater than 4095.

From [11] and [22] the possible C9 maximals of G have socle 6.A6, 3.Suz,
S12(2) and PΩ±

12(2). The groups S12(2) and PΩ±
12(2) are in C8 and the repre-

sentations of 6.A6 and 3.Suz need a cube root of unity, hence are not in L12(2).

Lemma 15. If G is a group with socle PΩ+
8 (3) then G has no primitive per-

mutation representation of degree less than 4096.

Proof. The list of maximal subgroups of the almost simple groups with socle
PΩ+

8 (3) in [6] is not claimed to be complete. We used [17] to verify that no
maximal subgroup has index 2500 ≤ d < 4096.
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We conclude:

Theorem 16. The primitive almost simple classical groups of degree 2500 ≤
d < 4096 are given in Tables 4 and 5.

4.3. Exceptional and sporadic groups
We use Lemma 5 and consider only the simple exceptional groups. Let

G := Ch(q) be a Chevalley group with q = pe and define l(G, p) > 1 to be the
smallest possible degree of a non-trivial projective irreducible representation of
G over a field of characteristic other than p. A primitive permutation represen-
tation of degree d corresponds to a (not necessarily irreducible) representation
by permutation matrices in coprime characteristic in dimension d− 1. Hence a
lower bound for l(G, p) gives a lower bound for P (G).

Proposition 17. Let G be an almost simple exceptional group with a faithful
primitive permutation representation of degree 2500 ≤ d < 4096. Then Soc(G)
is one of G2(3), G2(5) or 2F4(2)′.

Proof. To begin with we examine the untwisted groups: E6(q), E7(q), E8(q),
F4(q) and G2(q). Secondly we deal with the twisted groups: 2B2(22m+1) =
Sz(22m+1), 3D4(q), 2E6(q), 2F4(q) and 2G2(32m+1).

The minimal degree P (E6(q)) ≥ q9(q2 − 1) by [19], so it suffices to consider
q = 2. However all maximal subgroups of E6(2) have index greater than 4095
by [18]. The values of l(E7(q), p) = q15(q2 − 1) and l(E8(q), p) = q27(q2 − 1) are
greater than 4095 for all q.

The smallest degree l(F4(q), p) ≥ q9/2 > 4095 for all q > 2 by [19], and the
index of the largest maximal subgroup of F4(2) is 69615 from [6].

The largest maximal subgroup of G2(q) has index greater than q5 + q4 +
q3 + q2 + q + 1 for q > 4 by [21, Theorem 5.2] and therefore P (G2(q)) > 4095
for all q > 5. The group G2(2) is not simple and G2(2)′ is isomorphic to U3(3).
The group G2(3) has three maximal subgroups of index 2500 ≤ d < 4096 and
Aut(G2(3)) has no novelties with index in that range [6]. The group G2(4) has no
maximal subgroups of index 2500 ≤ d < 4096, nor does Aut(G2(4)) ∼= G2(4).2
by [6]. The group G2(5) ∼= Aut(G2(5)) has two maximal subgroups of index
3906 by [6].

Now we analyse the twisted groups. The smallest degree P (Sz(22m+1)) >
4095 for m ≥ 4 by [19]. No maximal subgroups of Sz(8) and Sz(32) or their
automorphism groups have index in the range 2500 ≤ d < 4096 by [6]. Let
G := Sz(q) and let r2 = 2q, so that |G| = q2(q − 1)(q2 + 1). Then the possible
orders of a maximal subgroup of G are {q2(q − 1), 2(q − 1), 4(q + r + 1), 4(q −
r + 1), |Sz(q0)| : qt

0 = q} by [36, p137, Theorem 9]. Hence for m ≥ 3 the group
Sz(22m+1) has no proper subgroups of index less than 4095.

A maximal subgroup of 3D4(q) has index at least q8+q4+1 by [21, Theorem
5.2], so for q > 2 all maximal subgroups of 3D4(q) have index larger than 4095.
No almost simple group with socle 3D4(2) has a maximal subgroup of index
2500 ≤ d < 4096 by [6].
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The minimal degree l(2E6(q), p) ≥ q8(q4 +1)(q3−1) by [19], which is greater
than 4095 for q > 2. No almost simple group with socle 2E6(2) has a maximal
subgroup of index less than 4096 by [6].

A maximal subgroup of 2F4(q) with q > 2 has index at least (q6 + 1)(q3 +
1)(q + 1) by [21, Theorem 5.2] and so P (2F4(q)) > 4095 for q > 2. The groups
2F4(2)′ and Aut(2F4(2)′) each have a maximal subgroup of index 2925 by [6].

Lastly, 2G2(3) ∼= L2(8):3 and l(2G2(32m+1), p) ≥ 32m+1(32m+1 − 1) for m >
0. If m ≥ 2 then P (2G2(32m+1)) > 4095 which leaves only 2G2(33) ∼= R(27)
which has no maximal subgroups of index less than 4096 by [6].

Information about the maximal subgroups of the 26 sporadic groups is in [6]
and corrected in [31]. With the exception of the Monster group M, the list of
maximal subgroups is complete for each group. The smallest dimension of an
irreducible complex representation of M is 196883, hence M has no transitive
permutation of degree < 4096. The sporadic groups with primitive permutation
representations of degree 2500 ≤ d < 4096 are J1, HS, M24, Ru and Fi22. All of
the exceptional groups are also in [6]. We conclude:

Theorem 18. The exceptional and sporadic groups with faithful primitive per-
mutation representations of degree 2500 ≤ d < 4096 are given in Table 6.

5. Product action groups

We classify the primitive product action groups of degree 2500 ≤ d < 4096.

Definition 19. Let B be a group acting on a set ∆ and let W := B o Sk. The
product action of (b1, . . . , bk)σ ∈ W on (δ1, . . . , δk) ∈ ∆k is defined as follows.

(δ1, . . . , δk)(b1,...,bk)σ = (δb1
1 , . . . , δbk

k )σ = (δb1σ−1

1σ−1 , . . . , δ
bkσ−1

kσ−1 ).

Let P be a primitive group of almost simple or diagonal type of degree n.
Then K := Soc(P ) is isomorphic to a direct power T l = T × · · · × T of a non-
abelian simple group T . Let m ≥ 2 be a non-trivial multiple of l and let W be
the product action wreath product P o Sm/l. We list the groups G such that

Km/l ≤ G ≤ W

and G is a primitive permutation group of degree d = nm/l.
Since P is of almost simple or diagonal type, n ≥ 5. The condition 2500 ≤

d < 4096 implies m ≤ 5 and the following values can occur:

• m/l = 2 and 50 ≤ n < 64

• m/l = 3 and 14 ≤ n < 16

• m/l = 5 and n = 5.
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The primitive groups of degree less than 64 are in the primitive groups library
of Magma. Let P be the largest primitive group in its cohort. The only group
of diagonal type in this list is P = A2

5 .22, the socle of which is isomorphic to
A5 ×A5. In this case l = 2 and m = 4, for all other groups l = 1.

To find the primitive groups of product action type we proceed as follows.
For each P construct the product action wreath product W := P o Sm/l and
take the socle quotient W/ Soc(W ). The preimages of the primitive subgroups
of this quotient are primitive groups of degree nm/l.

Theorem 20. The product action type primitive permutation groups of degree
2500 ≤ d < 4096 are given in Table 8.

6. Diagonal type groups

Lastly we consider the diagonal type groups. Let T be a non-abelian simple
group, let m ≥ 2 and consider a group W of shape (T oSm).Out(T ). The diagonal
subgroup of W is D = {(t, t, . . . , t) | t ∈ T}.(Sm ×Out(T )) and the action of W
on the cosets of D is the diagonal action. A permutation group G is of diagonal
type if Tm ≤ G ≤ W with the diagonal action. Then Soc(G) ∼= Tm, the degree
of G is d := |T |m−1 and the full normalizer N of Tm in Sd is equal to W .

Theorem 21. [8, p123] A diagonal type group G ≤ Sd is primitive if and only
if either m = 2 or m ≥ 3 and the conjugation action of G on the set of all
minimal normal subgroups of Tm is primitive.

Since we are only interested in the primitive groups of degree 2500 ≤ d =
|T |m−1 < 4096 the possible simple groups T are A7, L2(19), L2(16) with m = 2
and A5 with m = 3.

6.1. Method
Let W := Aut(T ) o Sm. Then W has subgroups isomorphic to all groups of

diagonal type with socle Tm. A group isomorphic to NSd
(Tm) lies in the set

Λ = {K ≤ W : |W : K| = |Out(T )|m−1}.

Using Magma to compute Λ for each T given above we see there is only one
group L which has a maximal subgroup of index |T |m−1 in each case. For each
such maximal subgroup M of L we let N be the permutation representation of L
acting on the cosets of M . When m = 2 the primitive groups are found by taking
all subgroups of the socle quotient N/ Soc(N) and storing their preimages.

When m = 3 the action of G by conjugation on the set of all minimal normal
subgroups of T 3 is primitive. In this case T = A5 and

N := (A5)3 :(S3 ×2)

so in a primitive subgroup G ≤ N the minimal normal subgroups of the socle
are permuted by a subgroup of S3. The only primitive subgroups of S3 are itself
and A3, hence the primitive subgroups of N are those with either S3 or A3 in
their socle quotients. This enables us to prove the following theorem.
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Theorem 22. The primitive permutation groups of diagonal type of degree
2500 ≤ d < 4096 are given in Table 7.

This completes our classification of primitive groups.

7. Accuracy checks

This section details the methods used to check our results. We also state
which results in the literature have been used without rechecking.

Where there are families of groups in [32] (such as {An : 5 ≤ n ≤ 71}) which
can be extended to include groups of degree 2500 ≤ d < 4096 the parameters
of the smallest group of the new family were compared to those of the largest
member of the existing family to ensure there are no omissions.

The soluble irreducible subgroups of GLk(p) for pk < 216 are in the IRREDSOL
package of GAP and these were checked against Magma, finding no discrepancy.
Our numbers of soluble groups agree with those in [9].

We have made extensive use of [16] and in particular have assumed the
results of Section 4 to be accurate. The primitive permutation groups of degree
less than 2500 given in [32] are assumed to be correct without rechecking. The
other main references whose accuracy has been relied upon are [20, Theorems
5.1-5.5] for bounds on the orders of maximal irreducible subgroups of classical
groups, [11] and [22] for the C9 maximals of almost simple groups, [17] for
the maxmal subgroups of PΩ+

8 (3), [19] for bounds on degrees of permutation
representations of the exceptional groups and [21, Theorom 5.2] for bounds on
the orders of maximal subgroups of some exceptional groups. We frequently
used [6] and each time consulted [31] to ensure accuracy.

The definition of product action primitive groups given in Section 5 is more
restrictive than that in [8] to make the O’Nan–Scott classes disjoint.

Lemma 23. A primitive group G belongs to exactly one O’Nan–Scott class.

Proof. The socle of G is abelian if and only if G is of affine type. The socle of
G is nonabelian and regular if and only if G is a twisted wreath product. The
socle of G is non-abelian simple if and only if G is an almost simple group.

Thus we assume that Soc(G) ∼= Tm for some non-abelian simple group T
and m ≥ 2, with nontrivial point stabilisers. We need only show that if H ∼= G
and H is primitive of the same degree as G then H and G are not of product
action and diagonal type, respectively. Assume otherwise, then Tm ≤ G ≤
Tm.(Sm ×Out(T )) and Tm ∼= Sk ≤ H ≤ P k : Sk, where P is a primitive group
of almost simple or diagonal type, k > 1 divides m and Soc(P ) = S ∼= Tm/k.
If P is almost simple then k = m and Hα does not contain T . This is not the
case for G, so P is of diagonal type. Then S ∼= T l for some l = m/k > 1, and
P has degree |T |l−1. Now Soc(G) ∼= T kl and G has degree |T |kl−1, however the
degree of H is (|T |l−1)k = |T |kl−k, so G is not isomorphic to H.

Hence we only check for permutation isomorphism between groups of the
same degree within the O’Nan–Scott classes and this was done using the same
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Table 2: Primitive groups of affine type

pk Soluble Insoluble

532 100 6
592 82 6
612 212 20
55 48 46

methods as [32]. The signature of a group G is the following list of properties:
the order of G, the largest integer k such that G acts k-transitively, the multiset
of orbit lengths of the k-point stabilizer of G, the multiset of chief factors of G
and the orders of all groups in the derived series of G. Adding to the signature
the multisets of isomorphism types of all abelian groups that both occur as
quotients in the derived series of G and are in the small groups library of Magma
gives us the extended signature of G.

Let L be a list of groups of the same degree in a particular O’Nan–Scott
class. We partition the groups in L using their signatures and delete from L
any groups in a class of size 1. Next we compute the Sylow 2-subgroup S of
each group in L and repeat the process now using the extended signature of
S, again discarding the groups in equivalence classes of size 1. Now the point
stabilizer and derived subgroup of the remaining groups in L are computed and
the groups are again partitioned by their extended signature. The number of
groups remaining after this step is small enough for us to check by hand that
no pair of groups is permutation isomorphic. This test was carried out for each
collection of groups of the same degree inside an O’Nan–Scott class.

To avoid computational errors we have repeatedly run the code and checked
that the results agree. When using [12] to construct the maximal reducible
subgroups of a group we ensured maximality by checking that the groups arising
from them are primitive. The groups declared to be CS and the primitive groups
database have been in use in Magma for a number of years.

8. Tables

We now give tables of the primitive permutation groups of degree 2500 ≤
d < 4096. Recall that q is always a prime power, p is always a prime and n is a
positive integer. The dihedral group of order 2n is denoted D2n and [n] denotes
a soluble group of order [n].

The table for the affine groups lists the numbers of soluble and insoluble
primitive subgroups of degree pk for k > 1. The number of primitive subgroups
of AGL1(p) ∼= p : (p − 1) is equal to the number of divisors of p − 1 and hence
is omitted from our tables. For each of the other O’Nan–Scott classes the first
column of each table contains the smallest group G of the cohort. Also given
are the degree d of G, the rank (number of orbits of a point stabilizer) of the
normalizer N of G in Sd and the number of groups in the cohort of G. In the
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Table 3: Primitive almost simple groups with alternating socle

Primitive Conditions Degree Stabilizer N Rank Cohort
group G in G of N size
An 72 ≤ n ≤ 91

(
n
2

)
Sn−2 H.2 3 2

Out = 2 26 ≤ n ≤ 30
(
n
3

)
(An−3 ×3):2 H.2 4 2

18 ≤ n ≤ 19
(
n
4

)
(An−4 ×A4):2 H.2 5 2

A10 2520 M10 H.2 10 2
A11 2520 M11 H 5 1
A12 2520 M12 H 4 1
A14 3003 (A8 ×A6):2 H.2 7 2
A15 3003 (A10 ×A5):2 H.2 6 2

Table 4: Primitive almost simple groups with socle L2(q)

Primitive Conditions Degree Stabilizer N Rank Cohort
group G in G of N size

L2(p) 73 ≤ p ≤ 89
(
p
2

)
Dp+1 H.2 p+1

2 2
L2(p) 71 ≤ p ≤ 89

(
p+1
2

)
Dp−1 H.2 p+3

2 2
L2(p) 2503 ≤ p ≤ 4093 p + 1 p:(p− 1)/2 H.2 2 2
L2(43) 3311 A4 H.2 152 2
L2(71) 2982 A5 H 61 1

L2(p2) 53 ≤ p ≤ 61 p2 + 1 p2 :(p2 − 1)/2 H.22 2 5
L2(192) 3439 PGL2(19) H.2 11 2
L2(34) 3240 D82 H.23 14 8

3321 D80 H.23 15 8
L2(55) 55 + 1 55 :(55 − 1)/2 H.5.2 2 4

tables of the almost simple groups we also give the structure of N in terms of
the socle H of G, and the shape of a point stabilizer in G. Note that Table 3
does not contain Ad and Sd in their natural action.

17



Table 5: Primitive almost simple groups with other classical socles

Primitive Degree Stabilizer N Rank Cohort
group G in G of N size

L3(5) 3100 S5 H.2 32 2
3875 42 : S3 H.2 35 2
4000 31:3 H.2 35 2

L3(7).2 2793 2·(L2(7)× 2).2 H.S3 10 2
L3(13).2 2562 [133].[48].2 H.S3 4 2
L3(53) 2863 532.[52].L2(53).2 H 2 1
L3(59) 3541 592.[58].L2(59).2 H 2 1
L3(61) 3783 612.[20].L2(61).2 H.3 2 2
L4(7) 2850 [74].[6].L2(7)2.2 H.22 3 5
L5(7) 2801 [74].[6].L4(7).2 H 2 1
L6(5) 3906 [55].2.L5(5) H.2 2 2
L7(2) 2667 [210].(S3 ×L5(2)) H 3 1
L8(3) 3280 [37].L7(3) H.2 2 2
L12(2) 4095 [211].L11(2) H 2 1

S4(32) 3240 S2(34).2 H.22 5 5
3321 2.S2(32) o 2 H.22 5 5

S6(3) 3640 33+4 :2.(S4 ×A4) H.2 5 2
S6(5) 3906 [55]:4.S4(5) H.2 3 2
S8(3) 3280 [37]:2.S6(3) H.2 3 2
S12(2) 4095 [211]:S10(2) H 3 1

U3(23) 3648 3× L2(8) H.(3× S3) 5 9
U4(3) 2835 2.(A4 ×A4).22 H.D8 9 8
U4(22) 3264 5.U3(4) H.4 4 3
U4(5) 3276 [55]:[12].U2(5).2 H.22 3 5
U4(7) 2752 [74]:3.L2(72) H.D8 3 8
U5(2) 3520 S3 ×31+2 :2 A4 H.2 12 2
U7(2) 2709 [211]:3.U5(2) H.2 3 2

2752 3.U6(2).3 H.2 3 2

PΩ7(3) 3159 S6(2) H 4 1
3640 31+6 :(2 A4 ×A4).2 H.2 5 2

PΩ7(5) 3906 [55]:(2× Ω5(5)).2 H.2 3 2
PΩ9(3) 3240 Ω−

8 (3).2 H.2 3 2
3280 [37]:Ω7(3).2 H.2 3 2
3321 Ω+

8 (3).2 H.2 3 2
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Table 6: Primitive almost simple groups with exceptional and sporadic socle

Primitive Degree Stabilizer N Rank Cohort
group G in G of N size

G2(3) 2808 L2(8):3 H :2 7 2
3159 23.L3(2) H :2 8 2
3888 L2(13) H :2 12 2

2F4(2)′ 2925 22.[28]: S3 H.2 5 2
G2(5) 3906 51+4

+ : GL2(5) H 4 1
3906 52+3 : GL2(5) H 4 1

J1 2926 S3 ×D10 H 67 1
HS 3850 24.S6 H :2 12 2
M24 3795 26 :(L3(2)× S3) H 5 1
Ru 4060 2F4(2) H 3 1
Fi22 3510 2.U6(2) H :2 3 2

Table 7: Primitive diagonal type groups

Primitive Degree Rank Cohort
group G of N size

A2
7 2520 8 5

L2(19)2 3420 11 5
A3

5 3600 17 5
L2(16)2 4080 7 8
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Table 8: Primitive product action groups

Socle Conditions Degree Rank Cohort
of N size

A2
n 50 ≤ n ≤ 63 n2 3 4

L2(p)2 53 ≤ p ≤ 61 (p + 1)2 3 4

L2(49)2 2500 3 24
U3(5)2 2500 6 4
L3(3)2 2704 10 3
L2(11)2 3025 21 4
L2(11)2 3025 21 3
M2

11 3025 6 1
A2

11 3025 6 4
A2

8 3136 10 4
L3(4)2 3136 6 24
L2(19)2 3249 10 1
L3(7)2 3249 3 4
U3(3)2 3969 10 4
U3(3)2 3969 10 4
S6(2)2 3969 6 1
L6(2)2 3969 3 1

(A2
5)

2 3600 10 24

A3
n 14 ≤ n ≤ 15 n3 4 10

L2(13)3 2744 4 10
A3

6 3375 10 10
A3

7 3375 4 2
A3

8 3375 4 2

A5
5 3125 6 26
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