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Introduction. In their book Combinatory Logic [1], Curry and Feys introduced
the notion of "functional character" (here called "type-scheme") of an object of
combinatory logic. Roughly speaking, each object of combinatory logic ("ob"
for short) represents a function or an operator on functions ; for instance the ob I
represents the identity operator, and we have for all obs X,

IX = X.

One of the aims of combinatory logic is to study the most basic properties of
functions and other concepts, with as few restrictions as possible; hence in the
simplest form of combinatory logic there is nothing to stop a function being
applied to itself; thus XX is an ob for all obs X. However it is also natural to look
at the consequences of introducing type-restrictions, formulated by assigning types
to the obs according to certain rules, to be described later.

Each type is a linguistic expression representing a set of functions, and for any
type a the statement " X has type a" is intended to mean that the ob X represents
a member of the set represented by a. Given types <x and ß, the set of all functions
from the set a into the set ß is represented by the type "Faß" (using Curry's
notation). Now consider the ob I; if Y has type a, then the ob IX must also have
type a. Hence I represents a function from a into a, and so it must be given the
type Fact, for each type a. Thus I has not just one type, but a whole class of types.
This might seem strange, but it comes from the fact that I represents the abstract
notion of "identity-function", rather than one particular identity-function for a
particular set. The identity-function involves basically the same concept, no
matter what we are applying it to. Similarly the other two basic combinators S
and K (see later, or [1, §5A]) represent certain simple operations which can be
performed on almost any functions, and thus they too have an infinite class of
types (see §1 later for details, and §5 for comment).

To denote classes of types, we can use variables a, b, c; then the fact that I has
every type of form Fota can be expressed by assigning to I the type-scheme

Faa.
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We shall see later that all the types which the rules assign to I have the form Fa«,
so the types of I are just those obtained by substituting a type a for the variables
in the type-scheme Faa. It will not be obvious from the rules that every ob X has
a type-scheme with this property. If X does have a type-scheme from which all
the types of X (and no extra types) can be obtained by substituting types for
variables, it will be called a principal type-scheme of X(*).

In §3 of this paper it will be proved that every ob X that has a type at all, has in
fact a principal type-scheme which can be effectively determined from the structure
of the ob. This result will apply to the case when X may contain variables, which
are not assigned types by the rules ; in this case it will say that if there exists an
assignment of types to the variables from which a type for X can be deduced, then
there is a type-scheme <x such that all the types of X, for every assignment of types
to the variables, are instances of a.

§4 will show how the principal type-scheme of [x]. X (defined therein and in [1])
is related to the principal type-scheme of X.

Finally, in §6 it will be shown that if a is a principal type-scheme of an ob X,
then any substitution-instance ß of a is a principal type-scheme of some ob XB
(which is reducible to X by the reduction-rules for combinators). Besides its
intrinsic interest, this result goes part of the way towards justifying a conjecture of
Curry's that the alternative system of combinatory logic with type-restrictions (in
which an infinity of basic combinators is postulated, each with a unique type) can
be defined in the system described here. This point will be explained in §5.

Actually, the main result (Theorem 1) in §3 was proved independently, almost
simultaneously, by Curry and myself, using different methods; the present ex-
position owes something to both. Curry's proof (see [2]) does not use the result of
J. A. Robinson [4] which is needed here; in fact I think his proof essentially con-
tains an alternative proof of that result. The main result in §4 (Theorem 2) was
also proved almost simultaneously by Curry and myself: since Curry's proof
is shorter, it has been used here.

I wish to thank H. Curry for all his help with this paper, both in discussions and
by permission to use his proof of Theorem 2.

1. Definitions. The notions presented informally in the introduction will now
be formalized. The symbol " = " will be used to denote identity of obs, types and
type-schemes, since " = " will denote a defined equivalence relation (roughly, equa-
lity of interpretation) between obs. Obs will be regarded as linguistic expressions

O In [2] principal type-schemes are called "principal functional characters." In [1] the
term "functional character" is used in approximately the sense of "principal type-scheme"
here, but the assumptions therein allow that extra types could be assigned to the obs, besides
the types given explicitly; if this were done the functional characters stated in [1] (e.g. §8c,
p. 264) would not be principal.
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1969] THE PRINCIPAL TYPE-SCHEME OF AN OBJECT 31

intended to represent functions or more abstract operations (like I in the Intro-
duction)^).

Definition 1. Obs.
(i) There are assumed to be certain symbols called ob-atoms, all of which are

obs; these atoms may include two basic combinators, S and K.
(ii) If X and Tare obs, then the result, (X Y), of putting X and F in parentheses

with X on the left of Y, is a compound ob.
A combinator is any ob in which only the atoms S and K occur.
(Notice that this definition is really a sort of definition-scheme: for each given

set of atoms, it defines by induction a corresponding set of obs. The exact nature
of the atoms is irrelevant here (except that S and K will play a special role).
Similarly Definitions 2, 4 and 5 are really definition-schemes.)

It is assumed that no compound ob is also an atom, and that if (XY)s(UV),
then X= Y and U= V. Capital Roman letters denote arbitrary obs, and parentheses
will be omitted in such a way that for instance, " XYZU" denotes (((XY)Z)U).

Definition 2. Types and Type-schemes.
(i) There are assumed to be certain symbols called basic types (at least one and

at most countably many); also a countably infinite sequence of type-variables. All
these are type-schemes, called type-atoms.

(ii) If a and ß are type-schemes, then (Fa/3) is a compound type-scheme.
A type is any type-scheme which contains no variables(3).
It is assumed that no compound type-scheme is a type-atom and that if (Paß)

= (FyS) then a=ß and y s S. Greek letters denote arbitrary type-schemes, and lower
case Roman letters from the start of the alphabet denote type-variables. The outer-
most pair of parentheses on a type-scheme will usually be omitted. In denoting
lists of variables, for example "ait..., a„", it will be assumed that the variables
are mutually distinct (more precisely, /'#/' implies a^aj), unless explicitly stated
otherwise.

In the usual interpretations, the ob (XY) represents the result of applying the
function X to the argument Y. Each basic type represents a particular set of
functions, depending on the interpretation one may have in mind, and Faß represents
the set of all functions from a into ß. Thus each type represents a particular set of
functions.

The variables are intended to represent arbitrary types, so that a type-scheme a
containing variables represents a class of types, each type being obtained from a
by substituting types for the variables.

(2) In Curry [1] the obs are not necessarily linguistic expressions, but it is convenient to
think of them here as such, and this specialization involves no essential loss of generality. But
in Definition 1, notice for example that the symbols "S" and "K" need not themselves be the
basic combinators; they only denote them.

(3) In [1], Curry finds it convenient to regard types as a particular kind of ob, called
"F-obs"; the results of the present paper apply to this case.
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Sequences will be denoted by angle brackets, for example "(c^,..., a„>", and
sets denoted by brackets "{   }".

Definition 3. Substitution. For any type-schemes ßx,...,ßn, a, and distinct
type-variables alt..., an,

L«i, ...,aj
is defined to be the result of replacing each occurrence of at in a by/3¡, simultaneously
for /= 1 • • n. (If Oj does not occur in a, no replacements are made.) Any type-scheme
with the above form is called an instance of a. (Hence a is an instance of itself.)
For any sequence (alt..., ak} of type-schemes, define

Lfli,..., a„J
to be the sequence formed by substituting /S¡ for at in all of a1;..., ak, simultaneously
for i=l,..., n.

An expression consisting of a type-scheme a beside an ob X is called a statement,
aX. The statement ßX is called an instance of aX iff ß is an instance of a.

Definition 4. Type-schemes of obs. The type-scheme a is a type-scheme of X
iff the statement aX can be deduced from the axioms below by the rule (F) below.

Axiom-schemes. Each axiom-scheme is assumed to be a statement ß Y, where Y
is an ob-atom, and no two axiom-schemes contain the same Y. If the ob-atoms
include S and K, then the axiom-schemes include

F(Fa(F6c))(F(FaZ>)(Fac))S
Fa(Fèa)K

for some (distinct) type-variables a, b, c. The axioms are all the instances of the
axiom-schemes. (Including the schemes themselves; this is just a notational
convenience.)

Rule (F). From (Fy8)X and yY, deduce 8(XY).
If a contains no variables, and aX is deduced from axioms containing no

variables, we say that a is a type of X.
Definition 5. Deductions. Given a set si of statements, a deduction of aX from

si is a finite set of statements arranged as a tree in the usual way, with aX at the
bottom. Each statement in the tree must either have just two statements im-
mediately above it, and follow from them by Rule (F), or else be an axiom or
member of si, with nothing above it. The expression

si \-aX

means that there exists a deduction of aX from si; and
\-aX

means that there is a deduction of aX whose branch-tops are all axioms(4).

(4) We shall only be interested in deductions in which each ob in A is an atom not occurring
in the axiom-schemes. Throughout this paper "deduction" means this kind of deduction.
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1969] THE PRINCIPAL TYPE-SCHEME OF AN OBJECT 33

The axiom-schemes for S and K in Definition 4 are justified in [1, p. 263], by
their connection with the reduction-rules for these two combinators (see (13) later),
but for the present section these reduction-rules are irrelevant. The restrictions on
the unspecified axiom-schemes in Definition 4 will ensure that no ob-atom has two
different principal type-schemes. Rule (F) can be interpreted as saying that if X
is a function from the set y into the set 8, and Y is in y, then (XY) is in S(5).

Incidentally, sometimes the ob I of the Introduction is included as an extra
basic combinator, and sometimes it is defined in terms of S and K; the present
paper includes both possibilities. If 1 was included as an ob-atom, one of the
unspecified axiom-schemes of Definition 4 would be (Faa)l. Some theories based
on combinatory logic postulate extra axioms (Fa/?)l for certain distinct types a and
ß (meaning intuitively that a is a subset of ß). In this case I would not have a
principal type-scheme. In fact if I was an atom the condition in Definition 4 that
no two axiom-schemes contain the same Y would not be satisfied, and if I was
compound, there would be an axiom with a compound ob ; thus the present paper
would not apply.

From Definitions 4 and 5 it can be seen that if the obs in the statements in sé
are atoms, then the steps in a deduction

si i-aX

follow the construction of X; if X is an atom, the deduction must consist of one
step only, while if X is (UV), the deduction must be the result of joining together
two deductions with the form

si y-PßaU,       siv-ßV

by an application of Rule (F). Hence every ob-atom in X must occur in a statement
in si or in an axiom; and each statement in si which actually occurs in the
deduction must have its ob-atom occurring in X [I, §9B, Theorem 1].

Example 1. i- Fac(SKK).

Proof.
'F(Fa(F(F¿a)a))(F(Fa(F¿>a))(Faa))S    Fa(F(Fba)a)K

F(Fa(F6a))(Faa)(SK) Fa(Fèa)K

Faa((SK)K)

The first two statements in this deduction, for S and K, are axioms obtained by
substituting Fba for b, and a for c, in the appropriate axiom-schemes.

(5) If S and K are the only ob-atoms, and type-variables are prohibited from the axioms,
Definition 4 is equivalent to the system in [2], and to the basic theory ^i(K, S) in [1, §9A3]
with restricted rule F and rule Eq omitted.
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Definition 6. Instances of deductions. For any deduction 3, any type-schemes
ßx,..., ß„, and (distinct) type-variables au ..., an,

ax,..., an\

is defined to be the result of simultaneously substituting ßx,...,ßn for ox,..., an in
all the type-schemes in 3, and it is called an instance of 3.

If the above substitution is denoted by " * ", it can be seen that if 3 is a deduction
giving

{axYx,...,akYk}^-ßX,

then 3* will be a deduction giving

{a*Yx,...,a*Yk}^ß*X.

Definition 7. Principal type-schemes.
(a) Suppose each atom in X occurs in an axiom-scheme ; then a type-scheme a is

a principal type-scheme (p.t.s.) of X iff
(i) h-aX, and

(ii) if i-^SA', then ß is an instance of a.
(b) If X contains ob-atoms xx, ■.., xn (mutually distinct) which are not given

types by the axiom-schemes, then a is said to be a p.t.s. of X iff
(i) for some type-schemes au ..., an,

{axXx, ..., anxn} \- aX,

(ii) and if for some type-schemes ßx,...,ßn,ß,

{ßxXx,...,ßnxn}t-ßX,

then ß is an instance of a.
Note. Since ß in (ii) is any type-scheme, not just a type, the notion of principal

type-scheme here differs slightly from the introduction, where (ii) was only required
for types jS. However Theorem 1 will show that if X has a type at all, X must have
a type-scheme which is principal in the sense of Definition 7, and hence in the
sense of the Introduction. If the number of basic types is infinite, I think the two
senses are equivalent.

Definition 8. Principal deductions. Given an ob X, a deduction 3 of a type-
scheme of X from a set si of statements is said to be a principal deduction for X
iff all other deductions 3' of type-schemes of X are instances of 3 (including
deductions 3' from other sets si' of statements). The existence of a principal
deduction of aX from a set si of statements is denoted by

si l-p aX.

If X has a principal deduction

{a-xXx, ..., <*„*„} l-p ccX
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1969] THE PRINCIPAL TYPE-SCHEME OF AN OBJECT 35

(where jci,..., xn are the atoms in X which do not occur in the axioms), then a
must be a p.t.s. of X; because any deduction

{ßyXy,...,ßnXn}^ßX

must be an instance of the principal deduction, and so ßy,..., ßn, ß^must be
instances of alt..., an, a, respectively. (In fact, the sequence (ßy, ...,/?„,/?> must
be an instance of <o1,..., a,, a>.)

Notice that for any deduction 3, the type-schemes in its statements can be laid
out as a sequence, by starting at the top of the left-hand branch, working down it
to just before it joins the next branch, and then going to the top of this next
branch, and so on. For instance the sequence for the deduction in Example 1 is
(type-scheme for S, first type-scheme for K, type-scheme for (SK), second type-
scheme for K, type-scheme for (SKK)>. Then a deduction is an instance of 3 if
and only if its sequence is an instance of the sequence for 3 (by the same sub-
stitution).

2. Lemmas on substitution. These lemmas are stated for substitution into type-
schemes, but they are also true for substitution into deductions, and into sequences
of type-schemes.

Lemma 1. Any substitution

lay,.. ■, a„}
can be performed by a series of substitutions in which n= 1, and any series of such
"single" substitutions can be performed by one substitution in which «el.

(See notes 7.4 and 7.6, p. 264 of [3].)

Corollary. Two or more successive substitutions can be performed by one sub-
stitution ; hence an instance of an instance of a type-scheme a is an instance of a.

Lemma 2. Any substitution for variables ax,..., an in a type-scheme a can be
expressed as a substitution for all the variables in a (by substituting themselves for
the variables distinct from ax,..., an).

Definition 9. A trivial variant of a type-scheme a is any type-scheme with the
form

[ay,.. .,an\

where by,..., bn are distinct, and ai,...,an include all the variables in a. Trivial
variants of deductions, and of sequences of type-schemes, are defined similarly.

Lemma 3. (a) The relation of being a trivial variant is reflexive, transitive and
symmetric.

(b) A type-scheme ß is a trivial variant of a type-scheme a if and only if a and ß
are instances of one another.
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Lemma 4. (a) If a is a p.t.s. of X, then any trivial variant of a is a p.t.s. of X, and
any p.t.s. of X is a trivial variant of a.

(b) Part (a) is also true for principal deductions.

Definition 10. Highest common instance. If a and ß are type-schemes, and y is
an instance of both a and ß, such that any other instance of both a and ß must be
an instance of y, then y will be called a highest common instance (h.c.i.) of a, j8.
Highest common instances of pairs of sequences of type-schemes are defined
similarly.

Notice that if trivial variants are ignored, the h.c.i. of a, ß is unique. Also, if a
is FccjCia and ß is Fßxß2, then a, ß have a common instance if and only if the
sequences <aj, a2> and <&, /82> have a common instance, and if these two sequences
have a h.c.i. (yx, y2>, then Fyxy2 will be an h.c.i. of a, ß.

Lemma 5 (J. A. Robinson), (a) If two type-schemes a and ß have an instance in
common, then they have a h.c.i., y.

(b) Furthermore, given any variables ax, ■ ■ -,ak,y can be chosen so as to contain
none of ax,.--, ak.

(c) Parts (a) and (b) are true also for any pair <«!,..., ap>, <jS1;..., ßp} of
sequences of type-schemes.

Proof. Part (b) follows from (a) because if y were an h.c.i. of a, ß, any trivial
variant of y would also be an h.c.i. of a, ß.

To prove (a), we may assume that a and ß have no variables in common, since
otherwise we could find trivial variants a' and ß' with this property and use them
instead of a and ß. (By Lemma 3, they would have the same common instances as
a and ß.) Let ols..., am be all the variables in a, and bi,...,bn be those in ß.
Then for any ylt..., ym, Blt..., 8n, since bi,...,bn do not occur in a, we have

Similarly,
lax,..., am]        [ax,..., am, blt..., oj

pi,-.., 8n"[o m l>i, ■ • -,ym, Si, • • -, Snip.
[bx,...,bn\    "[ax,...,am,bx,...,bn\

thus we can look at any common instance of a, ß as having been obtained by
performing the same substitution on a as on ß. Now J. A. Robinson in [4, p. 32]
(Unification Theorem) has given an algorithm which allows us to decide whether
in the above circumstances, a and ß have an instance in common, and if they do,
to construct a h.c.i. for them. This proves (a).

To prove (c), notice first that if two sequences {alt..., ap> and <&,..., ß„)
have an instance in common, then they must have the same number of terms. Let
6 be a basic type, and define

as Fai(Fc<2(.--(Fap0)---))

ß=¥ßx(Fß2(---(Fßp6) ■■■)).
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Then a and ß have a common instance if and only if the given sequences have a
common instance (since nothing can be substituted for 0), and if the h.c.i. of a
and ß is

fyi(fy2(---(PyP0) ■■■)),

then the h.c.i. of the given sequences will be

<tt» • • •. Yp>-

Lemma 6. Given a sequence ((f>y,..., tf>m, ifilt..., i/iny of type-schemes, let ay,...,ap
be all the variables in <^x,..., tf>m} and by,..., bq be the variables (if any) that are
in (i/iy,..., i/in} but not in (<f>y,..., <f>m); let "*" denote the effect of substituting for
alt...,ap certain type-schemes containing none ofby,..., bq. Then if <A1;..., Am,
Pi, • ■ -, Pn) is an instance of the given sequence, and <A1(..., Am> is an instance of
<<£f,..., t/>*y, the whole sequence <Alf..., Am, /x1(..., (iny will be an instance of
<#,... ,A#.«>•

Proof. For ease of reading, suppose m=n— 1. Let alt...,ap be the type-schemes
substituted for au...,ap respectively by the substitution "*"; let el3..., eT be all
the variables in these type-schemes. Now for some yu..., yp, 8lt..., S„

<*»#■»>■ fr-'y i- "'ft]<*.*k>.Lfli,. ..,a„,by,..., bq\

But also, for some tx,_er,

Xy   =    i^-l^h*
ley,...,er]

m r«i.«riK,...,«,i,
ley, ...,eri [ay,..., apy

s r«i, • ••,<4i,

where for each /, a¡ is the result of substituting »u..., eT for elt..., eT respectively
in at. Therefore by the previous expression for <Ai, /it>,

y, m a'i.
Hence

<kpù = \y---'flu---'sA<<f>i,^ylay,..., ap, by,..., o,J

s   pi, . . ., e„ Oy, . . ., 8J ["«1, ■ ■ ., ap, by, . . ., ¿>,~j     ,       ,
" Ui,.. .,«„ ¿»i,..., b„\ [ay,..., ap, by,..., bqPfl' Vl>

since *i,..., er, by,.. .,b„ are distinct, and a1;..., ap do not contain by,..., bq.
Thus <Ai, /xj) is an instance of <<¿J, <p*>■
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3. Existence of principal type-schemes. In future, whenever a list (e.g.
"xu ..., x„") of ob-atoms is mentioned, the atoms will be assumed to be distinct.

Theorem 1. Let X be an ob, and xu..., x, (t^O) be the ob-atoms in X that are
not given types by the axiom-schemes; if a type-scheme for X can be deduced from
some assumptions, then there exists a principal deduction 3 for X (and hence X has
a p.t.s.).

Proof. We use induction on the construction of X.
If X is an atom occurring in an axiom-scheme aX, choose 3 to be the one-step

deduction
aX.

This is principal because every other deduction must have the form ßX, where ß is
an instance of a.

If X is an atom not given a type by an axiom-scheme, choose 3 to be the one-step
deduction

aX,

where a is any type-variable. This is obviously principal. Thus the p.t.s. of X is a
single variable in this case.

Now suppose X is (UV); let ult..., up be those of xx,..., xt which occur in U
but not in V, wlt..., wT be those which occur in both U and V, »j,..., vq be those
which occur in V but not in U. Let the given deduction of a type-scheme for X
have the form

(1) {AlWl,..., Api/p, fixVx,..., p.Qvv, vxWx,..., vTwr} t- ßX.

This deduction must be the result of applying Rule (F) to two deductions with the
forms

(2) {XxUx,..., ApKp, vx Wx,..., vTwt} \- FaßU,

(3) {p-xVx,..., nQvQ, vxWx,..., vrwr} \-aV.

By the induction hypothesis, U and V have principal deductions 3X and 32;
suppose these have the forms

(4) {01«!,..., 0pK„, i>iWlt..., */jrwr} i-, nU,

(5) {èxVx,..., </>,v„ xiWx,..., XtWt} i-p £ V.

Let ax,...,ak be the type-variables in 3X that do not occur in <^i,..., i/ir, it},
bx,...,b, be all the type-variables in <0X, ...,>!'„ *•>,
cx,...,cm be all the type-variables in <xi,..., x„ £>»
dx,...,dn be the type-variables in 32 that are not in <xi,..., Xt, £>• Let g be a

new type-variable, distinct from all those above.
The principal deduction for (UV) is constructed as follows. First choose 3X and

32 so that all the above variables are distinct (this is possible by Lemma 4(b)).
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Then find an h.c.i. of the two sequences

<</■!, ...,&, W>, <X!, ...,Xt, (Hg)>

which contains none of au..., ak, dlt...,dn (this is possible by Lemma 5(c),
since the two sequences have a common instance (yu .. .,v„ (F<*/3)> by (2) and (3)
above). Suppose this h.c.i. is

(6)       <«!, ...,«„ (F«tt)>, == <#, ...,#, TT*y, = <Xl,..., xr, (H°r)y

where "*" denotes the substitution of certain type-schemes for b1} ■. -, bx only,
and " ° " for clt...,cm only. Then construct the two deductions 3f and 32, which
give

(7) {<??«!, . . ., 0*«p, ttWi.tfWr} K- *OtU,

(8) {ftvx,..., <f>°vq, x>x,..., x>r) *- r V.
Since <r=t,° and </)* = Xi for each /, these two deductions can be combined by Rule
(F) to form one deduction, giving

(9) {dfUx, ..., e*Up, tfwu . ..,#*„ ftVx, ..., <)>°Vq} I- r(UV).

We shall see that this is a principal deduction for (UV); to do this, we must
prove that any deduction with the form (1) is an instance of (9)(6). For this it is
enough to show that the deduction (2) is an instance of (7), and (3) is an instance of
(8), both by the same substitution. Notice that since (4) and (5) are principal, (2)
and (3) are instances of (4) and (5) respectively.

Now let £f2, £f3, ¿¡"4, ̂5 be the sequences for the deductions (2), (3), (4), (5)
respectively (see the end of §1). To show that (2), (3) are instances of (7), (8) both
by the same substitution, it is enough to show that the sequence {9"2, 6^) (formed
by putting the members of ¿f3 after the members of £r°2) is an instance of the
sequence <^*, ^5°>, since ^* is the sequence for (7), and 9^° corresponds to (8).
We shall use Lemma 6.

Since no variables are common to (4) and (5), and (2), (3) are instances of (4),
(5), the sequence <^2, <S^> is an instance of {9t, Sr\). Hence the sequence

<^. -*3, "i."r, (Faß), vx,..., v„ (Fag)>
is an instance of

<^4. ¿5. &,...• <l>r, It, Xl» •    -, Xr, (F£g)>

because »lt..., v„ (Paß) occur in 9'2 at positions corresponding tot/iu..., </in -n in
5^, and similarly for the other members. Also, by (6),

(6) Here the relevant deductions will be called "(1)," "(9)," etc., though strictly speaking
(1) and (9) are not deductions but only the hypotheses and conclusions of deductions. Thus
for instance, type-variables may occur in the deduction giving (1) but not appear in (1) itself
(if they occurred in axioms used in the deduction); in Example 1, b is such a variable.
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<«!, ..., cor, (Far), toy, ...,»„ (Fctt)> he <#f, . . ., tf, w*, J& ..., X°, CT^))
=  <01, • • -, 0r, 7T, Xi, • • ., Xr, (F£g)> +

where " + " denotes the result of simultaneously performing substitution * on
by,..., by, and "one,,..., cm, and substituting r for g. By the definition of (6),
if there are any type-variables in SP± or SP, which do not occur in

{<)>i, ■•■,4>t,-",xi,---, Xt, (Hg)y,
they do not occur in the above sequence. Hence by Lemma 6,

(SP2, SP3, vy,..., vT, (Faß), vy,..., v„ (Fag)y

is an instance of

Hence {SP2, SP3y is an instance of (SPf ,SPh+y; since this is the same as (SP£, SP£y
the proof is complete.

Remark. In this proof the p.t.s. tt of U in (4) may be either compound or a
variable. (It cannot be a basic type since it has an instance Fa/3 which is compound.)
The variable g was introduced just to treat these two cases simultaneously, and
when tt is compound, g is not really necessary.

Corollary 1.1. There is an effective way of deciding for each X whether or not
X has a type-scheme, and if it has one, for calculating its p.t.s., and its principal
deduction. (Assuming that atoms can be effectively distinguished from each other and
from compound obs, and that substitutions can be effectively performed, etc.)

Proof. If X is an atom, then the p.t.s. of X either is given by an axiom-scheme,
or else is a single type-variable.

Suppose X is (UV); if U or V has no type-schemes, then X has none. If U and V
have principal deductions with the forms (4) and (5), then Robinson's theorem
(Lemma 5) gives an effective test of whether the h.c.i. (6) is constructible ; if it is,
the principal deduction for X is (9) and the p.t.s. is t therein ; if not, X has no
type-schemes at all.

Corollary 1.2. For every p. t.s. a of X, there exists a principal deduction ofaX.

Proof. By Theorem 1, X has a principal deduction; let ßX be the statement it
deduces. By Lemma 4(a), ß is a trivial variant of a, and hence suitable changes of
the variables in the deduction of ßX will form a principal deduction of aX.

The following two corollaries show how to calculate the p.t.s. of (UV) from those
of U and V, in the important case that all atoms common to U and V are given
types by the axiom-schemes. In this ¿ase r = 0 in the proof of the theorem, and so
the principal deduction is constructed by finding an h.c.i. of tt and Fig, and
combining the corresponding deductions (7) and (8).
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Corollary 1.3. Suppose that all the atoms common to U and V are given types
by the axiom-schemes; if

(4a) {Mi,..., W-P W

and

(5a) {<f>iVx,...,4>qvq}^-pt,V

and $, C have an h.c.i. f* = £° whose new variables (i.e. those not in f) do not occur
in i?, then the result t¡*, of making exactly the same substitutions in -n as changed f
to f, isap.t.s. of(UV).

Proof. By Lemma 4b we may replace the deduction (5a) by one with no variables
in common with (4a). Suppose this deduction gives

(5a)' {^'xVx,...,<f>'qvq}^pUV.

The type-scheme f* will be an h.c.i. of f and C.
Now F£*T?* is an h.c.i. of F£i? and FCg, if g does not occur in £'■ It is certainly

a common instance. Also if Faß is any other common instance, a must be an
instance of f* since f* is an h.c.i. of £ and C ; hence by Lemma 6, Fa/3 is an instance
of Ff 77*. (Lemma 6 is here applied to the pairs <f, t?>, <£*, •»>*> and <a, /?>.)

To follow the construction in the proof of Theorem 1, with r=0 and tt=F^t¡
in the present case, the first step is to find an h.c.i. of Ffrj and FCg that does not
contain alt..., ak, dx,..., dn (see Theorem 1). If F£*77* is not suitable, we can
find a suitable trivial variant Ff i?" of it. Then the principal deduction (9) for (UV)
is formed by combining certain instances of (4a) and (5a)', and shows that -n" is a
p.t.s. of UV. Hence 77* is a p.t.s., since it is a trivial variant of 77".

Corollary 1.4. If in Corollary 1.3 all the variables in the hypotheses of (4a)
occur in F$t¡, and all those in the hypotheses of (5a) occur in £, then

{0*"i.6*up, 4lvlt..., 4>Ws r-p T,*(UV).

Proof. In the proof of Corollary 1.3, a1(..., ak are the variables in the deduction
for U which do not occur in Ffr; ; hence by the assumption they do not occur in
any of 01;..., dp, F$-n. Therefore by Lemma 4b a principal deduction can be found
which still gives (4a) but with au ..., ak not occurring in Ff*77*. Similarly we may
assume that dlt...,dn in (5a)' do not occur in Ff*77*. Therefore Ff*77* is a suitable
h.c.i. for the proof of Corollary 1.3. To construct the principal deduction (9) for
UV, we first perform in (5a)' the substitution which changes Ç to £° ; since all the
variables in each </>[ occur in C, this changes <f>[ to <j>°, giving a deduction

{<f,axVx,...,</>°qvq)^CV.

Next we perform substitution " * " in (4a) and combine the result with the above
deduction by Rule (F), completing the corollary.
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Corollary 1.5. If in (4) and (5) of Theorem I, tt has the form F^ and l=£,
i/ji — Xi for all i (these being the only exceptions to the assumption that (4) and (5)
have no variables in common), then a principal deduction for UV is obtained by
simply applying Rule (F) to (4) and (5).

Proof. To construct a principal deduction as in Theorem 1, first change all the
variables in (5) that occur in £, xi, • • -, Xr to distinct new ones not occurring in (4).
This leaves (4) and (5) with no variables in common. Then in (6), take "*" to be
the identity substitution and "°" to be the reverse of the above change of variables,
and T = r¡. Then (7) and (8) are the given (4) and (5); hence the result.

Example 2. Let x, y, z be distinct ob-atoms not given types by the axiom-
schemes; then

{Fab x,ay,a z} i-„ b(K(xy)(xz)).

Proof. Let a, b, c, d, e, gx, g2 be distinct type-variables. Principal deductions for
x and y are

c x,       a y.

To get a principal deduction for (xy) by the construction in Theorem 1, notice
that an h.c.i. of c and (Fagy) is just (Fagy) itself; hence, replacing c by (Fagy) and
combining the two deductions by Rule (F) gives a principal deduction

(io) *3i*°l.
gi(xy)

A principal deduction for K is the one step Fgy(Fbgy)K; combining this with (10)
by Corollary 1.5 gives the principal deduction

e„ rPA„ \k Fagi*   g y
nu pgiiFbgi)K-giïïr
UJ Fbgy(K(xy))

Now just as for (xy), a principal deduction for (xz) is

Fed x   ez
(12) d(xz)

To obtain the result, combine (11) and (12). No type-variables are common to
both, and the only ob-atom they have in common is x; hence we must find an
h.c.i. of the sequences

«Fagy), (Fbgy)y,       «Fed), (Fdg2)y.

All variables in (10) and (11) occur in these sequences, so there is no restriction
on the h.c.i. we can use. A suitable one is

«Fab), (Fbb)y,
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obtained by substituting b for gy in the former sequence, and a, b, b for c, d, g2
in the latter sequence. Making the same substitutions in (11) and (12) and com-
bining by Rule (F) gives the principal deduction

{Fab x,ay, a z} i-„ b(K(xy)(xz)).

Example 3. If l = SKK, then i-„ Faal.
Proof. By the axiom-schemes,

h-p F(Fa(Fbc))(F(Fab)(Fac))S,       y-„ Fa(Fba)K.

By Corollary 1.3, since Fa(F6a) is an h.c.i. of Fa(F6c) and Fa(Fba), substituting a
for c in the p.t.s. of S and applying Rule (F) gives

i-, F(Fab)(Faa)(SK).

Now Fa(Fba) is an h.c.i. of Fab and Fa(Fba), so by Corollary 1.3 again (substituting
Fba for b in the p.t.s. of SK),

^p Faa(SKK).

But we can say more than this: in the first application of Corollary 1.3 above,
there are no ax,..., ak, dy,..., dn to worry about in the proof of the corollary,
and similarly for the second application (since every variable in the deduction for
SK occurs in its conclusion), so the above proof actually gives us a principal
deduction for SKK. This deduction is the same as in Example 1.

Example 4. The ob Sil has no type-schemes at all.
Proof. By Example 3,

h-, F(Fa(Fbc))((Fab)(Fac))S,    »-„ Faal.

Now F(Fbc)(Fbc) is an h.c.i. of Fa(Fbc) and Faa, so by Corollary 1.3 and sub-
stituting Fbc for a,

t-p F(F(F¿>c)¿>)(F(F¿>c)c)(SI).

If SI I had any type-schemes, the construction in Theorem 1 would give us a p.t.s.
But this construction involves finding an h.c.i. of

F(F(Fbc)b)(F(Fbc)c),       F(Faa)g,

and the existence of such an h.c.i. would imply that

F(Fbc)b,       Faa

have instances in common, which is impossible. Thus the construction fails, so
SI I has no type-schemes.

4. The principal type-scheme of [;c].M. The main result of this section is a
lemma for use in the proof of Theorem 3, §6. From now on the ob-atoms will be
assumed to include S and K, together with some ob-variables, which are not given
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types by the axiom-schemes. (These variables can be adjoined as extra ob-atoms
if they are not already present.) Letters "w", "p", "w", "x", "y", "z" will
denote these variables, and for ease of reading it will be assumed that all the
ob-atoms which do not occur in the axiom-schemes are variables.

Definition 11. Reduction and equality. An ob X is said to reduce to Y (" X^ Y")
iff either Y= X or else Y is the result of applying to la series of replacements
with the forms (for any U, V, W) :

S U VW may be replaced by UW(VW),
KUV may be replaced by U.

The properties and purpose of reduction are explained in [1]. The phrase " X is
equal to Y" (" X= Y") is defined to mean that Y is the result of applying to X a
series of replacements as above, and reversed replacements.

It is proved in [1, §9C2, Theorem 2] that

(13) if X ^ Fand {ai^,..., anxn} t-ßX, then {a^i,..., anxn} i-jSY.

Definition 12. [x].M. For each ob-variable x and each ob M, an ob called
" [x]. M" can be defined as follows, by induction on the construction of M.

(i) [x].x=l, that is, SKK;
(ii) [x]. M= KM if M does not contain x;

(iii) [x].(UV) = ((S[x).U)[x]. V) if (UV) contains jc.
This definition has the property that for all x, M, N,

(14) ■    ([x].M)NZ [N/x]M,
where [N/x]M is just the result of substituting N for every occurrence of x in M.
Thus [x].M represents the function of x defined by M; see [1, §6/4] for details.
Since [x]. M represents a function of x, we should expect to be able to prove that
if M has type r¡, deduced by giving x a type $, then [x].M has type F£t7. More
precisely, letting ylt..., yn be the other ob-variables in M,

(15) if for some types aa,..., ot„, $, v, {aiyx, ■■■, <*nyn, £x} i- r,M,
then {«ija,..., anyn) h- F$r,([x].M).

This is actually proved in [1, §9D, Corollary 1.1]; the theorem below is its analogue
for principal deductions.

Theorem 2. (a) Suppose that x,ylf...t yn are the only ob-variables in M. If

{*\yi, • - -, «J« &} ^pt)M,
then

{«ijl, • • -, «n^n} l-p Hfl(\x\.M).

(b) Suppose that M contains only yx, • • -,yn ond not x; if

{axyx,...,anyn} i-p77A/,
then

{«ij'i,. • -, ccnyn} H-p Fe77([x].M)

where e is any type-variable not occurring in r¡.
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Proof. For part (b) : [x]. M is KM, and

i-, Fa(Fea)K.

Therefore by the given deduction and Corollary 1.3, since tj is an h.c.i. of t¡ and a,

{ayyy,..., a„yB} h-„ Fer¡(KM).

For part (a) we use Curry's proof (see an earlier comment). Firstly, since M has a
type-scheme it must have a type, since all the type-variables in a deduction can be
replaced by basic types. Therefore by (15), [x].M has a type. Every type of [x].M
must be compound ; this is true if M is x, since then [x]. M is I ; when M has the
form UV, then

[x].M = (S[x].U)[x].V

and by the axiom-scheme for S, the p.t.s. of this ob (if it has one) must be an
instance of (Fac), which is compound. Hence the p.t.s. of [x].M is compound, so
the principal deduction for [x]. M must have the form

(16) {ßiyi,...,ßnyn}^PPyo([x].M).

By (15) and the given deduction for M we have a deduction

(17) {^yi,...,ccnyn}^-F^([x].M).

This must be an instance of (16), since (16) is principal; hence

(18) <«lt..., an, (F£j)> is an instance of <&, ...,ßn, (Fy8)>.

Now by (16) and Rule (F),

{ßiyi,...,ßnyn,Yx}^o(([x].M)x),

and so by (14) and (13),

{ßiyi,---,ßnyn,yx} y-SM.

This deduction must be an instance of the given principal deduction for M, and
hence <&,..., ßn, (Fy8)> is an instance of <«i,..., an, (F£ij)>. Therefore by (18)
these two sequences are trivial variants of one another. Now we construct a
principal deduction with the same hypotheses and conclusion as (17). To do this,
replace all type-variables in the deduction (16) which do not occur in

<ßy,...,ßn,(Fyo)y

by distinct new variables not occurring in <a1;..., a„, (Ffij)>, and then make the
substitutions which change (ßlt..., ßn, (Fy8)> to <a1(..., a„, (Ffq)). The result is
a deduction giving (17), and it is principal because it is a trivial variant of (16).

Corollary 2.1. If the only ob-variables in M are Xy,..., xn (n^l), and

{aiAT!, . . ., anxn} !-„ ßM,
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then
h-p (FB«i • • • anß)([Xx, ..., xn]. M),

where
(F^-.-ogS)    is    Fai(Fcc2(---(Fanß)---))

or just ß when n=0, and

[xx,..., xn}.M m [xx].([x2).(- ■ -([xn].M)- ■ ■))

or just M when 77=0.

Example 5. Define
A s [x,y,z].K(xy)(xz):

then by Example 2 and Corollary 2.1,

kp F(Fab)(Fa(Fab))A.

Remark. H. Curry has pointed out that if the definition of [x]. M included, as
it usually does, the clause

(iv) [x].(Ux) = U   when Udoes not contain x

(and clause (iii) were only applied when (iv) was not applicable), then Theorem 2
would be false. For example the deduction

Fab y   ax
b(yx)

is a principal one for (yx), and by (iv),

[x].(yx) = y,

so Theorem 2 would say that

Fa¿> y i-p Fab y,

which is false because the one-step deduction

Fee j

is not a principal one for y. The proof of Theorem 2 breaks down when (iv) is
used because then the p.t.s. of [x]. M may not be compound ; but this does not
mean that Theorem 2 is useless ; see the proof of Theorem 3 later.

Incidentally, Theorem 2 can be proved by induction on the construction of M
without using (14) and (15); though this proof is longer than the above one, it
does give an alternative proof of (15), because (15) follows from Theorems 1 and 2.

5. An alternative approach to typed combinators. Now besides the formal
system set up in Definitions 1 to 4, there is another way of introducing type-
restrictions into combinatory logic. In Definition 1, instead of postulating two
basic combinators S and K, we could postulate an infinite set of basic combinators.
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For each ordered triple a, ß, y of types there would be a distinct basic combinator
Saay, and for each pair a, ß there would be a distinct basic Kag ; the axiom-schemes
for S and K in Definition 4 would be replaced by the infinite set of axioms

FtFaiF/îyMFtFa/ÎXFayWS^
Fa(Fßa)Kag.

The type-variables in Definition 2 would not be used at all.
It can be seen that each combinator in this alternative system would have just

one type (if it had a type at all), in contrast to the infinite number of types given
to each combinator in the former system. Hence it is easier to give a set-theoretic
interpretation to the combinators in the alternative system than in the original
system; for instance KaB is interpreted as the function / such that (in the usual
function notation)

(f(x))(y) = x

for each member x of the set a, and each member y of ß. This/changes its argument
x into a constant-valued function. But in the former system, the basic combinator
K did not represent a particular function/ but rather the abstract notion of forming
a constant function from any object; this is much harder to interpret set-theoreti-
cally. For instance K can be applied to itself; [more precisely, (KK) is a combinator
and it even has a p.t.s. Fa(F¿(Fc¿>))] but the set-theoretic meaning of applying K to
itself is not so clear. Actually the combinators perform their tasks without needing
any such interpretation (compare the parentheses and punctuation symbols in the
usual forms of predicate calculus), but if a set-theoretic interpretation is wanted,
then it seems more convenient to use the system based on an infinity of combinators
SaSy, KaÄ (see [5], for example).

However, most of the fundamental syntactical properties of the combinators in
this alternative system are independent of the types of the particular Sa6y and Kae
involved. So for discussing these fundamental properties the original system is
more natural.

In the alternative system, reduction and equality are defined as in Definition 11,
except that (KaÄC/K) may be replaced by U only when

h-aU   and    *-ßV,

and (SañyUVW) may be replaced by UW(VW) only when

t-Fa(Fßy)U   and    i- Fa£K   and    \-«W.

These conditions ensure that an ob with a type is replaced by another with the
same type; hence if X^ Y or X= Y, then X and Y both have the same type (and
if either has a type, the other does).

Now it looks as if it might be possible to find a subsystem of the original system
based on S and K to correspond to the infinite-based system, by using the fact
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that each ob with a type has a unique p.t.s. (neglecting trivial variants) and some-
how making principal type-schemes in the original system do the work of types in
the infinite-based system. An ob in the finite-based system whose p.t.s. is a type a
can have only one type, since all its types are instances of a, which contains no
variables. Therefore we could try to set up a correspondence between infinite-based
obs, and finite-based obs whose principal type-schemes are types. One way of
doing this is as follows (letters " X", " Y" will denote finite-based obs here, and
"M", "N", "/>" infinite-based obs).

Firstly, suppose we could prove

If h aX in the system of §1, then there is
an ob Xa such that \-p aXa and Xa ^ X.

Then applying (19) to K and S would give us, for each triple a, ß, y of types, two
obs K*j and S*Sr with the principal type-schemes, respectively,

Fa(Fßa), F(Fa(Fßy))(F(Faß)(Fay)).

These two type-schemes contain no variables, so they are the only types that K*fi
and S*ßv could have. Hence to each combinator P (with a type S) in the infinite-
based system, would correspond a finite-based obPT whose only type was 8;
P T would be defined thus :

(Saey)T m S*,,,       (Kaer = K*„       (MNY = (MTNT).
To complete the embedding of the infinite-based system in the finite-based one, we
would only need to show that

(20)   M ^ Nin the infinite-based system iff MT = NT in the finite-based system.
Half of this equivalence follows from (19); in fact, to show that M^N implies
MT = NT, it is enough to show that for all M, N, P,

S*eyMTNTPT = MTPT(NTPT),       K*eMTNT Z MT
in the finite-based system. These are true, because

K*eMTNT £ K.MTNT   by (19)
= MT   by Definition 11,

and similarly for S*Är.
The embedding can also be seen to be one-to-one, using the actual structure of

K*fl and S*iy given by the proof of (19) in the next section.
However I do not know if the converse half of (20) is true(7).

C) The main use of the alternative system (with each atom having a unique type) is to
represent certain sets 5 of functionals (see [5] for example). We represent each <j> in S with type
a by an ob [<t>] with the same type, such that [<t>][<li] = [</>(<!')] if <t> has type Fßy and ^ is in S
with type ß and ^(i/0 is in S. One purpose of the above embedding (suggested by Curry) is to
show that every $ which can be represented as above can also be represented by a finite-based
ob W such that WW=IW)]'. For this result we do not need the converse half of (20);
we simply define [<f>]' to be [<f>]T.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] THE PRINCIPAL TYPE-SCHEME OF AN OBJECT 49

The proof of (19) will be given in the next section (Corollary 3.1). Although it is
only used in the above argument in the case that a is a type, it seems easiest to
prove it first for the case that a contains only variables, and then extend it to the
other case. This extension assumes that each basic type is the p.t.s. of at least one
ob (not necessarily an ob-atom).

6. Every type-scheme is a p.t.s. The main purpose of this section is to verify
(19), which seems interesting in its own right, besides its application in the
preceding section.

The obs of this section are those of §1-4, not the alternative system in §5. Type-
variables denoted by distinct letters will be assumed to be distinct, and calling a
variable "new" will mean that it does not occur in any type-scheme mentioned
earlier in the section.

Lemma 7. Given any distinct type-variables b, c, d, e, define

& ■ F(Fde)c r¡y m Fdc
£2 = F(Fde)c 7/2 = Fee
Í3 = Fb(Fde) 7,3 = Fed
£4 = F6(Fde) 7,4 = Fbe.

Then there exist combinators By,..., 7i4 such that for i-1,..., 4,

r-„ FíF^X^Ft^XF^))!?,.
Also there is a combinator C such that

r-p F(F6¿>)(F(Fcc)(F(F6c)(FZ>c)))C.
Proof. Tedious ; see the end of the section.

Theorem 3. If X is an ob whose atoms are all given types by the axioms, and

r-aZ

for some a containing only variables, then there exists an ob Xa such that

Xa ^ X   and   r-p aXa ;

if X is a combinator, then so is Xa.

Proof. First suppose that for each a containing only variables there exists a
combinator V„ such that

l-p FtxaVa.

Then using the ob A from Example 5, §4, define

Xa = S(Al)VaX.
Then

Xa > A\X(VaX)
â K(lX)(l(VaX)) c by (14) and the def. of A
Z X.
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Also we have by Examples 5 and 3,

^p F(Fab)(Fa(Fab))A       t-p Faal.

Therefore by Corollary 1.3, substituting a for b,

^p Fa(Faa)(Al).

Now by the axiom-schemes,

y-p F(Fa(Fbc))(F(Fab)(Fac))S.

Hence by Corollary 1.3, substituting a for b and c,

(21) h-, F(Faû)(Fac)(S(^l)).

Therefore by Corollary 1.3 again, substituting a for a,

v-pFaa(S(Al)Va).

Now by Theorem 1 X has a p.t.s. a0> and a is an h.c.i. of a and a0, so by Corollary
1.3,

^pa(S(Al)VaX).

It only remains to prove the existence of Va for all a ; this is done by induction
on the number of occurrences of F in a (called the "length" of a).

Basis. If a is a variable, choose Va= I.
Induction step. Suppose a is Fßy for some ß, y. We shall construct Va by

induction on the number of variables common to ß and y.
Basis. Suppose there are no such variables. By the hypothesis of the induction

on a we have
h-p FßßVe, l-p FyyVy.

Then using the C from Lemma 7, define

va = CVßVy.

By Lemma 7, for new variables b and c,

i-p F(FM>)(F(Fcc)(F(F6c)(Fèc)))C.
Hence by Corollary 1.3, substituting ß for b,

r-p F(Fcc)(F(Fßc)(Fßc))(CVB).

Now an h.c.i. of Fee and Fyy is Fyy, so by Corollary 1.3 again, substituting y for c,

^p F(Fßy)(Fßy)(CVBVy)

as required. Notice that if a variable was common to ß and y, Fyy would not satisfy
the conditions for £* in Corollary 1.3.

Induction step. Suppose there is a variable h which occurs in both ß and y.
Let g be a new variable, and define

P ■ IglW
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Then ß' has one less variable in common with y than ß has, and

ß ■ [h/gW-
By the induction hypothesis there is a V such that

(22) kp F(Fß'y)(Fß'y)V.

We shall now construct a Va such that

r-p F(Fßy)(Fßy)Va.

Case 1. When both ß and y are variables, then ß=.y=.h and we need

H-, F(Fhh)(Fhh)Va.

Define Fa to be S(^l) and use (21).
Case 2. When ß is compound, say /3sF8e, and A occurs in 8. Then />" = F3Y

and g occurs in 8' (but not in y). Now F8y is shorter than a because a is F(F8e)y,
so by the hypothesis of the induction on a there exists Vx such that

^pF(F8y)(F8y)Vx.
Also by (22),

h-p F(F(F8Y)y)(F(FSY)y)F.

Now by Lemma 7, where £x is F(F*fe)c for new variables c, d, e,

^PF(F^1)(HF(Fdc)(Fdc))(FUi))B1.

Define Va=BxVVx.
Substituting 8', e, y for d, e, c changes èx into F(F8Y)y which is Fß'y. Hence by

Corollary 1.3,
^p F(F(F8'y)(F8'y))(F(Fß'y)(Fß'y))(Bx V).

Now 8 = [h/g]8' and g does not occur in y, so F(FSy)(F8y) is an instance of
F(F8'y)(F8'y). Also every variable in the former type-scheme occurs in the latter
one (since h occurs in y). Therefore Corollary 1.3 can be applied to BxVand Vit
with

f* = £ = F(F8y)(F8y),
r,* = F(F/3y)(F/3y).

Thus we obtain
^pF(Fßy)(Fßy)(BxVVx)

as required.
Coje 3. When ß is compound, say ß=. F8e, and /i occurs in e but not in 8. Then

/?' is FSe' and g occurs in e. Now Fey is shorter than a, so by hypothesis of the
induction on a there exists V2 such that

^F(Fey)(Fey)V2.
Define Kas52FK2.
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By Lemma 7, where £2 is F(Fde)c for new variables d, e, c,

^F(Ff2f2)(F(F(Fec)(Fec))(Ff2£2))7J2.

Therefore by Corollary 1.3, substituting 8, e, y for d, e, c,

-p F(F(Fe'y)(Fe'y))(F(Fß'y)(Fß'y))(B2 V).

Similarly to Case 2, F(Fey)(Fey) is an instance of F(Fe'y)(Fe'y) and every variable
in the former also occurs in the latter. Therefore by Corollary 1.3, substituting n
forg,

r-p F(F/5y)(FiSy)(7J2FF2)
as required.

Case 4. When y is compound, say y= FSe, with h occurring in 8. The scheme F/38
is shorter than a, so we have a V3 such that

^p F(Fßo)(FßB)V3.
Also by (22),

-p FtF/S'iFS^XF^FS*)),/.
Define Va = B3VV3.

By Lemma 7, where £3 is Fb(Fde) for new variables b, d, e,

^F(FÍ3Í3)(F(F(F¿,d)(Fed))(Fí3^3))7Í3.

Therefore by Corollary 1.3, substituting ß', S, e for b, d, e,

^pF(F(Fß'o)(Fß'o))(F(Fß'y)(Fß'y))(B3V).

And as in the previous cases we get

h-p F(F/3y)(Fi3y)(7Í3FF3)

by substituting « for g and using Corollary 1.3.
Case 5. When y is F8e and n occurs in e but not in 8. Then Fße is shorter than a,

so we can get a K4 such that
-p F(F|Se)(F0e)F4.

Define Va=B4VVi.
By Lemma 7, where £4 is Fb(Fde) for new variables è, d, e,

^F(Fí4^)(F(F(Fee)(Fee))(FÍ4í4))/i4.

As in Case 4, two applications of Corollary 1.3 give

r-p F(Fßy)(Fßy)(BiVVi),

completing the proof of Theorem 3.

Corollary 3.1. 7Vie theorem remains true if a contains basic types, provided
that to each basic type 6 corresponds at ¡east one ob Ze (not necessarily an atom)
such that i-p 6Ze.
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Proof. It is enough to prove the existence of a Va for the case when a contains
basic types. Let 01(..., 0n be the basic types in a, and let a0 be the result of sub-
stituting a distinct new type-variable ax for each 6t in a. Then a will be the result of
substituting 0i,..., 0„ for au..., an in a0. By a nonprincipal deduction obtained
by substituting a0 for a in Example 1, §1,

I- Fct00i0l.

Now by the axiom-scheme for K,

i- F(Fa0a0)(Fan(Fû!0oi0))K,

so by Rule (F),
i- Fan(Fa0c¡0)(Kl).

Repeating this argument, we get

^(Fnfli-.-an(Fa0a0))(K(K(.-.(KI). ••)))•

Therefore by Theorem 3 there exists a combinator U such that

i-p (F„fli- • -an(Fa0a0))U.

Now by the assumption, there exist obs Zlt..., Zn such that for each /,

Therefore by Corollary 1.3 used n times,

l-p Faa(UZx---Zn),

so we can choose Va to be (UZX- ■ -Zn), completing the proof.
Remark. Equality and types. It might at first sight be hoped that if X^z Y, then

X and Y would have the same principal type-scheme. Theorem 3 shows that this
is false, and the following example of Curry's,

Sill à ll(M)

shows that X does not need to have a type at all, even though Y has types. All
that we can say is that if X^ Y and X has types, then by (13), the p.t.s. of X is an
instance of that of Y.

When X= Y in general, the situation is even less tidy; in fact there exist such X
and Y which have no type-schemes in common at all. For example, define

a m Fc(Fcc),       ß = F(Fdd)d;

then by Theorem 3 there exist combinators Ix and I2 such that

h 2 1.      h £ I,
i-p Fota/i, t-p F/3/?/2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 R. HINDLEY [December

Hence Iy = I2, but any type-scheme possessed by both 7j and 72 would have to
have both the forms

F(Fy(Fyy))(Fy(Fyy)),        F(F(F88)8)(F(FS8)3),

which is impossible.
Proof of Lemma 7. The following is one way of constructing the combinators

By, ..., 2?4, C.
First define

D = [x).Kl(Ax).

Then

(23) kp F(Fab)(Fcc)D.

Proof. By Example 5, §4, we have

r-p F(Fab)(Fa(Fab))A.

A one-step principal deduction for x gives us

d x t-p d x.

Now an h.c.i. of d and Fab is Fab itself, so by Corollary 1.4, substituting Fab for d
and combining the above two deductions gives

Fab x r-p Fa(Fab)(Ax).

By the axiom-schemes and Example 3,

i-p Fa(Fda)K,       i-p Feel,

so by Corollary 1.3, substituting Fee for a,

(24) r-p Fd(Fcc)(KI).

An h.c.i. of d and Fa(Fab) is Fa(Fab), so by Corollary 1.4, substituting Fa(Fab)
for d in (24),

Fab x i-p Fec(KIG4x)).

Finally Theorem 2 gives the result.
Next define Em [x, y]. D(Al(Ky)x)y. Then

(25) i-p F(Fab)(Fbb)E.

Proof. First of all, we have
i-p Fb(Fab)K,

by *-pby.

Therefore by Corollary 1.5,

¿yr-pFaè(Ky).
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By the start of the proof of Theorem 3,

(26) i-p Fc(Fcc)(Al).

Therefore by Corollary 1.4, substituting Fab for e,

by^-pF(Fab)(Fab)(Al(Ky)).

Now c x ¡-„c x,so by Corollary 1.4, substituting Fab for e,

(27) Fab x, by\-p Fab(Al(Ky)x).

Therefore by (23) and Corollary 1.5,

Fabx,byv-p Fcc(D(Al(Ky)x)).

Now for a new variable e,
eyv-pey.

To combine the above two deductions by the proof of Theorem 1 we need an h.c.i.
of the two sequences

«j, Fcc>       <<?, Feg>.

A suitable h.c.i. is (b, Fbby, so we can substitute b for c and e in the two deductions
and combine them to get

Fab x,byy-p b(D(Al(Ky)x)y).

The result follows by Corollary 2.1.
Define G = [x, y].Al(Ky)x. Then Corollary 2.1 applied to (27) gives us

(28) i-p F(Fab)(Fb(Fab))G.

Define H= [u, x, y, z]. K(Kz)(G(SK)yx)(Ex(uz)). Then

(29) r-p F(Fac)(F(Fbc)(F(Fbb)(Faa)))H.

Proof. By the proof of Example 3, §3,

r-p F(Fôc)(F6è)(SK).

Therefore by Corollary 1.3, substituting Fbc for a and Fbb for b in (28),

r-p F(Fbb)(F(Fbc)(Fbb))(G(SK)).

Now dy i-p d y. Therefore by Corollary 1.4, substituting Fbb for d,

Fbb y r-p F(Fbc)(Fbb)(G(SK)y).
Similarly,

(30) Fbb y, Fbc x h-p Fbb(G(SK)yx).

Now by (25),
h-p F(Fôc)(Fce)7f.
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Therefore by Corollary 1.4,
Fbc x i-p Fcc(Ex).

Also Fac u, a z y-p c(uz). Therefore by Corollary 1.5,

(31) Fee x, Fac u, az \-p c(Ex(uz)).

Now for new variables a, d, e, we have

y-v Fa(Faa)K,
a z y-paz.

Therefore by Corollary 1.5,
az t-B Fda(Kz).

Also H-p Fb(Feb)K. Therefore by Corollary 1.4, substituting Fda for b,

az*-p Fe(Fda)(K(Kz)).

To combine this with (30) by the proof of Theorem 1 we need an h.c.i. of

Fe(Fda),       F(Fbb)g.

A suitable h.c.i. is F(Fbb)(Fda), since all its variables occur in Fbb or in Fe(Fda);
then substituting Fbb for e in the above deduction and combining with (30) gives

Fbb y, Fbc x,az^p Fda(K(Kz)(G(SK)yx)).

To combine this with (31) by the proof of Theorem 1 we need an h.c.i. of

{Fbc, a, Fda}   and   <F¿»c, a, Feg}.

A suitable h.c.i. is obtained by substituting c for d and a for g ; making the same
substitution in the above deduction and combining with (31) gives

Fac u, Fbb y, Fbc x,az^p a(K(Kz)(G(SK)yx)(Ex(uz))).

The result follows by Corollary 2.1.
Now suppose that for each i= 1,..., 4 there exist two combinators L¡ and M¡

and a type-scheme y( such that

•-p F^y,L(,       i-p Fj7(y,M(

and y( contains all the variables in -nx. Then we can define

Bt = G(HLtMt).
This has the required p.t.s., namely

-p F(F^i)(F(FVi-ni)(FitQ)Bi.
Proof. By Corollary 1.3, substituting ¿( for a and y( for c in (29) and assuming

that the b therein is a new variable not occurring in £, or y¡

^p F(Fbyi)(F(Fbb)(Fiiii))(HLi).
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Now an h.c.i. of Fèy, and F7i,y, is F7,¡y(, and this satisfies the conditions of Corollary
1.3 since every variable in 77, is in y(, so by that corollary,

i-, F(FT,trli)(F^i)(HLiMi).

Then the result follows by (28) and Corollary 1.3, substituting Fr,^ for a and Ff,f,
for b in (28).

Thus to construct By,..., 54, it only now remains to construct Lt and Mi for each i.
When i— 1 : let yy be F(Fde)(Fcc) and define

Ly = [x,y, z].Al([u].Duz)xy,
My = [x,y].E([z].Kl(yz)(xz)).

Then
r-p F(F(Fde)c)(F(Fde)(Fcc))L1

and
r-p F(Fdc)(F(Fde)(Fcc))Mi.

Proof. ForLi; by (23),
r-p F(Fde)(Fcc)Z>.

Also a u i-p a u. Therefore by Corollary 1.4, substituting Fde for a,

Fde u i-p Fcc(Du).
Hence by Corollary 1.5,

c z, Fde u H-p c(Duz).
Therefore by Theorem 2,

cz i-p F(Fde)c([u].Duz).
Now by (26),

H-p Fa(Faa)(A\),

so by Corollary 1.4, substituting F(Fde)c for a,

cz^p F(F(Fde)c)(F(Fde)c)(Al([u].Duz)).

Then using Corollary 1.4 twice we get

F(Fde)c x, Fde y, c z t-p c(Al([u]. Duz)xy)

and the result for Ly follows by Corollary 2.1.
For My; by (24) we have h-p Fe(Fcc)(KI). Also

Fde y,dz t-p e(yz).

Therefore by Corollary 1.5,

Fdey,dzr-pFcc(KI(yz)).

Similarly, by Corollary 1.5 again,

Fde x, Fdey, dz\-p c(KI(yz)(;tz)).
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Therefore by Theorem 2,

Fdcx, Fdey i-p Fdc([z].Kl(yz)(xz)).
Now by (25),

t-v F(Fdc)(Fcc)E,
so by Corollary 1.5,

Fdcx, Fdey i-, Fcc(E([z].K\(yz)(xz)))

and the result for Afa follows by Corollary 2.1.
When i—2; let y2 be Fe(Fcc) and define

L2 = [x,y].A\(x(Ky)),

M2 = [x,y].A\(xy).
Then

r-p F(F(Fde)c)(Fe(Fcc))L2
and

>-p F(Fec)(Fe(Fcc))M2.

Proof. For L2 ; we have
ey*-Pey,

KP Fe(Fde)K,
therefore by Corollary 1.5,

e y i-p Fde(K.y).
Now

a x i-pa x;

to combine these two deductions by the proof of Theorem 1 we need an h.c.i. of a
and F(Fde)g; since F(Fde)c itself is a suitable h.c.i., substituting F(Fde)c for a and
applying Rule (F) gives us

F(Fde)c x,eyh-„ c(x(Ky)).

Therefore by (26) and Corollary 1.5,

F(Fde)cx, eyv-p Fcc(Al(x(Ky)))

and the result for L2 follows by Corollary 2.1.
For M2; we have

Fee x, e y t-p c(xy).

Therefore by (26) and Corollary 1.5,

Fee x,ey \-p Fcc(.4I(jcj))

and the result follows by Corollary 2.1.
When i=3; let y3 be Fb(Fdd) and define

L3 = [x,y].SK(xy),       M3 = M2.
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Then
H-p F(Fè(Fde))(Fè(Fdd))I3

and
H-p F(Fid)(Fè(Fdd))A/3.

Proof. For M3, use the result for M2.
For L3 ; by the proof of Example 3, §3,

h-p F(Fde)(Fdd)(SK).
Also

Fbc x,by \-p c(xy).

To combine these two deductions by the proof of Theorem 1, notice that F( Fde)( Fdd)
is a suitable h.c.i. of F(Fde)(Fdd) and Fcg, and substitute Fde for e, giving

Fb(Fde)x,by r-p Fdd(SKLvy)).

The result for L3 follows by Corollary 2.1.
When i=4; let y4 be Fb(Fee) and define

Li = [x,y].E(xy),       A/4 = M2.
Then

r-p F(Fè(Fde))(F6(Fee))£4
and

i-p F(F6e)(Fi(Fee))Af4.
Proof. For L4 ;

Fbcx, by i-p c(xy)
and by (25),

i-p F(Fde)(Fee)£.

By the proof of Theorem 1, since F(Fde)(Fee) is a suitable h.c.i. of Fcg and
F(Fde)(Fee), we can substitute Fde for c and combine the above two deductions to
get

Fft(Fde) x, b y i-, Fee(£(xy)).

The result follows by Corollary 2.1.
The construction of By,..., 2?4 is now complete, and only C remains to be found.
Define

C s [u, x, y, z]. Hxyu(yz).
Then

r-p F(Fô6)(F(Fcc)(F(Fèe)(Fôc)))C.

Proof. By (29) Corollary 1.4 used three times,

Fae x, Fbc y, Fbb u t-p Faa(Hxyu).
Now

Fdey,dz <r-pe(yz).
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To combine these two deductions by the proof of Theorem 1 we need an h.c.i. of
the sequences

(Fee, Fad)       (Fde, Feg}.

A suitable h.c.i. is (.Fbc, Fcc>, so substituting c for e and a, and b for d and
combining the deductions gives

Fee x, Fbc y, Fbb u,bz \-p c(Hxyu(yz)).

Corollary 2.1 then gives the result, completing the proof of Lemma 7.
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