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1. INTRODUCTION

THE linear regression analysis of the environmental plus genotype-environ-
mental interaction components of a genotype's performance in each environ-
ment against a non-independent environmental component (derived from
the average of all genotypes in each environment) as first proposed by Yates
and Cochran (1938) has been criticised on statistical grounds by Freeman
and Perkins (1971). However, Fripp (1972) has demonstrated that any bias
introduced by the use of a non-independent environmental measure makes
little difference either to the ranking of the genotypes according to the
magnitude of their linear regression coefficients or to the proportion of the
genotype x environmental variation accounted for by the heterogeneity of
these regressions when compared with the results of analyses of regression
against various independent but biological measures.

Where an independent assessment of the environment has been used and
the linear regressions account for all the significant genotype-environmental
interactions, the regression equations provide reliable predictions over both
environments and generations (Bucio Alanis, Perkins and Jinks, 1969).

The analysis is found to have little predictive value when a large pro-
portion of the genotype-environmental interactions cannot be explained by
a linear regression. Under these circumstances, however, some insight into
the nature of the residual variation can be gained by grouping the genotypes
on the basis of the correlations between the deviations from linear regression

of pairs of genotypes (Perkins and Jinks, l968b).
In the present paper, the principal components analysis (see, for instance,

Seal, 1964) of environmental and genotype-environmental interaction com-
ponents of variation will be described and its relationship to the analyses of
linear regression, against a non-independent environmental measure, and
of deviations from linear regression explained. The results obtained from
the multiple regression of genotypic performance in different seasons against
physical measures of the environment will also be reported.

2. MATERIAL AND DATA

Previous reports on the analysis of genotype-environmental interactions
of a set of 29 inbred lines of .Jtficotiana rustica, from diverse origins, in each of
ten environments showed that for the two characters, final height and flower-

ing time, the linear regression analysis, against the non-independent en-
vironmental measure, accounted for only about half the mean square for
genotype-environmental interactions (Perkins and Jinks, 1 968a, b). Further
analysis of the residual variation permitted the partitioning of the genotypes
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Variety M/m 1949 1950

Set 1 (10 seasons)
12 M 10224 115•57

15 M 6414 7508

35 M 9589 120•90

42 M 8992 10584
M 8805 10435

2 m 8433 11854
21 m 9246 13559

30 m 7722 11684
34 m 8230 12344

in 8408 12360

M++in 8606 11398
+M—fni 199 —963
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into groups which showed significant positive correlations, over environments,
between the deviations from linear regression of pairs of genotypes in the
same group and significant negative correlations between pairs of genotypes
in different groups (Perkins and Jinks, 1 968b). For final height, it was found
that the two major groupings obtained correspond with a single gene
difference, non-mophead, M, and mophead, m. The non-mophead lines
tend to grow steadily throughout the season with a straggly flowering head,
while the mophead lines develop most rapidly later in the season and have a

compact flowering head.

TABLE I

Themean final heights of two sets of eight inbred lines of Nicotiana rustica (4 non-mophead, M, and4 mophead'
m) one grown in each of 10 years and the other in each of 9 years

Year

1961 1967 1968 1969 1970

12370

6960

I1049
91'44

9881

10761
9703

10363
9906

101•83

10032
—1•51

1957 1958 1959

14173 13868 139•70
54•19 87•12 7798
8788 13640 13386
7366 13792 116•84
8937 12503 11710
9347 11455 10020

10204 106•93 103•12

97•79 178•36 10719
95•50 11506 9830

97•20 113•73 102•20

9328 11938 10965
—392 565 745

9220 9639 10058
7982 10236 10846

116•08 13437 137•92
6552 106.17 8661

8841 109'82 10839
100.01 12040 11303
120•46 14681 12852
12776 15494 14300
5588 11201 9830

101•03 13354 1207l
9472 121•68 11455

—6•31 —1186 —616

17442

93•98

160 78
152•40

145•40

10668

124•46
112•60

113•46

11430

12985

155

132 •08

12870

13462

10752

12573

13378

148•59
16002
123•62

141•50

13362
—7•89

Set 2 (9 seasons)1 M
5 M
13 M
38 M

M
11 m
22
23 m
27

m

M+ ni

15890 13490 12850
9130 7610 6660

15780 12730 122•70

146•10 115•50 11060

13853 11345 1071O
122•30 118•50 108•30

131•50 10640 10870
124•30 95•10 111•70

106•30 88•80 86•60

121'10 10220 10383
12981 107•83 10546

871 563 164

11220 10360 10260
14570 126•30 11360
13480 12270 13045
111•70 10140 9220

12610 11350 109•71
136•05 11560 12150
163•70 13380 14900
15062 108•30 10900
1204O 8870 9870

14269 11160 11955
13440 11255 11463
—830 0•95 —492

8407 8077

8509 106•68
9246 11938

6502 57•66

8166 9112
8692 9779

112•40 15382

11125 157•48
8738 12116
99.49 132•56

90.57 111•84

—8•91 —2072

The data in the present paper therefore consists of the mean final height
(in centimetres) of two sets of eight inbred lines of JV rustica from the larger
set of 29 in each of 10 years and in each of 9 of these years respectively (see
table 1). Each set of lines can be subdivided into two groups of four on the
basis of the single gene difference, non-mophead, M, and mophead, m. For
both sets the mean in each season of the non-mophead, M, and of the mop-
head, ni, lines are also given in table I together with their average sum,
M+sñ, and average difference, M—ni.

The sowing date and the seasonal average (over 4 months, May, June,
July and August) of six environmental factors are given in table 2 for each
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TABLE 2

The sowing date and seasonal average (over May, June, July and August) of six environmental factors
(see Section 2for key to abbreviations)

Sowing
Year date RH6 RH12 RAIN SUN MXT MNT
1949 16/5 86425 61500 02371 66525 67•975 51100
1950 4/5 88850 67275 03240 58425 65•600 51•325
1957 1/4 85•350 62350 0'3613 55325 65•075 50•925
1958 10/4 89625 67600 04090 48550 64•550 51325
1959 25/4 84225 59•975 02162 67200 68•350 52•600
1961 6/6 86000 62050 02512 59150 64450 50500
1967* 9/4 88325 65800 03071 55150 64900 50925
1968 9/5 89250 68100 05148 44600 63400 50350
1969 23/4 88'625 68175 0•4432 5•8450 65625 51.550
1970 21/4 86•990 66•365 00890 59325 66•715 51460

* 1967 is the year omitted for the second set of eight inbred lines.

year. The six environmental factors are percentage relative humidity at
6 a.m., RH6; percentage relative humidity at 12 p.m., RHI2; daily rainfall
in inches, RAIN; daily sunshine in hours, SUN; maximum air temperature
in ° F, MXT; and minimum air temperature in ° F., MNT. These were
computed from the records of the Edgbaston Observatory, Birmingham,
which is situated 2 miles from the experimental field.

3. THE MODEL AND ITS RELATIONSHIP TO THE PRINCIPAL

COMPONENTS ANALYSIS

In order to gain insight into the possible relationships between the
regression of the mean performance against the non-independent environ-
mental measure and the principal components analysis of the sum of squares
—sum of products matrix of each set of non-mophead and mophead lines of
X. rustica over environments, the following model may be considered.

Model

Environment

Line 1 2

M, (1+,)e+(1 +2)8 —(1+p,)€—(1+2)8
(1_)e+(1—/3,)8 —(1—J3)€—(1—J3,)8

m1 (l+i)e—(1+,)8 —(1+,)e+(1+f3,)8
m, (1 —/l,)e— (1 —p2)8 —(1 —) e+ (1 —) 8

The model gives the contrasting environmental and genotype-environmental
interaction components of performance of two non-mophead, M1 and M2,
and two mophead, m1 and m2, lines in each of two environments. The mean
over all lines and environments and the genetic component of each line have
been omitted from the model, since being constant for each line over environ-
ments, they will make no contribution to the sum of squares of the lines or
to the sum of products between them over environments. The notation
follows that of Perkins and Jinks (1 968a) where:

+ e and — e are the environmental components of the first and second
environments respectively, derived in practice as the deviation of the average
performance of all lines in an environment from the mean performance over

D2
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all lines and environments, i.e. the non-independent environmental com-
ponent, ej, of Perkins and Jinks (1 968a).

I + fl and 1 — are the two possible linear regression coefficients a line
may have when, in practice, its mean performance in each environment is
regressed against the corresponding value of e, i.e. the 1 + /3 of Perkins and
Jinks (1 968a). In the model, 1 + fl and 1 — have each been allocated to
both a non-mophead, M, and a mophead, m, line to ensure that which of the
two contrasting regression coefficients a line may show with respect to E is
independent of whether it is a non-mophead or a mophead line.

+ ö and —6 represent the opposing deviations from linear regression of
the non-mophead and mophead lines respectively (see Perkins and Jinks,
1968b). In the model, i.e. after the overall mean and the genetic component
of each line have been removed, the value of 8 in each environment is equal
to half the difference between the average of the non-mophead lines and the
average of the mophead lines.

+ and 1 —P2 represent the two contrasting coefficients a line may
have with respect to +6 or — 6.

A sum of squares-sum of products matrix can be derived algebraically for
the four lines in the model over environments. The matrix so derived is
given in the following table having extended the model to give the sum of
squares or products of the lines over many environments ( = the sum over
environments) and having equated the expected value of E6 to zero since
e and 8 are obtained from the two independent orthogonal comparisons be-
tween the performances ofthe four lines,M1,M2,m1 and m2, in each environment,

and 3M1+1M2—mi—1m2

respectively.

Sum of squares-sum of products matrix*

Lines M1 M,
1W (1 +)5s'+ (1 +2)'6' (1 +,)(l_1)€2+ (I +,)(l —f3,)E8'
M5 (1 +5) (1 -1)€2+ (1 +2) (1 —fl2)6' (1 —j)2e'+ (1 —f3,)'S'
m1 (1 +j)2e'— (1 +,)'' (1 +p1)(l _1)e2_ (1 +fl,)(l _2)82
m2 (I +p1)(1 —j9)E' (1 +82)(l —,8)8 (1 _j)2E2—.- (1 —fl2)'2

(1+fi1)'E€'— (1 +fl5)'' (1+1) (1 _s)s2_ (1 +,) (I _/3,)62
A4 (1 +1)(l —1)e'— (1+2)(1 _2)62 (I (1 _5)22

m1 (1 +/11)'Ee'+ (1 +fl,)2S' (1 +p1)(1 —fli)s2+ (1 +,) (1 —/3)8
in2 (1 +/3) (1 —1)e2+ (1+2) (1 _/3)2 (1—flj)'e2+ (1—fl)'

The eigenvalues or latent roots of this matrix, when derived algebraically,
are found to have the following values:

= [2(l+fl1)2+2(l—91)2]e2
A2 = {2(l+p2)2+2(l—2)2]82

= 0

A4 = 0

The terms [2(1 + /3k) 2 + 2(1 —) 2] and [2(1 + 2) 2 + 2(1 —2)2] may each
* The third and fourth columns of this 4 x 4 matrix are tabulated under the first and

second columns, respectively.
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be generalised as the sum of regression coefficients squared over lines,( + 2 and( 1 + 2)2 respectively. The eigenvalues then become:

=

A2 =

A3 = 0

A4 = 0

and the matrix, A, of the corresponding normalised eigenvectors for just the
first two non-zero eigenvalues, A1 and A2, is found to be:

Matrix of normalised eigenvectors, A

Line

Eigenvalue M1 M, m1 m2

(l+/3) _____ (1+1) (1—)
V'(1+& V(1+p1)2 \/(1÷p1)2 V(1+$1)

(1+2) (1—2) (1+2) (1—Ps)

V'(1+p2)2 v'(1+p2)2 .V'(1+p2)2 V'(1+p2)2

It is possible to obtain a matrix, Y, of scores in each environment for the

two principal components, p1 andp2,whose sum of squares over environments
are equal to the two non-zero eigenvalues, A1 and A2, respectively. If X is
the matrix of original scores of the four lines, M1, M2, m1, and m2, in each
environment, which for each line are in the form of deviations from the line
average over environments as given in the model, and if A is the matrix of
normalised eigenvectors of the non-zero eigenvalues then:

Y=AX

For our simple model the 4 x 2 matrix of original scores, X, is premulti-
plied by the 2 x 4 matrix of normalised eigenvectors of the two non-zero
eigenvalues, A, to give a 2 x 2 matrix of principal component scores in each
environment, Y, i.e.

Y AX
2x2 2x44x2'

whose elements are found to equal the following:

Matrix of principal component scores, Y.

Environment

Component 1 2

p1 V'(1+/1)2 —V'(1+f?)E
p2 V(1+2)e

It is clear that the first principal component is related to the general
response of all lines to environmental differences as measured by the non-
independent environmental component, e, while the second component is
related to the specific difference in response of the nori-mophead and mop-
head lines as measured by &
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If the model given accounts for most of the variation of the non-mophead
and mophead lines over environments a number of relationships can be
predicted between the principal components analysis and the analyses of
linear regression, against the non-independent environmental measure, and
of deviations from linear regression already referred to.

Provided that most of the variation of each line over environments is
accounted for by the regression of its mean performance in each environment
against the non-independent environmental measure, the sum of squares of
the first principal component, A, will be equal to the sum over lines of their
individual regression sums of squares. Likewise, provided that most of the
residual variation is accounted for by a further regression against the average
difference in performance of the non-mophead and mophead lines in each
environment, the sum of squares of the second principal component, '2' will
be equal to the sum over lines of their individual remainder sums of squares
when taken from the first regression analyses.

The weight of the ith line in the normalised eigenvector of the first
eigenvalue, a11, is expected to equal the value of its regression coefficient,
I + fi1, against divided by the square root of the sum over lines of the

regression coefficients squared i.e. (1 + fi11) (1 + fi1)2

The score of the first principal component in the jth environment, y, is
expected to equal the value of the corresponding_non-independent environ-

mental component, ej, multiplied by \/(l + fl11)2, i.e. \/(l + /31j)2ej.
The sign of the weight of each line in the eigenvector of the second eigen-

value is expected to distinguish the non-mophead lines (positive sign) from
the mophead lines (negative sign) as already achieved by the analysis of
deviations from linear regression against €j (Perkins and Jinks, 1 968b). The
magnitude of the weight of the ith line, a21, is, according to its sign, a measure
of the degree of non-mopheadedness or mopheadedness of the line and, as
for the first eigenvector, is equal to the value of the line's regression coeffi-

cient, I + fi21, against divided by '/ (1 + fi21) 2, i.e. (I + fi21) /V'( 1 + fi)2.

The score of the second principal component in the jth environment,
Y2i will equal the value of the corresponding average difference between the

non-mophead and mophead lines, j, multiplied by \/(l +fl21), i.e.

/(l+fi21)2.

4. RESULTS

(a) The principal components analysis

As described for the model in the previous section, an 8 x 8 sum of squares..
sum of products matrix, S, was derived for the mean final heights of the eight
inbred lines (table 1) over the ten seasons for set 1 and over the nine seasons
for set 2 and a principal components analysis was applied to each of these two
matrices.

Because the scores of the eight inbred lines in each set are not inter-
dependent over environments eight non-zero eigenvalues are obtained for
each S matrix. These eigenvalues represent the sum of squares of the cor-
responding principal components over environments and each can be con-
verted to a variance by dividing by the number of environments minus one
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TABLE 3

The variance of each of the eight components from a principal components analysis
of the variation and covariation of each set of eight inbred lines over seasons,
their degrees offreedom and probability when tested against the error variance

Set! Set2
p

Component Variance d.f. P Variance d.f. P
I 1916I 9 18361 8 ***

2 270•2 9 5263 3
3 1713 9 *** 2181 8 **
4 727 9 l01•5 8 ***

5 53•4 9 *** 69•7 8 ***
6 279 9 ** 36•3 8 **

7 114 9 n.s. 324 8 **

8 l3 9 n.s. 1'2 8 n.s.
Error 94 520 113 484

n.s.; probability is non-significant
**; probability = 0001 — 0'Ol

***; probability<0001

for each set, i.e. nine and eight respectively (see table 3). For each set, an
error variance can be derived for the mean final height of each line in each
environment from the mean variance of individuals within lines and environ-
ments. It can be seen in table 3 that when tested against this error the
variances of the first six principal components in set 1 and of the first seven
components in set 2 are significant. However, as indicated in table 4, the

TABLE 4

The correlations with the first and second principal components (Ps and P2) and the coefficients

(1 + 1's) of regression against ejfor the eight inbred lines, over ten seasons in Set 1 and

nine seasons in set 2

Correlation Coefficient
with component of regression

against
Set Variety M/m p2 p2 1 +

12 M 079 0•37 109
15 M 0.95 004 081
35 M 098 0.09 157
42 M 096 0•13 1•65

1(10 seasons) 2 m 032 —023 062
21 m 072 —054 080
30 m 079 —043 081
34 m 062 —060 066

Percentage of total variance 7590 1070

8660

1 M 0•76 040 0•79

2 M 0•89 024 122
13 M 081 007 080
38 M 083 047 113

2 (9 seasons) 11 m 092 032 102
22 m 0'85 —023 096
23 m 060 —070 09l
27 m 081 —043 117

Percentage of total variance 65•07 1865

8372
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variances of the first two principal components, p1 andp2,jointly account for
87 and 84 per cent. of the total variation in mean final height of the eight
inbred lines in sets I and 2 respectively, over environments.

In order to identify the first two components and compare them over sets,
the correlation of each line with each component rather than the weight of
each line in the normalised eigenvector of each component is given in table 4.
This shows that the first component represents a general response of all lines
to environmental differences since, for both sets, each line has a high
positive correlation with this component, with the exception of variety 2 in
set I. The second component obviously represents a specific difference in
response to environmental differences of the non-mophead and mophead
lines since, in both sets, all the non-mophead lines are positively correlated
with it and all the mophead lines, with the exception of variety 11 in set 2,
are negatively correlated. The identity of these two components was exactly
predicted by the model.

To what extent are all the other predictions found to hold?
The mean final height of each inbred line in each environment was

regressed against the corresponding non-independent environmental
measure, A?+ *ffz in table I, for both sets of lines. The regression coeffi-
cient, 1 + flu, of each line and its standard deviation are given in table 4.
The weight of each line in the normalised eigenvector of the first component
was predicted from these coefficients using the formula, derived from the
principal components analysis of the model in the previous section,
(I + /)'/(1 + flu)2 The correlation over inbred lines between the
observed and expected weights was found to be 0998 for both sets of lines.

The score of the first principal component in each environment was also
predicted for both sets by multiplying the estimate of the non-independent

environmental component, in each environment by V(l i.e.

1 + fl1) which corresponds with the formula derived from the com-
ponents analysis of the model in the previous section. The correlation over
environments between the observed and expected component scores is again
high for both sets, having a value of099l in set I and a value of 0999 in set 2.

The sum of squares of the first principal component, A, is expected to
equal the sum over lines of their regression, against j, sums of squares.
Their respective values are 17245.0994 and l69766338 in set I and
14688.5426 and 14639.0054 in set 2. Thus once more there is a good corres-
pondence between observed and expected, consistently in both sets.

The regression of the mean final height of each inbred line in each
environment against the corresponding average difference of the non-mop-
head and mophead lines, j, has not been previously attempted. The
second principal component, however, has successfully distinguished
between the response to environmental differences of the non-mophead and
mophead lines in both sets. This was expected on both the basis of a
previous analysis of the deviations from linear regression, against , of these
lines as part of a larger set (Perkins and Jinks, 1 968b) and on the basis of the
results of the principal components analysis of the model in the previous
section. The prediction of the weight of each line in the normalised eigen-
vector of the second component and of the score of this component in each
environment can be expected to be just as good as those for the first principal

component.
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Provided that the residual variation after the regression of the score of
each inbred line in each environment against the corresponding value of £
is largely explained by a further regression against the corresponding value
of 8j, the sum of squares of the second principal component, A2, over environ-
ments is expected to equal the sum over lines of their remainder sums of
squares when taken from the first regression analyses. The respective values
of the sums of squares of the second component and of the total remainder
are 24321337 and 5743O442 in set 1 and 42101700 and 790l3042 in set 2.
The sum of squares of the first principal component over environments in
both sets has been shown to be close in value to the total sum of squares of
regression of the mean final heights of the inbred lines in each environment

against the corresponding non-independent environmental component,
The sum of squares of the second component is expected to be smaller in
magnitude than that of the total remainder after fitting the first regression,

against j, to the mean final heights of the inbred lines in each environment
since four further components in set 1 and five further components in set 2
were shown to also make a significant contribution to this residual variation.
Although specific combinations of the inbred lines are correlated with some
of these further components it has not been possible to identify them from
the known characteristics of the inbred lines concerned.

(b) The multiple regression analyses

The intention was to carry out a multiple regression analysis of the per-
formance of each inbred line in each season against a corresponding set of
physical measures of these seasons. The physical measures used were those
described in section 2 and given in table 2 (omitting their scores in 1967 for
the inbred lines in the second set). However, not all the variation over
seasons in the mean final heights of most of the inbred lines could be explained
in this way. Hence, other environmental factors, for which we have no
information, or higher powered derivatives of the existing physical measures
were required. In order to use higher powered derivatives it was first
necessary to reduce the total number of physical measures since the sum of
their linear and quadratic derivatives alone would exceed in number the
total degrees of freedom available for fitting and testing the regression
(number of environments minus one).

The six climatic factors, RH6, RH 12, RAIN, SUN, MXT and MNT,
were therefore summarised into three components obtained from a principal
components analysis of their correlation matrix over seasons. Two such
matrices were derived by correlating the scores of the climatic factors in all
possible pairs over all ten seasons and then over nine of these seasons
(omitting their scores in 1967) in order to correspond with the first and second
sets of inbred lines respectively. Because most of the climatic factors have
been measured on different, unrelatable, scales the correlation matrices
rather than their variance-covariance counterparts were computed. Use
of the correlation matrix simply means that all factors have been effectively
rescaled to have the same unitary variance over environments (c.f. the
diagonal of a correlation matrix). This rescaling is achieved by dividing the
score of each climatic factor in each season by the standard deviation obtained
from the square root of the variance of the factor over environments.

For both correlation matrices six non-zero eigenvalues were obtained,
representing the variances of six corresponding principal components over
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environments. However, for both sets, as indicated in table 5, the first three
principal components jointly account for 95 per cent. of the total variance of
all components over environments. The total variance of these three
components was therefore accepted as summarising the total standardised
variance of the six original climatic factors over seasons.

The correlation between the standardised scores of each climatic factor
and the scores of each of the three components, p1, p2andp3, over seasons in
the two sets are given in table 5. The correlations are consistent over both
sets. RH6, RH12 and RAIN are associated with the first component in the
opposite direction to SUN, MXT and MNT. This component reveals the
common association of high temperature and low relative humidity and rain-
fall when the sun is shining and, conversely, of low temperature and high
relative humidity and rainfall when the sun is not shining due to cloudiness.
Since SUN is also most highly correlated with this component it will be

TABLE 5

The correlations of the six environmental factors with the first three principle components of each

set over seasons

Component
it

Environmental P1 P2 P3
Set factor " sun " " humidity" " rain

rRH6 0•78 0.57 —023

I RH12 083 054 —0'03
I RAIN 075 —0'17 0•61

1 (10 seasons) SUN —O94 009 —0'07

I
MXT —091 0•33 0•04

IMNT —066 057 043
Percentage of total variance 6682 + l809+ 1023 = 95l4

CRH6 077 0•58 —0•23

I RH12 083 0•54 —003
I RAIN 0•76 —0'17 0•59

2 (9 seasons) SUN —O•94 009 —007

I MXT —09l 033 003

MNT —066 058 043
Percentage of total variance 6670+ 1844+ 996 = 95l0

referred to as the" sun " component. RH6, RH12 and MNT are the factors
most highly correlated with the second component. For the purposes of
description it will therefore be referred to as the "humidity" component.
RAIN and to a lesser extent MNT are most highly correlated with the third
component which, therefore, will be referred to as the "rain" component.

The scores on the three principal components of the ten and nine
seasons, respectively, were obtained in much the same way as those for the
two components of the model in section 3. That is, for each set, the matrix
of the three normalised eigenvectors (corresponding with the first three
eigenvalues) was post-multiplied by the matrix of the standardised scores of
the six original climatic factors in each season in the form of deviations from
the mean of each factor over environments. The component scores in each
season are given in table 6 under the column headings, p1,p2 andp3, respec-
tively, for both sets. It appeared, from an examination of the original
meteorological reports, that whether a season has a high or low score for each

of these components depends upon the predominant disposition of cyclones
nnd anticyclones for that season.
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For both sets of seasons, the standardised deviation of each sowing date
(when scored as the number of days after an arbitrary date in April) from
the overall mean, s, is given in table 6. In both sets, the deviations have
been divided by the standard deviation of sowing dates over seasons in order
to make them comparable with the corresponding set oi six standardised
climatic factors, summarised by the three principal components. The quad-
ratic derivatives of sowing date and the three climatic components, s, p,p
and p, are also given, for both sets, in table 6 as the deviations from their
respective means over seasons. The linear and quadratic derivatives of
sowing date and of the three principal components of the six climatic factors
in each season given in table 5 constitute the two new sets of physical

TABLE 6

The standardised scores of sowing date(s) and of the first three principal components (p1, p2 and p3) of the six environ-

mental factors and their squared derivatives (s2, p, p and p) in each of ten seasons for set 1 and nine seasons

for set 2

Parameter

Year s 2 2 p p2

Set 1 (10 seasons)
1949 0-9386 —0-0190 2-1562 1-0410 —0-3091 —0-8814 —0-4198 —0-3760
1950 0-3298 —0-7912 —0-4818 —3-3761 0-8559 —02443 —0-0835 —0-5452
1957 —1-3445 0-9077 0-2113 —3-5636 —1-5145 1-3168 0-4217 —03744
1958 —0-8879 —0-1116 —1-9061 0-0250 06858 —0-5066 0-4228 —0-3734
1959 —0-1268 —0•8839 3-8198 10-9827 0•2196 —0•9287 1-1241 0-7114
1961 2-0040 3-1160 0-3021 —3-5169 —1-6742 1-8260 —0-8058 00971
1967 —0-9386 —0-0190 —0-7590 —30321 —0•0464 —0-9747 —0-4191 —0-3766
1968 0-5835 —0-5595 —3-3249 7-4468 —06087 —06064 0-3002 —0-4621
1969 —0•2283 —0-8479 —0-7865 —2-9896 0-9808 —0-0149 08827 0-2270
1970 —0-3298 —0-7912 0-7691 —30167 1-4112 1-0146 —1-4229 1-4724

Set 2 (9 seasons)
1949 0-8332 —0•1947 1-9712 0•3282 —0-2988 —0-8939 —0-4434 —0-3346
1950 0-2252 —0-8382 —0-5362 —3-2699 0-8080 —0-3303 —0-1311 —0-5140
1957 —1-4468 1-2043 0-1163 —3-5439 —1-4451 1•1051 0-3613 —0-4007
1958 —0-9908 0-0928 —1-8918 0-0215 0-6502 —0-5604 0-3445 —0-4125
1959 —0-2308 —0-8356 3-5469 9-0231 0-2110 —0-9387 1-0669 0-6071

1961 1-8972 2-7105 02049 —3-5154 —1-6032 1-5871 —0-7979 0-1054
1968 0•4785 —0-6599 —3-2416 6•9506 —0-5841 —0-6420 0-2025 —0-4902
1969 —0-3322 —0-7785 —0-8286 —2-8708 0-9303 —0-1177 0-7758 0-0707
1970 —04335 —0-7010 0-6590 —3-1231 1-3321 0-7913 —1•3784 1-3688

measures of the environment. Their scores in the two sets of seasons corres-
pond with those of the two sets of inbred lines (table 1), respectively.

Twelve variates were derived for each set of data from the mean final
heights of the eight inbred lines in each season. These were the four non-
mophead and four mophead lines taken individually together with A, in,
M+ñi and -M'— ñi, in the form of deviations in each season from their
respective means over seasons. The score of each variate in each season
was regressed, in a multiple regression analysis, against the corresponding set
of environmental parameters, the physical measures of these seasons (table 6).
The mean final heights of many of the inbred lines, particularly in the earlier
seasons, are based on few individuals, since they were primarily grown for
their maintenance by inbreeding. Their variances are therefore based on
too few degrees of freedom to provide reliably estimated weights for a weighted
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least squares analysis. An unweighted analysis has therefore been used.
The results of these regression analyses are given in table 7. After deduction
of the mean, only seven degrees of freedom to fit a seven parameter model
and one degree of freedom to test it are available for the second set of data
since observations are available for nine seasons only. The deviation of each
line, M, in, -J?+ in and M— 4in in the second set has, therefore, been
regressed against the complete set of parameters several times, omitting one
parameter at a time. The parameter which when omitted in general gave
the best fit for the non-mophead lines and i, the mophead lines and in,
M+ni and M—in, respectively, is indicated in table 7 and the corres-

TABLE 7

Multiple regression analysis for each inbred line, M, n, M+ lire and M— ñi in the two sets.
The complete set of parameters was used for set 1 but one parameter had to be omitted for set 2.
The one which when omitted gave the best fit for the non-mopheads and mopheads, in general, and

for j-M+ ni and f M— I11 is indicated

Set I (JO seasons)

c2 xlOO
Error reg

Reg M.S. Rem M.S. r—— aremreg
Variety M/m Model (8 d.f.) P (1 d.f.) P M.S. d.f. %

12 M Complete 4645 ''K l078 58 54 82
15 M Complete l749 *** 324 u.s. 106 67 100
35 M Complete 5990 *** 2388 *** 108 66 72
42 M Complete 7354 48 n.s. l86 68 100

M Complete 4081 """ 71.1 * 114 255 86

2 m Complete l396 'K'K l847 *** 74 58 43
21 m Complete 1893 4l72 *** 59 67 31
30 m Complete l626 *** 4024 *** 94 69 28
34 en Complete l487 4450 70 71 24

ffz Complete 1154 3529 *** 73 265 24

M+*nt Complete 2084 *** l854 *** 94 520 53
M—ni Complete 53.4 *** 269 u.s. 94 520 100

Set 2 (9 seasons)

a2 xlOO
Error reg

Reg M.S. Rem M.S. em+Geg
Variety M/m Model (7 d.f.) P (1 d.f.) P M.S. d.f. %

I M —p 2698 42 n.s. 103 60 100

5 M 494.9 369 n.s. 144 62 100

13 M —p 1970 2694 *** 20•9 58 41

38 M — 457.5 *** 2696 *** 7•7 63 63

2 —p 286•6 "' 1l n.s. 133 243 100

11 m —p 3O87 "' 86 u.s. 136 61 100

22 ni —p1 3251 *** 22 n.s. l06 59 100
23 m —Pi 4487 7029 l03 62 39

27 m 537.9 *** 408 ** 29 59 93

ill —.p 301•7 *** 9.3 n.s. 93 241 100

2549 74 n.s. 113 484 100

—s 39•0 0•2 n.s. ll3 484 100

n.s.; probability is non.significant
*; probability = 00l—005

***; probability< 0001.
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ponding regression analysis is given. Two other items have been included in
table 7 for both sets. First, the significances of the regression and remainder
items have been included when tested against the appropriate error mean
square which is the mean variance of replicate individuals within environ-
ments. A fixed model has been assumed for the regression mean squares
since the inbred lines are a selected sample. Secondly, the percentage of the

sum of the regression plus remainder a2's, a + oem, accounted for by the

regression cr2, 0g has also been included. In table 8, the values of the

TABLE 8

The significant regression coefficients for the non-mophead and mophead lines,

M, ni, M+ and +A?— fii of the two sets with non-significant
remainder mean squares in table 7

SetI Set2

MJm M M M M M m

Variety 15 42 1 5 11

Parameter

4.4 7.9 84 175 8-1 48
14-2 27O 7•8 n.s. 8•4 10.0

Pi —41 —87 5.7 —106 —7-7 —82

p 1-8 4.4 n.s. n.s. 1-2 1-7

P2 132 278 n.s. n.s. n.s. n.s.

n.s. n.s. — — —

4-1 5-6 102 167 114 6-5

241 311 238 230

Set2 Set 1 Set2
_.)L...__,

Mfm m ,ii M+ni A?—n M—ni
Variety 22
Parameter

s 6-4 7-8 74 n.s. —
n.s. 10-8 96 6-4 n.s.

P1 — — —2-7 —23 —43

p2 7-6 7.5 5.3 n.s. 34
P2 37.3 378 24-8 n.s. —18-1

492 38-9 25•0 ..5.4 —211

9.4 —5•7 4•4 88
—47•5 —419 —17-0 12-8 35-0

significant regression coefficients are listed for those variates which in table 7
had non-significant remainder mean squares.

5. DiscussioN

In section 3, a model representing the contrasting environmental and
genotype-environmental interaction components of a pair of non-mophead
and a pair of mophead lines in each of two environments was constructed.
A principal components analysis was applied to the sum of squares-sum of
products matrix of these lines over environments. From this analysis it was
possible to predict the variance over environments, the score in each environ-
ment and the weight of each line in the normalised cigenvector of the first
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principal component in terms of estimates of parameters which can be
obtained from certain regression analyses (Perkins and Jinks, 1 968a, b).

In section 4a, the principal component and regression analyses were
repeated on the mean final heights of two sets of four non-mophead and four
mophead lines in each often and nine seasons respectively. The applicability
of the model to the data was tested by comparing the observed and expected
properties of the first two principal components.

These comparisons showed that the sum of squares over seasons and the
score in each season of the first principal component are directly related to
those of the non-independent environmental component, j. This environ-
mental component represents the general response of all lines to an environ-
ment since it is equal to the deviation of the average of all lines in an environ-
ment from the overall mean. The weight of each line in the normalised
eigenvector of the first principal component is directly related to the linear
regression coefficient, 1 + $, obtained by regressing the performance of the
line in each environment against the corresponding estimate of j.

The score of the second component in each environment is directly
related to the specific difference in response to an environment of the non-
mophead and mophead lines, estimated from the average difference in their
mean performances in each environment, j. Aspredicted, the non-mophead
and mophead lines can be distinguished by the sign of their weight (positive
and negative, respectively) in the normalised eigenvector of this component.
One mophead line in the second set, variety 11, was exceptional in showing
a positive instead of negative sign.

The variance of the first two principal components over seasons jointly
accounted for 87 and 84 per cent, of the total in sets 1 and 2 respectively.
The variance over environments of the second component however did not
adequately explain all that remaining after taking out the first component
since in both sets several further but unidentifiable components were each
shown to make a significant contribution.

In the present context, two identifiable characteristics of performance
for the eight inbred lines of each set in the different seasons are related to the
first two principal components, i.e. the environmental component, j, which
can be derived from Ai+ ni and the difference in response of the non-
mophead and mophead lines, j, equal to i-A?-- ñ1. Both of these charac-
teristics can, therefore, be directly investigated further. This may take the
form of an analysis of variance, where the different environments are derived
from a deliberate hierarchical design, such as different sowing dates in each
of several seasons, or a factorial design, such as all possible combinations of
the presence or absence of a number of fertiuiser treatments. Alternatively,
the further analysis may take the form, as in the present context, of a multiple
regression against physical measures of the environment. Even if a principal
component cannot be identified, its scores in the different environments may
still be subjected to either of the two kinds of further analysis described,
whichever is appropriate, and this in itself may aid the identification of the

component.
The multiple regression of the environmental scores against a set of

physical environmental measures for each of the four non-mophead and four
mophead lines and their derivatives, M, in, -A+ ni and M— ñi, in each
set are reported in section 4b. A number of conclusions may be drawn from
the results of the regression analyses given in table 7. The remainder mean
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squares of half of the non-mophead lines in both sets are non-significant.
Of the remaining four non-mophead varieties the regression still accounts
for over 60 per cent, of the total 2, +ôm) with the exception of
variety 13 in set 2 (41 per cent.). The regression ô2 for the mean of the four
non-mophead lines in each environment, M, accounts for 86 and 100 per
cent, of the total in sets 1 and 2 respectively. Conversely, the mophead lines,
with three exceptions, have large significant remainder mean squares so that
their regression 2' account for 43 per cent, or less of the total. This is
reflected by the regression ô2 for the mean of the four mophead lines in each
environment, in in set 1 which accounts for only 24 per cent, of the total but
not by the regression 52 of in in set 2, the set which contains the three
exceptional varieties, 11, 22 and 27. That variety 11 resembles the non-
mophead lines in having a non-significant remainder mean square is not
surprising since like them it was shown to have a positive correlation with the

second principal component.
Consistently, in both sets, the variation over environments of the specific

difference between the nonmophead and mophead lines, as measured by
M— ñi in each season, is completely accounted for by the multiple regres-
sion against the physical environmental measures. The multiple regression
also completely accounts for the variation over environments of the general

environmental component, as measured by M+ iñ in each season, in the
second set but accounts for just 53 per cent, in the first set.

In table 8 the regression values are given for those variates which showed
a non-significant remainder mean square in table 7. The signs of the
significant coefficients of the non-mophead lines are consistent across the
two sets. The magnitudes are also consistent, with the exception of the
linear derivative of the "humidity" component, p2, and the quadratic
derivative of the "rain" component, p, which show large, positive coeffi-
cients in sets 1 and 2 respectively but non-significant ones in the other set.
The pattern of coefficients of variety 11, a mophead line, is characteristic of
the non-mophead lines as expected from its correlation with the second

principal component.
— Comparisons between the non-mophead lines of sets 1 and 2 (including

M of set 2) and the mophead variety 22 and the average of the mophead lines,
in, in set 2 reveal the following similarities and differences. The non-mophead
and mophead lines show a similar positive relationship with both the linear
and quadratic derivatives of sowing date, s ands2. Therefore, over the range
of sowing dates used the later that the lines are sown the taller they will
become.

The major response of the non-mophead lines to the "sun" component
is a negative relationship with its linear derivative, p1, while the mophead
lines show no response to this derivative but just a positive one to the quad-
ratic derivative, p. The "sun" component was the first component
extracted from the correlation matrix of the six climatic factors and therefore
it accounts for most of their standardised variation over seasons (67 per cent.
in both sets, table 5). This component represents the general relationship
that when it is sunny it is hotter and drier but when it is sunless it is colder
and wetter. The non-mophead lines tend to be shorter in hotter, drier
seasons and taller in colder, wetter seasons. The mophead lines on the other
hand tend to be shortest in the intermediate seasons and tallest in the two
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kinds of extreme seasons, hot and dry or cold and wet (compare tables I
and 6).

The second "humidity" component, p2, accounts for 18 per cent, of the
total variation of the six standardised climatic factors over seasons (table 5).
The two humidity factors, RH6 and RH 12, and minimum temperature,
MNT, show the highest correlations, which are positive, with this component
(table 5). A season, therefore, with an extreme score for this component is
for a proportion of the time either humid and warm (especially at night) or
arid and cold (especially at night). The non-mophead lines in general
show no response to this component, but may show a positive response to its
linear derivative, p2, while the mophead lines display a large positive
reaction to both the linear and quadratic derivatives, p2 and p, of this com-
ponent. When the major pattern of cyclones and anticyclones in a season
is such as to give a high score for this component (humid and warm)
the mophead lines and to a lesser extent the non-mophead lines tend to be
taller while the converse is true for a season with a low score (arid and
cold).

The third " rain" component, p3, accounts for just 10 per cent, of the
total variation of the six standardised climatic factors over seasons (table 5).
The rain factor, RAIN, and, to a slightly lesser extent, minimum temperature,
MINT, show the highest correlations, which are positive, with this component
(table 5). It seems, therefore to be a precipitated form of the second
component so that a season with an extreme score is either wet and warm
(especially at night) or dry and cold (especially at night). It is with this
component that the non-mophead and mophead lines show their greatest
contrast in response. The non-mophead lines show a positive reaction to

both the linear and, in general, quadratic derivatives, p3 and p, of this
component while the mophead lines show a negative response to both
derivatives. In both cases the response to the quadratic derivative is by far
the greater. This means that when the major pattern of cyclones and anti-
cyclones in a season is such as to give a high score for both the linear and
quadratic derivatives of this component (wet and warm) the non-mophead
lines grow taller and the mophead lines shorter. When a season has a low
score for both derivatives (dry and cold) the converse is true.

These similarities and differences are reflected by the general response of
all lines to environmental differences in set 2 as registered by the environ-
mental measure, M+in, and by the specific difference between the non-
mophead and mophead lines in both sets 1 and 2, as measured by M— ñi.
Thus in set 2, where the remainder mean square of the average of the non-
mophead, M, and mophead, in, lines are non-significant, the coefficients of
the variates AI?+ ,ñ and M— Jn (table 8) are very close to those obtained
by computing the average sum and average difference, respectively, of the
corresponding coefficients ofM and in. The non-significance of the remainder
mean square of in in this set cannot be accounted for by the inclusion of the
non-mopheadlike variety 11 in the derivation of the average performance of
the mophead lines in each environment alone. As noted in section 4b, the
regression 2 of each of two further mophead varieties, 22 and 27, accounts
for 100 and 93 per cent., respectively, of their total The significant coeffi-
cients of M— iñ in set 1 correspond with those in set 2 (table 8). The
regression â of M+ in in set 1 accounts for just 53 per cent, of the total
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(table 7) though the signs of the coefficients are found, in general, to corres-
pond with those in set 2.

In conclusion, therefore, the specific difference between the non-mophead

and mophead lines, as predicted by the second principal component and
measured by M—in, can be completely explained by the multiple regres-
sion against the physical environmental measures in both sets. The difference
appears to centre around their contrasting linear and quadratic responses to
the presence or absence of rainfall. Thus the greatest average difference
between the non-mophead and mophead lines (-M— iñ) is found, for both
sets, to occur in 1950 (table I). It is also this year that has the largest
negative score for the quadratic derivative of the "rain" component, p,
and it is reinforced by a negative sign for its linear derivative, p3, (table 6).
The largest positive score for the quadratic derivative, p, in 1970 is cancelled
by the largest negative score of equal magnitude for the linear derivative,
p3 (table 6).

The general response of all lines to environmental differences, as pre-
dicted by the first principal component and measured by M+ is only
partially explained by the multiple regression in set 1 but completely ex-
plained in set 2. It is characterised by a positive response to both the linear
and quadratic derivatives of sowing date, s and s2 (table 6). The largest
value of j2t?+ ñi in set I and the second largest in set 2 occur in 1961
(table 1). It is also this year which shows an extreme positive score for both
the linear and quadratic derivatives of sowing date, sand s2 (table 6). The
extreme negative scores for these two derivatives, however, cancel one another

out (table 6). —

The general response of the lines as measured by M+ jñ is also
characterised by a negative relationship with the linear derivative, p1, and

a positive relationship with the quadratic derivative, p, of the "sun"
component. The non-mophead and mophead lines will both be taller in a
season with a low score for both derivatives, which however tend to be self-
cancelling, or in a season with a low score for Pi and a high score for P
(table 6). The year 1968 conforms to the latter requirement and from table 1
it can be seen that the average sum of the non-mophead and mophead lines,

A?+ has its second largest value in set 1 and its largest value in set 2
in this year. Both kinds of lines will be shorter in seasons with a high score

for p1 and an intermediate score for p. The year 1949 conforms with this
requirement (table 6) and it can be seen from table 1 that ji+jn has its
lowest value in this year for both sets.

—

The general environmental measure, shows a high positive
response to both derivatives, p2 and p, of the "humidity" component.
The mophead lines will make the greatest contribution to both responses
though the non-mophead lines may reinforce the positive response to the
linear derivative, p2. The second lowest score of this linear derivative, p2,

togetherwith the most negative score of the linear derivative of sowing date,

s, in 1957 (table 6) are probably jointly responsible for the second lowest value

of A?+ in for this year in both sets (table I). The negative response of the
average sum of the non-mophead and mophead lines, M + n1, to the quad-
ratic derivative of the "rain" component, p, is due to the greater contribu-
tion of the mophead lines. Its effect is not detectable due to the positive
response of the non-mophead lines to this derivative and due to the joint
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response of the non-mophead and mophead lines to other physical para-
meters.

It is clear from this detailed analysis that the same phenotypic response
within a group of lines may be caused by different environmental para-
meters. Conversely, different phenotypic responses between groups of lines
may be caused by the same environmental parameter. We have shown that
a large proportion of the variation of the non-mophead and mophead lines
over environments can be explained in terms of physical measures of these
environments, especially if the specific responses of the individual lines are

averaged out by analysing the mean performances of M, ifi, M+ ni and

1?— in the different seasons.
The mophead lines of set 1 and the mophead line, variety 23, of set 2

are however notable exceptions in having large significant remainder mean
squares. The seasons must, therefore, differ in some other environmental
parameter(s) which has not been included in the analysis and to which the
non-mophead lines are, in general, relatively insensitive and the mophead
lines sensitive. The missing parameter may be an even higher powered
derivative of the existing physical measures. The relatively higher coeffi-
cient values of the mophead lines in response to the quadratic derivative of
each physical parameter in table 8 compared with that of the corresponding
linear derivative suggests that this may well be so. It may, alternatively, be
an entirely different environmental parameter which, in an experiment
deliberately designed to investigate the dependence of plant performance on
physical characteristics of the environment, would certainly have been either
measured or controlled, such as aspects of soil, micro-climatology and
husbandry. Whatever the cause there would be too few degrees of freedom
available to include it in the present analyses. One solution, as far as the
climatic-environmental measures are concerned, would be to derive a
correlation matrix for them and for as many of their higher powered deriva-
tives as is possible or desirable over all the seasons for which the nearest
meteorological station has records. For example, an 18 x 18 matrix would
result from the correlation of the six climatic factors, chosen in the present
paper, and their quadratic and cubic derivatives over seasons. A principal
components analysis would be applied to such a correlation matrix. The
22 years which would be available in the present context, 1949-70, would be
sufficient to give a non-singular 18 x 18 matrix. In this way, a few indepen-
dent principal components, which summarise both the linear and higher
powered derivatives of the climatic factors, would be obtained and the score
of each component, in those seasons for which the mean performances of the
lines in a set are available, could be extracted.

Two of the non-mophead lines in set 2 of table I, varieties 1 and 5,
together with the generations that can be derived from a cross between them
have been extensively investigated because their mean performances and
sensitivities to environmental differences are controlled by relatively simple

genetical systems (Bucio Alanis, Perkins and Jinks, 1969; Jinks and Perkins,
1970; Perkins and Jinks, 1971). Two further lines, the non-mophead line,
variety 12, and the mophead line, variety 2 (set I, table 1), and the genera-
tions that can be derived from a cross between them have also been exten-
sively investigated, as a contrasting pair of lines, because they display two
extreme states of complexity in the genetical control of their mean perfor-
mances and environmental sensitivities (Jinks and Perkins, 1970; Perkins
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and Jinks, 1971). It is of interest to note in table 7 that the variation of both
varieties 1 and 5 over seasons has been completely explained by the multiple
regression whereas that of both varieties 12 and 2 must be determined by a
more complex reaction to environmental differences since the remainder
mean squares of these lines are large and significant.

7. SUMMARY

1. The properties of the first two components obtained from a principal
components analysis of the sum of squares-sum of products matrix for the
character, mean final height, of two sets of eight inbred lines of .Jsficotiana
rustica over ten and nine seasons, respectively, agree with those predicted by
a model which was based upon the results of previous regression analyses.

2. The first principal component is directly related to the general
response of lines to environmental differences as measured by the average of
all the lines in each season.

3. The second principal component is directly related to the average
difference between two sub-groups of four lines in each set of eight which
differ primarily at a single locus for non-mophead, M, versus mophead, in.

4. The difference in response of the non-mophead and mophead lines
to environmental differences is completely accounted for by a multiple
regression against physical environmental measures, consistently across the
two sets.

5. The general response of all lines to environmental differences is
partially explained in set 1 and completely explained in set 2 by the multiple

regression analysis.
6. A large part of the variation over seasons of each mophead line in set 1

and one such line in set 2 could not be explained in this way.
7. It is postulated that either further physical parameters or higher

powered derivatives of the existing ones are required to account for this
residual variation. A means of reducing the number of physical parameters,

especially if climatic, is suggested using a principal components analysis.
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