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Abstract. The eigenvalue problem for the linear stability of Couette flow between
two rotating concentric cylinders to axisymmetric disturbances is considered. It is proved
that the principle of exchange of stabilities holds when the cylinders rotate in the same
direction and the circulation decreases outwards. The proof is based on the notion of a
positive operator which is analogous to a positive matrix. Such operators have a spectral
property which implies the principle of exchange of stabilities.

1. Introduction. The term "exchange of stability" has a long history dating back
to the late 1800's, but the now conventional understanding of the principle of exchange
of stabilities (PES) (i.e., all non-decaying disturbances are non-oscillatory in time) seems
to have been introduced by Jeffreys [10]. A much investigated motion is Couette flow
between rotating cylinders [24] and careful experiments on the onset of instability by
Taylor [25], [26] and others [2], [19] have confirmed that the instability of this flow sets in
as a stationary secondary flow. The purpose here is to prove PES in the following sense:

Principle of Exchange of Stabilities (PES): The first unstable eigenvalue has imaginary
part equal to zero.

This is now taken as the "weak" form of PES [28], [17]. A "strong" form of PES in
which all the eigenvalues are real has been proven for some other problems [1], [3], [7].
Thus, Yih [29] asserted, and seemingly proved, the strong form of PES for Couette flow
between two cylinders. To our knowledge, no error has been detected in his proof. How-
ever, DiPrima & Hall [5] have produced calculations of complex higher eigenvalues which
would contradict the strong form of PES. They also provided asymptotic/perturbation
arguments to buttress their calculations. The results of DiPrima & Hall are consistent
with the weak form of PES.
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The proof to be presented here is based 011 two methods. One, due to Weinberger
[28] was applied without complete success to the present problem. As he applied it
then, the implied calculations were so complicated as to defy interpretation. Another
method, developed by Rabinowitz, was applied successfully to the Benard problem [21].
By combining the two methods, using the different techniques and more refined estimates
introduced here, the proof goes through. However, by using asymptotic expansions,
Weinberger did prove the PES for the narrow-gap case. His technique is also noteworthy
because it can be generalized to boundary layer flow. I11 fact, Herron [9] used it to give
the first mathematical justification of PES for Gortler flow with a free surface.

The techniques employed are based 011 the notion of a positive operator, that is one
which maps a cone in a Banach space into itself. In this approach, the Banach space is
a Hilbert space Ho, and the cone is the set of nonnegative functions in Hq. The reader
is referred to the earlier articles, [28], [21] (and also [13], [18]) for the foundations but
to apply the methods, it is shown that the governing equations may be adapted to the
form treated earlier [28], [21].

I11 the next section the basic formulation is given. I11 the succeeding section, the earlier
approach is presented. I11 the concluding sections the governing disturbance equations
are written in operator form and the desired result is proved.

2. Basic formulation. Consider the steady motion of a viscous incompressible fluid
between two coaxial cylinders with radii R\, i?2 (R2 > R\), rotating about their common
axis with respective angular velocities , Vlo- Let (r, 0, z) be cylindrical polar coordinates
with z-axis along the axis of the cylinders. A flow is possible of the form

(2.1) Ur = uz= 0, ue = V(r), p = P(r),

with

(2.2) V = A,r + A2/r,

so that Ai and A2 are given by

(2.3) A, = -ihif1 ^ ,l/ f and A2 = Q1Rl^—^,
1 — 1/z 1 — 7/~

where
fi = il2/^1 and 7] = Ri/R-2-

The constants [J. and ?7 may be called the kinematical ratio and the geometrical ratio of
the steady motion respectively. The motion conforming to (2.2) and (2.3) is the Couette
flow.

The first experiments on the onset of instability in the viscous Couette flow between
rotating cylinders are those of Taylor [25], [26]. His experiments showed that this insta-
bility leads to a new steady secondary axisymmetric flow in the form of regularly spaced
vortices in the axial direction, commonly known as Taylor vortices. In the narrow-gap
case, Taylor found an explicit analytic expression for the stability criterion. Synge [23]
gave a relatively simpler proof to Taylor's analytic expression without the assumption
on the gap. He showed that the real part of the eigenvalue a occurring in an "exponen-
tial time factor", i.e. a normal mode analysis, can be expressed as the ratio of certain
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positive definite integrals, in which the integrands contain the product of an eigenfunc-
tion or one of its derivatives by the complex conjugate. He went on to show that if
Q.2R2 > ^1 R\ > 0 (i.e. fi > rj2, > 0), the signs of these integrals are known without
the knowledge of the eigenfunctions and he found that the steady motion is stable to
disturbances that are independent of the azimuthal angle 6 and periodic in the direction
of the generators of the cylinders under the above condition. However, his proof does
not lead to any conclusions about the behavior of the imaginary part of a. The Synge
result has been extended to finite amplitude disturbances by Joseph & Hung [12]. As
for instability results, rigorous proof was first provided by Velte [27], and by Yudovich
[30], [31]. An important nonlinear extension to the bifurcated state has recently been
enunciated by Schneider [22].

On the basis of experimental evidence, Taylor assumed that the PES is valid for the
problem he considered. This assumption has been made by many subsequent investi-
gators of the subject (at least when the cylinders rotate in the same direction) but a
theoretical proof had never been advanced until Yih. Yih's proof is rather complicated
and is also controversial as indicated by the work of DiPrima & Hall. It is the objective
of the present work to give a more direct proof that the PES holds for Couette flow in
the case 0 < /t < rj2. The rest of this section is devoted to the presentation of the basic
disturbance equations.

Consider an infinitesimal perturbation of the basic flow given by equations (2.1) and
describe the perturbed flow by

u = (u', V + v', w') and p = P + p .

The linearized equations of motion then follow from the Navier-Stokes equations and the
continuity equation. Thus, for disturbances that are periodic in the axial direction, one
can look for separated solutions of the form

u = u{r)eat+iaz,

with similar expressions for the other components of the velocity and the pressure, where
q is the wave number of the disturbance in the axial direction and a is the growth
rate. Substituting in the linearized disturbance equations and using the axial momentum
equation and the continuity equation to eliminate p and w, after some rearranging, one
obtains the equations in dimensionless form (cf. [1])

(2.4) (DD*-a2 - a){DD* - a2)u = -c?T ^ v

(2.5) (DD* - a2 - a)v = u

where I). ■ • '!- • •' and D = 4-,* dr ' r dr'

24AiA2 2 ^ -4j/?2
T =  —Hi and k =  —.

v1 y±2

Solutions of equations (2.4)-(2.5) must be sought which satisfy the boundary conditions
appropriate for no slip on the cylindrical walls r = and r = 1. These conditions are
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that, all three components of the velocity vanish on the wall; thus,

(2.6) u = v = Du = 0 for r = rj and r = 1.

The parameter T that appears in (2.4) is the Taylor number. In terms of ft and 77, it has
the form
/0 m 4A^2 n2 4fi2(! - M)(l - M/V)
(2J) T = —^~R'2 = 

where R is the Reynolds number based on the inner cylinder. Notice first that T is only
positive if /1 < rj2. It is precisely the condition ji < rj2 that is necessary and sufficient for
instability in an inviscid fluid and is necessary for instability in a viscous fluid. Second,
the Taylor number has the form of the square of Reynolds number times a function of n
and 7j. Notice also that the parameter k in equation (2.4) may be written as

(2.8) =a2 1 - n
Thus, when the cylinders rotate in the same direction, 0 < k < f.

3. The problem of PES and the method of Positive Operators. The idea of
the method of solution is based 011 the notion of a positive operator [13], [8], a general-
ization of a positive matrix, that is, one with all of its entries positive. Such matrices
have the property that they possess a single greatest positive eigenvalue, identical to the
spectral radius. To apply the method the resolvent of the linearized stability operator
is analyzed. This resolvent is in the form of compositions of certain integral operators.
When the Green's function kernels for these operators are all nonnegative, the resulting
operator is termed positive. Explicitly, we have:

Definition 1. Let be a Banach space and let there be closed set £ with the
properties:
(1) If Vi, t>2 belong to & and Ci,C2 are real non-negative scalars, then c\V\ + C2V2 £ -H-
(2) If v\ e i? and -v\ € then v\ = 0.
Then we call J? a cone.

Definition 2. [13] A positive operator is a bounded linear mapping taking into
itself.

A basic theorem for this work is the

Krein-Rutman Theorem. [18] Let A be a compact linear operator in a Banach space
<8. Assume A maps a cone M into itself and that A has a nonzero element in its spectrum.
Then A has a positive eigenvalue A with A > |/x| for any other /i in the spectrum of A.
Moreover, there is at least one eigenvector <fr of A in J? and at least one eigenvector ip of
A* in Si*.

The formulation proceeds along the following lines [28]. Consider equations (2.4) and
(2.5). Let the inverses of the differential operators be defined as

(3.1) 1» = -[DD, -a2 -a-]"1

(3.2) G(a) = [(DD„ - a2)(DD* - tv2 - a)}~\
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where the domains of the differential operators are those given by the boundary condi-
tions (2.6). (In the next section these operators will be considered abstractly. Certain
restrictions and extensions of the operators will also be introduced.) Consequently it is
possible to reformulate (2.4)-(2.5) as

(3.3) u — K(a)u = 0,

where

(3.4) A» = a2TG(a) ^~K) r(ff)

Suppose A'(cr) depends analytically on a in a certain right half of the complex plane.
When the cylinders rotate in the same direction, and the circulation decreases outwards,

— K > 0.

By this approach, examine the resolvent

(3-5)

[I - I<{a)}-' = | J - [/ - K(a0)}~l[K(a) - A'(a0)]| [/ - K(a0)}'\

so that if for all real ctq greater than some a,
(PI): [I — /i"((To)]-1 is positive, and
(P2): K(cr) has a power series expansion about cto with positive coefficients, that

is, (— 4A K(ao) is positive for all n; then the right hand side of (3.5) has an
expansion in (<to — <x) with positive coefficients.

With the theory previously developed, it follows that there exists a real eigenvalue
0"i < a such that the spectrum of A'(er) lies in the set {cr £ C j Re(cr) < ci}. This result
is equivalent to the weak form of the principle of exchange of stabilities. This is true by
virtue of the Krein-Rutman Theorem about positive operators.

Next, go on to show that F(cr) is an integral operator whose kernel F(r, p\cr) is the
Laplace transform of the Green's function r*(r, p\t) for the initial-boundary problem

(3-6) (~h~lt + ̂ +a2 + §i)u = f'

(3.7) u(r],t) = u(l,t) — u(r, 0) = 0.

Since there is a maximum principle associated with (3.6)-(3.7), / > 0, implies u > 0. (It
also follows by directly analyzing the Laplace transform [6].) Thus, F*(r, p,t) > 0. Since

OO

(3.8) r(r,p;a) = J e~atT* (r, p-,t)dt,
0

it follows that
n oo

(3.9) r(-r'p;cr) = /tne~atT*(r^P^t)dt > 0
0

for all n and for all a > —a2.
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However, the verification of hypothesis (P2) is incomplete [28]. The problem is the
integral operator G(a), which is not as easily analyzed as r(cr). The kernel of the integral
operator is G(r, p\ a), the Laplace transform of the Green's function of the time dependent
problem

(3.10)
d2 19 1 o d \ ( d2 19
dr2--d~r+^+n +di. {~W~rd;- + ^+a ]u~f

(3.11) u = — = 0 at r = i] and r = 1

(3.12) u = 0 at t. = 0.

As in the above argument, the inequalities G(a) > 0 would follow if it could be
shown that the Green's function G*(r,p\t) of the problem (3.10)-(3.12) is nonnegative.
Once this is done, it woidd follow from the product rule for differentiation that the
operator

1
A'(a) = a TG(a) — K I r(cr)

has the property (P2). The Green's function G(r\ p; a) can be written explicitly in terms
of Bessel functions, but the expression is, seemingly, too complicated to verify (P2)
directly.

Thus, the verification of conditions (PI) and (P2) is incomplete [28]. One reason why
is that the integral operator G(a) is the inverse of a fourth order differential operator
with variable coefficients. The major difficulty, however, lies in the boundary conditions,
which do not allow the differential operator (and consequently its inverse) to be factored
naturally in the abstract sense. This difficulty is dealt with in the next section by
means of the generalized inverse. It is proved that the necessary factorization may be
accomplished by introducing a projection, which connects r(cr) and G(<x) in a significant
way. The use of totally positive kernels also plays a role in the analysis. Some information
of this type was known before the results of [28]. The condition (PI) was proved in the
papers [30], [31] using totally positive kernels. It was proved there that K(cr) for all
real positive a (and even for negative a sufficiently small in absolute value) is a totally
positive operator. This was the means of establishing rigorously that instability occurs
above a certain Taylor number.

4. Abstract formulation. In operator form the differential equations (2.4)-(2.5)
may be written as

(4.1) (AI*M + aAI) u + a2T ( — k J v = 0,

(4.2) u + I M + a) v = 0,
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where
Mu — (-DD* + a2)u := mu, u e domM

M*Mu = m2u, u € doni(.\/*M)

Mv = mv, v € domM.

The domains are contained in Hq, where

H0= { <p

with inner product
"I.

J r\ip\2dr < oo

(<P,i>)o = J r<p(r)§{r)dr, tp, ij> € H0
v

and norm

!Mlo = ((<^>o)1/2.
The domains are given as follows:

domM* = {(p € Hq | trap E Ho},

domM = {p £ domM* | tp(r]) = 99(1) = Dp(t]) = Dip{ 1) = 0},

domM = {jjgdomM* | tp(r]) = <^(1) = 0}.

Thus, with the above definitions understood, it is not difficult to verify the following
properties of the operators just defined (cf. [16]).

Remark 1. M is closed, symmetric, but not maximal and hence not invertible.
Moreover, M is positive definite, that is

(MLp,tp)o > a2\\tp\\l, 6 domM, a/0.

The case a = 0 is excluded because stability is known to hold in this case.
Remark 2. M* is the adjoint of M and has no boundary conditions. The two-

dimensional null space of M*, ker M*, has the basis

q(r) =
Ii(ar)

K\(ar)

where I\ and K\ are the modified Bessel functions of order one of the first and the second
kind respectively.

Remark 3. M is a maximal selfadjoint, positive definite extension of M. Further-
more, r(cr) = (M + cr)"1 exists for

a ^ Eq = {a £ C | Re(er) < —a2, Im(cr) = 0},

and ||r(cr)||o 1 > \<j + a2\, for Re(cr) > —a2 [16, p. 272].
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A formulation similar to (4.1)-(4.2) was made by DiPrima & Habetler [4]. They were
able to prove a completeness theorem for the eigenfunctions in the following sense. Let
ft be the Hilbert space ft = Hu x /fy (where Hq is the space previously defined), and

<2> = ( <^1 ) g ft, with inner product
V V2 J

($, <i») = (y>!, Vi) o + (<£2,^2)0, $ eft- ^ e ft.
Write L<I>= (Ls + B) <1> = AM4>, where

<4'3) u-(v £)•*-(:
Then completeness holds in the space ftM which is imbedded in ft, by completing the
pre-Hilbert space ( domM, [ , ] ), where [$, 41] = (<3>,M,f') = (<pi, Mtpi)o + for
<J> G domM, \I/ G domM. Their analysis was performed by introducing the self-adjoint
extension of M_1LS in ftm .

However, going beyond [4], a factorization of (M*M) 1 is needed in the current work.
Owing to the fact that M is not invertible, we will employ a generalized inverse [20] to
M called il/*. First, the projection operator Q onto the ker M* is defined by

l

(4.4) {Qip)(r) = I pgQ{r, p)ip(p)dp, x/j G H0,

where

(4-5) 9Q{r,p) = qrW ,sq(s)qT(s)ds q(p)-

Then g\ the generalized Green's function, satisfies

(4.6) (" ^ + q2) 9Hr, P) = S(r - p) - gQ(r, p),

(4-7) gHv,P) = ^.dHrhP) = 9t(lIp) = J^9f(l,p) = 0,
so that

1

(4.8) (M V)(r) = j pg\r, p)y{p)dp.
V

Some properties of AV are

(4.9) MM1" = I - Q,

(4.10) MHl = L

since ker M is trivial.

Lemma 1. M] - M~l(I - Q).
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Proof. Since M is an invertible extension of M, AI~lM — I on domAf, therefore
operating 011 (4.9) with M~l

M^A/M* = M'1 (/ -Q)

and
M~lMM] = IMf = M\

so
(4.11) Mt = M_1(J-Q). □

Lemma 2. The only solution of (4.1)-(4.2) is the trivial solution, when T = 0, and
a £ Eq.

Proof. Suppose T = 0, then (4.1)-(4.2) reduces to

(4.12) (M*M + <jM)u = 0,

(4.13) u + (M + cr)w = 0.

Taking inner products of (4.12) with u we see

(M* Mu,u)o = —a(Mu,u)o,

OS

—cr(Mu,u)o = (M*Mu,u)o = (Mu, Mu)o = ||M«||o > (Mu, u)o/||h||o

> a2(Mu,u) 0,

by Remarks 1 and 2. Thus, a is real and a < —a2. Hence when a £ SQ, =4> u = 0 =>
v = 0, by (4.13) and Remark 3. □

Lemma 3. The operator L = M*M + crM has an inverse, positive for all real ao > —a2.
The inverse has a power series expansion about 00 in powers of ao — a with positive
coefficients.

Proof. O11 the basis of Lemma 2, conclude that L is invertible for a ^ E0. Define

(4.14) L'1 = G(a) = (M*M + crAf)"1 = (M*M)~1(I + aB)~\

where B = M(M*M)~l is a bounded operator. Note that the meaning of B is different
than used in (4.3).

It. has been shown [28], ((3.8), (3.9)) that F(cr) = (AT + cr)~1 is a positive operator for
all real ao > —a2 , and that T(ct) has a power series expansion about ao in (ao — a) with
positive coefficients, i.e. (— ̂ )™ r(co) is positive for all n. Thus the expansion

r(c) = r(<70)[/ — (0*0 — cr)r(cjo)]-1

= r(cr0)[/ + (er0 - cr)r(ffo) + (00 - 0)2(r(ffo))2 + • • •]

is valid for |cr0 — cr| ||r(<To)||o < 1- The coefficients are positive operators when aa > —a2.
Analogously, by (4.14),

(ATA/ + aM)-1 = (M*M + cr0M)"1[/ - (cr0 - a)M(M*M + a0M)"1]"1



288 ISOM H. HERRON and HALIMA N. ALI

so that
G(cr) = G(<tq)[I - (a0 - a)MG(ao)]'1 =

(4.15) G(a„)[7 + ((Jo - a)MG(a0) + (a0 - a)2(MG(a0))2 + ...],

for |(j0 - (j|||MG(<to)||o < l.cr ^ SQ,cr0 > -a2.
It is still necessary to establish the positivity of the coefficients in the expansion for

G(a). Observe, also from (4.14), that

(4.16) G(a0) = (A/*M)_1[/ + (~a0)B + (-a0)2B2 + ...]

is defined for |(j0|||j5|jo < 1- If it can be shown that the coefficients in the above expansion
(4.16) of G(cto) in powers of (—(Jo) are positive, then it follows that G(<Jo) is a positive
operator for real <to in the interval — a2 < ctq < ||-B||q 1- Then by a process of analytic
continuation, which will be described, the positivity of G(<Jo) for all real <to > —a2 will
be proved.

The process thus begins to establish that G(a) in (4.15) has positive expansion co-
efficients. This is done by re-examining the expansion of G((Jo) (4.16). We have, from
(4.11), that

(4.17) Mf* = [M_1(7 - Q)]* = (/ - Q)M~\

since both Mand Q are selfadjoint. Thus we have the equivalent factorizations

MfMf* = M~\I - Q)(I - Q)M~l = AI]M~l = = M_1(/ - Q)M~\

since I — Q is a projection. In fact, since Q is the projection onto kerM*, I — Q is the
projection onto ran M. the range of M. But, by definition of the generalized inverse,

(4.18) M+M1* = (j\/*i\/)f = (M*M)-\

since M*M is invertible, being positive (definite) selfadjoint. Thus

(4.19) B = M(M*M)~1 = Mf*,

and

(4.20) B o =!!(/- Q)-\I '! 0)

since I — Q is a projection.
Then the expansion of G(cto) (4.16), may be re-written, using (4.19), as

G(cr0) = (M*M)-1 + (-+

+{-(t0)2{M*M)-\M(M*M)-1)2 + ...

(4.21) = + (-<j0)MtA/~1Mt* + ag(MtMt*)(Mt*)2 + ...

By (4.11) and (4.17) it follows that

G((J0) = + {-a0)M~\l-Q)M~\I-Q)M~l

(4.22) +a2M~\l - - QW'1)2 + ...



(Dj<fi){r) = —Wjir)^)

(Z?»(r) = j — 1,2, •■

THE PRINCIPLE OF EXCHANGE OF STABILITIES FOR COUETTE FLOW 289

It is a well known result of the stability literature [11, Appendix D], [21, p. 370], that
Af_1 has a non-negative Green's function kernel. Similar to being identified as T(0), this
follows from the fact that the operator

d2 Id ( 1 2\
"M ~d^ + rTr~{^+a )' rG(r?'1}

satisfies the condition — + a2) < 0, along with the simple separated boundary con-
ditions associated with M. However, even more can be said ([14], [15]). Consider first
order differential operators given by

d
dr

dip(r)
dr

with strictly positive weights wj(r), j = 1, ■ • ■ ,n +1, possessing 2n continuous derivatives
in [77,1], The formal differential operators An and A*, which can be written as

(4.23) (Anip)(r) = Dn---D2Diip,

(4-24) (A*nlp)(r) = D] I)", ■ ■ ■ D"n~p.

form factors of the even order differential operator

(4.25) E2n = t±>lA*w An,
r

The appropriate boundary conditions for E2n might be: at the endpoint r = 77,

(D*2D*3 ■ • • D*nwn+1Dn ■ • • D2Dlip)(ri) + (- 1)"«:^(//) = 0,

(D*3Dl • • • D*nwn+1Dn ■ ■ ■ D2Dlip)(v) + (-1 r+1a2(JD1^)(7?) = 0,

(4.26) {wn+iDn ■ ■ ■ D2D\<p){ri) + (-l)2n~1an(Dn-1 ■ ■ ■ D2Dnp)(i]) = 0

and at the endpoint r = 1,

(.D*2D*3 ■ ■ ■ D*nwn+1Dn ■ ■ ■ D2DlV){ 1) + (-1 )n+1bMl) = 0,

(D*D*4 ■ ■ ■ D*nwn+1Dn ■ • • D2DW)(1) + (—l)n+2b2(Di(p){l) = 0,

(4.27) (wn+\Dn ■ ■ ■ D-2Diip)(l) + ( —1 )2nbn(Dn-i ■ ■ ■ D2Diip)(l) — 0

where
0 < a,j < 00, 0 < bj < 00, j = 1,2, ■ ■ ■ , n

and for each j not both aj and bj are zero. (This restriction is to ensure that 0 is
not an eigenvalue of E2n.) The value <21 = 00 is interpreted as the boundary condition
ip = 0; similarly a2 = 00 as the boundary condition D\tp = 0, etc. Then the Green's
function kernel of E2n, g2n, is totally positive. This means that g2n > 0 on the interior
of the square on which it is defined, and certain determinants of intermediate values are
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nonnegative. It is only the positivity characterization which is needed for the rest of this
discussion. As Yudovich [31] points out, M* has the factorization

(4.28) M*(p = ~~rj—\~rrli (ar) dr
r2, n d frll (ar)- := E2ip.

dr 11 (ar)

Thus it can be shown that the kernel function for M_1 is totally positive. Likewise since
= E2E2<p E^p, 011 dom(M*M), (A1*Af)_1 has a totally positive Green's

function kernel. It also follows that G(<to) = (M*M + <7oAf)_1 has a totally positive
kernel for all real (Jq > —a2, since — (M* + ctq) has the factorization

(4.29) -(M* + a0)<p =
rl 1 (fir) dr

r2t \ d ¥>fi^rhrT7—-dr h (nr,
where fi = yctq + a2. Together, (4.29) and (4.28) give that G(ao) has a nonnegative
kernel, when (To is real, and Co > —Q2- Hence, it is anticipated that the expansion (4.22)
contains the desired result.

Consider then the term of order — cto hi (4.22). This is an integral operator defined 011
any function E Hq. That is, set

(4.30) S = M~\I - Q)M~l(I - Q)M~\

It will be shown that S has a nonnegative kernel. Let the kernel of S be called h. We
will write h as the sum of two kernels satisfying conditions of the same form as (4.26)
and (4.27). That is, h — h\ + /12, where as functions of r

(4.31) hi(ri) ==h'i(rt)mhi(l) = hi(l)=Q, A = 1,2.

Owing to the fact that h ( and thereby S ) represents the inverse of a sixth order operator
Eq, two other boundary conditions must be imposed in order to determine it. From the
nature of S, these conditions are

1 / d2 i d (l x x 2
r/l(Qr) ( ^2 + ^ + q2 ) ) hdr = 0

and

I rK,[ar){^ + li-(^+a')) hdr=0'
After the integrals are performed and the conditions (4.31) are imposed the other two
conditions on h become

(4.32)
Ii(a)ti"(l) + (2/i(a) - al0(a))h"( 1) - rjli(ari)h'"(t]) - (2Ii(arj) - ar)Io(arj))h"(rj) = 0,

Ki(a)h'"(l)+(2Ki(a)+aKo(a))h"(l)-7]Ki(ar])h"'(ri)-(2Ki(aii)+a7]Ko(ai]))h"(rj) = 0,
where Io and K0 are the modified Bessel functions of order zero. However, these
conditions are not of the same form as (4.26) and (4.27). In order to employ to-
tally positivity theory, we search for such a decomposition, namely suppose that with
n = 3, w 1 = 1/Ji(ar), w2 = r(Ii(ar))2, W3 = l/w2, w.»4 = w2. Then suitable separated
boundary conditions are

(w4D3D2Dihi)(r]) - ai(D2D1hi)(r]) = 0
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and
{wiD3D2Dlhi){l) + bz(D2Dihi){l) = 0, i = 1,2.

Then with (4.31), these reduce to

(4.33) T]h{ari)h'-'(rj) + ((2 - a^I^ar]) - aT)I0(ar}))h"(r)) = 0,

/1(a)/i;,,(l) + ((2 + 6i)/i(Q)-a/0(a))/l;,(l) = 0, i = 1,2.

The choice of constants a, > 0 and bi > 0 must be made so that given h = hi + h2,
(4.33) are compatible with (4.32). Such a decomposition will not be unique, but it can be
done since (4.33) and (4.32) represent six homogeneous equations in the eight unknown
boundary values. This system is compatible for nontrivial solutions as long as cii ^ a2
and bi ^ b2. Thus, it may be concluded that S in (4.30) has a nonnegative kernel, so S
is a positive operator.

In a similar manner, the term of order <Tq in (4.22) is representable as

(4.34) M~\I - Q)M~\l - Q)M~\I - Q)M~\
This is obtainable from a differential operator Eg, that is with n = 4 in (4.25). For the
kernel of this operator perform a decomposition into two parts so that to each, (4.31)
will apply. But now, not only do (4.32) apply as before, but a higher order counterpart
as well. Through expressions such as (4.33), it is possible to find suitable separated
boundary conditions at higher orders as well. The net decomposition is that the kernel
for (4.34) is written as the sum of four nonnegative kernels. This renders (4.34) as a
positive operator. By this procedure, each successive term in (4.22) is expressible as a
sum of 2n_2 positive operators for n = 2,3,4, ... respectively. This means that for <to
real, and ctq > ~~ q2> each term is a positive operator.

What has been shown is that the expansion (4.16) for G(ao) converges for |cr01 ||-B|jo < 1
and for <To real, it gives that the operator G(ctq) is positive for —a2 < Co < ||-B||(T •
Perform another expansion about a real point o\ > 0, such that ao < (J\ < ||S||o 1 ■ By
summing the series for G(<7i) find that from (4.15),

(4.35)
G(oi) = G(cro) [/ + (co — cri)MG(ao) + (fT0 — <7i)2(MG(aq))2 + ...] .

It has already been established that G(co) has positive coefficients in powers of (—(To),
when —a2 < Co < ||B|lo ^ as i11 (4-16). By similar reasoning, it is observed that G(ai)
has the same properties as G(ao) since, for example, the second coefficient G((Tq)]\IG(<7o)
in (4.35) behaves like a typical factor in (4.21) when expanded.

By Remark 3, — ||r(0)Uo^1 = — 11A/—111o~1 < ~and by (4.20), since — H-BHg1 <
< —a2, the region of positivit.y of G(ai) lies inside the region of analyticitv

given by (4.16). However, the only singularity on the edge of the disc of convergence
for (4.16), as is shown in the expression for G(ai) given by (4.14), would occur where
o-j = — ||B||g since G(cr) has no singularities off the real line. Thus it can be concluded
using analytic continuation that G(a) may be written as

(4.36)
G(a)=G(a1) [I + (ai - cr)MG(cri) + (<7i - u)2(MG((j1))2 + ...] ,



292 ISOM H. HERRON and HALIMA N. ALI

where \a — a\\ < a\ + ||jB||q x. This disc goes outside the original disc \a\ < ||-B||o The
positivity is thus preserved for cr0 real and —a2 < ao < 2a \ + ||B||o By a sequence
of such discs, with singularities of (4.14) only at the (negative) eigenvalues of (4.12),
any point in the half-plane Re(<r) > —a2 can be covered. The positivity of the limiting
operator thus holds for all real ao > —a2.

Computing the derivative expansions of G(a) in (4.15), we see that each term is of
the form (4.22), so that (— j^)nG(ao) is positive for all n and G(a) has a power series
expansion with positive coefficients. □

5. Proof of PES. With the aid of Lemma 3, it is possible now to complete the
abstract analysis of the earlier formulation (3.3) and obtain the desired result.

Theorem. The Principle of Exchange of Stabilities holds for (4.1)-(4.2), when the cylin-
ders rotate in the same direction and the circulation decreases outwards.

Proof. The system (4.1)-(4.2) may be written as the single equation suggested by

(3.3),
(5.1) u = K(a)u

where

K(a) = a2TG(a) — kj r(a)

The resolvent is examined as defined in (3.5). It has been demonstrated that the
original system (4.1)-(4.2), and the transformed system (5.1), have spectra that agree
except on the set Ea, which is a subset of the negative real half-line. We have shown in
Lemma 3 that r(cr) and G(a) have power series expansions for real aq > —a2. To apply
the Krein-Rutman Theorem (Sec. 3), we can take the Banach space to be the Hilbert
space Ho, .<?, the cone of nonnegative functions in H0, and the positive operator A each of
the operators (—-£;) L(cro)i (—G(ao), n = 0,1,..., which are compact and linear.

To verify condition (P2), again note that — k) does not change sign, while a2
and T are positive. Therefore, by the product rule for differentiation, one concludes that
K(a) in (4.36) satisfies condition (P2).

It has been demonstrated that all of the terms in K(a) determine positive operators.
Moreover, for a real and sufficiently large, by Remark 3 and (4.14), the norms of the
operators r(cr) and G(a) become arbitrarily small. Hence, ||A"(<r)||o will be less than 1.
Then [I — A^tr)]"1 has a convergent Neumann series and hence is positive. This is the
content of condition (PI). □
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