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Introduction

The present paper is a continuation of [3] and is devoted to extending the
results obtained in [3] to the non-selfadjoint Schrodinger operator in R®.
In the paper [3] we considered the non-selfadjoint Schrodinger operator

©01) L=— ﬁ (%Jrib,-(x))erQ(x)

in RN, where N is a positive integer such that N=2, and the complex-valued
function Q(x) and the real-valued functions 4;(x) (j=1, 2, -+, N) are assumed to
satisfy some asymptotic conditions at infinity. Among others we have shown
the following: Let us define a Hilbert space L, g=L, o(R") (3= R) by

0.2)  Lyp= {f(%)/(1+|x])*f(x)€ L(RY)}
with its inner product

03)  (haw= | (+Ix1y* e ax
and norm

04)  lflls = [(fs )"+

If keC,={xk=C[r=+0and Im « =0} does not belong to an exeptional set which
is called the set of the singular points of L, then the operator (L—«?)"" is well-
defined as a bounded linear operator from L, ¢ e/ into L, _¢,1e5p, (€>0) with
the estimate

(0.5) (L—&*) = O(] x| ") (le]—o0).
Here u=(L—«*)"'fE L, _;1012 (fE L 1 107) is 2 unique solution of the equation
(0.6) (L—x)u=f

with a sort of “radiation condition”, and |[(L—#”)"*|| means the operator norm
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of (L—«*)™" from L 2,C1+e)/2 into Lz,—(1+e)/21)-

In this paper, modifying the method of [3], we shall show that the estimate
(0.5) holds good for L defined in R? with b;(x)=0, j=1,2. In our case L takes
the form

(0.7) L=—A+0Q().

At the same time it will be shown that the other results obtained in [3] also
hold for L in R®. 'Throughout this paper we shall use the same notations as

in [3]®. For example 0;u= Ou D u=9 ;" u=0u+(%;/(2r)) u—irXu, r=|x|,

0x;’

7

X,=x;r, Du=(Du)x,+(Du)X, etc.

7

1. A priori estimates

Let us define a differential operator L in R? by (0.7), where Q(x) is a
complex-valued function on R? and L is regarded as an operator from H, ,,. into
L, ;.. We decompose Q(x) as Q(x)=V(x)+ V(x). Throughout this paper the
following is assumed®: V(x) is a real-valued, measurable function such that the
radial derivative exists and

(11) V@) =C(1+]x]), 6_"’[&<C(1+ lx[)**  (xeRY).

x|=

V(x) is a complex-valued, measurable function which satisfies
(1.2) [ V()| =C(1+|x]|)™*8 (xeR?Y).

Here C and § are positive constants.
Now let us note that with no loss of generality V(x) can be assumed to
satisfy

(13)  Vx)=0 (Ix|=R)
by replacing V, and V with aV, and (1—a)V 4V, respectively, a(x) being a

real-valued, C~-function such that

a(x)={° (x| <R),

4 1 (Jx|=R+1).

Henceforth we assume (1.3) with R=7 as well as (1.1) and (1.2).

1) In this regard we note that Ikebe-Saito [1] has shown the boundedness of | |(L —#2) || for «
moving in any compact set contained in C., where L is a self-adjoint Schrodinger operator in
RY¥ and N is an arbitrary positive integer.

2) The list of the notation is given in the end of Introduction of [3].

3) This aptissumon is the same as the one imposed on Q(x) in [3].
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Let & be a positive number such that 0<E<1 and 0<E=§/2. As in
Definition 1.2 of [3] we define by >1=>1(L)=>](L, €) the set of the singular
points of L. i.e., x> if and only if k€C,={x=C[r=+0, Im ¥ =0} and there
exists a non-trivial solution u of the equation

(L—x*)u=0, ucH, 1,c N Ly, 11002 5

“«g)u”(—we)/z 0n< 00®,
y 121

(1.5) {

where E,={xc R?/| x| =1}.
For k=C, with Im £ >0 and the above & we put

(16) Dx,e = Dn = {uEHz,locn Lz,—(1+e)/2/(L—’C2)uELz,(1+z)/2} .

As is easily seen, Lemma 2.1 and Proposition 2.3, (i), (ii) of [3] are true in R?,
too, and hence we have

Proposition 1.1. Let uc D, with kC, and Im «>0. Then u, 0u, ouc
L, ¢, 1037, and the estimate

(L7)  ullarer=Cllull-arentIIL—r?)ullarer)

holds with a constant C=C(k, L, §)”. As a function of «k, C is bounded when «
moves in a compact set contained in {x =C|[Im x>0}.

The purpose of this section is to prove the following estimates for € D,.

Theorem 1.2. Let M be an open set such that Mc M ,={x=C|[|«k| >a,
Im x>0} with some a>0. and MN\>\=¢, M being the ‘closure of M in C. Let
k€M and let ucD,. Then there exists a constant C=C(M, L, ) such that we
have the estimates

(1.8) 1 Dullc-1+e2, 21 = Cll fllcxersa »
(1.9) ”u”—(1+e)/2,Ep§%(1+P)—e/2”f“(1+e)/2 (pz0),

where f=(L—«*)u and E,={x=R*/|x| =p}.

ReMARK 1.3.  Cf. Theorem 2.7 of [3]. In R? the relation D;ucL,c_,ierp2
for u= D, is not necessarily true, because u/|x| (u€H,,,.) is not always square

4) As in [3] we put

2
Dull2c_1+e22= 2 (1+|x|)_1+e|91u‘2dx-
ez

5) Here and infthe sequel we mean by C=C(4, B, --+) that C is a positive constant depend-
ing only on 4, B, +:-.
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integrable on a neighborhood of the origin x=0. But, of course, for ucD,

g)ju S Lz,(1+e)/2(Er) (7 > O)

In order to prove Theorem 1.2 we prepare several propositions. Let us
first show that the above estimates (1.8) and (1.9) can be easily obtained for
ue D, if Im & is sufficiently large. Set

(110) B, = max [{2(sup| V(®)+ V,(x)| + 1)}, sup| V(@)]]
(Vi(x) = Re V(x), V(x) = Im V(x)).

Then we have

Proposition 1.4. Let uc D, with Im k=3,. Then the estimates

(L1 lelln g, SIS (o0, w20)

and
(1.12)  [|1Dull, = ClIf ]

hold with a constant C,=C\(3,), where f=(L—«*)u and || || means the usual
L,-norm.

Proof. Take the real and imaginary part of ((L—«*)u, u)=(f, u) to obtain
(113) ;El (6ju, 6,”)“"(("%"‘"%‘1‘ Vot Vl)u’ u) = Re (f? u) ’

(1.14)  (V.—2xkk5)u, u) = Im (f, u),

where x,=Re«, x,=Im«, and (,) is the L,-inner product. It follows from

(1.10) that

(1.15)  w3—w}+V(x)+V ()= «3/2= ’82" Ky (1#,] <1, 6,2 8,)

and
(L16) Vi) —2uical Zlrsl e (o] 21, 022 5y)

for all k& R®. By the use of the relations (1.13)~(1.16) we can show
(117) WIS EHSL (o= CiBY).

In fact, if|#,] <1 and x,=G,,we have from (1.13) and (1.15)
(1.18) [l =2/(Boe)If 1= (/(Bol NI 5

where we should note that |«| = |«,| +#,=<2x,. If |«,| =1 and «,=3, we can
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see from (1.14) and (1.16) that
(1.19) |l wellull=IIf1,

whence we obtain
(1.20) llullé(lfcllxz)"llfllé(!lcl—1)"||f|l§|—i—lllf||-

(1.11) is a direct consequence of (1.17).
Next let us prove (1.12). Since

(1.21) ||g)u|l,,-,§[2 1192177+

—u

2| x|
and (1.17) has been established, we have only to show

(122)  [OuITA<CAf  (Co=Cu(BY).

This follows from (1.1), (1.2), (1.13) and (1.17). Q.E.D.
In the rest of this section it is enough to consider #& D, with 0<Im x <g,.

+llikull g,

E;

Proposition 1.5. Let a be a positive number and let uc D, with |x| >a and
0<Im x< B, where B, is as above. Then the estimate

(1.23)  |1Dullc-11or, £ = CLUNll it fllerrorey  (F=(L—#%)u)
holds with a positive constant C=C(a, B,, L, €).

Proof. It follows from the formula (2.21) given in Lemma 2.5 of [3], which
is true in the case N=2, too, that

(1.24) SB,,(Z—T”%>'Q’”'2‘1"+S (,c,¢+‘f 1 a¢)|g)u|=dx
+{,, (et - 22 ) Durant |, (-2 )1ul— | Dl ds
fudlte 2 (D)
TCT
+Re SB‘T V(D u)dx+ ReSBw df(D,u)dx
i Jeonro (7 L)

where 0<t<1<T<oo, B, ,={xcR*[p=<|x| =s}, r=|x|, p=¢(r) is a real-
valued, piecewise continuously differentiable function on [0, oo], and we put in
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(2.21) of [3] cy=c,=—1/4 and Bj,(x)=0. Set
r? (0=t=1),
(125) qb(f) = —;—e(l‘l‘r)e (1’>1)

in (1.24). 'Then we estimate the both sides of (1.24) as follows:
(1.26)  the left-hand side of (1.24)
;SB“rl.@,uI”dx—l—SB a1 Du s

and

(1.27)  the right-hand side of (1.24)

ést%{lBO%_E or ’ >} |ul*ds

A AV AR LG TSN T AT
o oVl Dulds 4|, 41f110ulde
+SS‘¢(I.@u|2+IVOIIu|’)dS

+{, #{z10u v+ L)) as

= JitJetJot TS+

Let us estimate each J,. First we obtain
(1‘28) ]k§ck||u”2—<1+s>/z (k = la 2) )

where C,=C (B, &), C,=Cy(L, &) and we used (1.1). It follows from (1.1) and
(1.3) with R=7 that

(129)  Jo=Cwllullerz, 5,
éCs,(K2||u||(1~e)/z,Ez)“u”—(1+e)/z (C;;’:Ca/(L, E)) .

On the other hand in quite a similar way to the one used to prove Proposition
2.3, (iii) of [3] we can show

(130) "2”“”(1—e)/2, Ezé Cs”{”u“—cwe)/z
+”g)u”(—1+e)/2.E1+”f”(1+z)/2} (Cs,lzca”(a, L, 8)) ’

which, together with (1.29), yields
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(131) ]sé Ca{“u”-z—(1+z)/z
+lIu[I—(1+e)/2”g)u”(—1+e)/2. E;
+”ull-(1—e)/2”f”(l+s)/2} (Cs=C4y(a, L, ).

As to J, and J; we have, using (1.2),

J=C Jlulll-asor(llr’*(Dsu)l| 5,
HDullc-1107,21) 5

Js=Coll fllaror(lir*(D,u)ll s,
_,_”Qu”(-—1+a)/2, E1) ’

where C,=C(L, &), k=4,5. Here we should note that r'/*(D,u)e L(R’),,.
because u= H,(R?),,, is a continuous function on R’ by the Sobolev lemma.
ﬁ%{l]‘;:() and lim /,=O0 follow from the fact that (| Du|*+|V,||u|?) and
t 5%

r*"{2| Du|*+(|V,| +1/(47%))|u|?*} are integrable on B, and E,, respectively.
Summing up these estimates and letting -0 and T'— oo, we arrive at
(1.33) I Du)llz,+ (/2 Dull-rverre, &1

S C{llulZarort el -arorll fllaser

HIr (D)l s (11l -aront 1 fllarers)

HIDull-srore, g(llell-aront-lfllaror)}  (C'=C'(a, By L, €)) .

(1.23) is a direct consequence of (1.33). Q.E.D.

(1.32)

REMARK 1.6. In the present paper we assume that the magnetic potentials
b;(x)=0 (=1, 2). This assumption is used only to prove the above Proposi-
tion 1.5. Technically, it is possible to adopt a weaker assumption. For
example it is enough to assume that B,,(x)=0,b,(x)—8,b,(x)=0 in a neighborhood
of the origin x=0.

Proposition 1.7. Let uc D, with || >a (a>0) and 0<Im e<B,. Then
there exists a constant

C=C(a, B, L, &) such that we have

(1.34)  llarorn, 5, <CO+p) {—lnuu rors

|~—| (122l - cverrel | f ”(1+E)/2+ L I/ ”<1+e)/z} (p20),

where f=(L—«*)u.

Proof. The proof will be divided into two steps. In Step I the estimate
(1.34) with p=>1 will be proved, where Proposition 1.5 will be useful. In Step
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IT we shall show (1.34) with p=0. From these results we can easily obtain
(1.34) for all p=0.

Step I.  We can find positive numbers b and ¢ such that {x=r,+ix,/| k| >a,
0<k,< B} cK,UK,, where

K, = {x = i | 6] >4, 0<k,< By, wi— ) 12,
(1.35) 2
= {k=x,+tir[| k| >a, 0<r,< By, k3—ri=c"},

e.g., we may put b=a/4 and c=a/2. Consider the case k= K,. Then, proceed-

ing as in the first half of the proof of Proposition 2.6 of [3], we arrive at (1.34)

with p=>1. Next consider the case k€K,. Then we can proceed as in the

second half of the proof of Proposition 2.6 of [3] to obtain (1.34) with p=1.
Step II. Set x,—=(2, 0)= R’ and set for u& D,

(1.36)  d@(x) = u(x—x,) .
It follows from the relation (L—«&?) u=f that
137y (L—&)a=7f,

where
L= —A4Vx)+ V(x),

(1.38) Vix) = Vi(x—=x,), V(x) = V(x—x,),
fx) = fla—x,) -

Obviously V(x) satisfies (1.2) with the same 8 and some positive C. It can be
also shown that V,(x) satisfies (1.1). In fact we have

6170(90) Vi(x—x,) 0] x—x,|
0] x| alx %o 0| x|
— 7, xl— 1% cos 0
6! Blal T e

(1.39)

0 being the angle between x and x,. By (1.3) with R= 7 Ve (x %,)=0 for

|x—x,] <5, and for |x—x,| >5 it follows that

lxl—lxolcosﬁsl—(lxol/lxl)cos¢9< 1+2/3 —5
le—x,| = 1—(l%l/]%]) 1—2/3 ’

(140)  0<

where we have used the fact that |x,| /| x| <2/3 if |x—x,| >5. Thus we obtain,
together with (1.1),
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141y V@ <5014 | a—iy)) 10

0]x|
' <C(1+[x]) - (éssc[sgp (—%’aﬂm))

Hence the result obtained in Step I can be applied to L to show

- 1,
L P

e Wllsonl oot T on)  (C=Cla B L, 8)

x|

Since the unit disc B, of R?is contained in the set {x& R?/|x+x,| =1}, we have

(143)  alZeross 5 = SIM(H | 2]))7* | u(— ) | “dx

(14 le—x,) "% |u(x) | *dx

glx+x0|;1

> SB‘(1+ |2, )= () | *dx

Therefore it folloss from (1.42) and the boundedness of (14 |x|)/(1+ |x—x,])
and (1+|x—x,|)/(1+ | x|) on the whole space R* that

(A4 lason 2, SOl
ool fllasont =l Weon) (€7 = €@ B L, €).

(1.34) with p=0 can be easily obtained from (1.44) and (1.34) with p=1.
Q.E.D.
Proof of Theorem 1.2. Set

M1 = {/‘ = K1+iK2/KEM, ’522180}

M, = {k = k,tin,JucM, 0<k,<B,} .

We have M=M,UM,. For usD, with k&M, we have (1.8) and (1.9) from
(1.12) and (1.11), respectively. Next suppose that uD, with k&M,. Then,

since the estimates (1.23) and (1.34) have been shown, we can proceed as in the
proof of Theorem 2.7 of [3] to obtain

(1.45)

(1.46) ||uu_u+g>,z§|—%nfnwm (C = Cla, Bo L, §)).

(1.8) and (1.9) for u=D, with kM, follow from (1.23), (1.34) and (1.46),
which completes the proof. Q.E.D.
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2. The limiting absorption principle for L

Now that a priori estimates for L have been established (Theorem 1.2), it
can be shown by arguements quite similar to those used in §3 and §4 of [3] that the
main results of [3] hold in our case, too. We sum up these in the following
three theorems whose proof will be omitted.

Theorem 2.1 (the properties of the set > of the singular points of L). Let
(1.1) and (1.2) be satisfied and let 0 < E<max (1, §/2).

(i) Then the set >=>1 (L, &) of the singular points of L is a bounded set of

+={rkeClk£0, Im =0}, D= NR is a bounded set with the Lebesgue
measure 0.

(ii) For any a>0 X N{x=C,/|x| =a} is a compact set of C,, Further,
21—k #s an isolated, bounded set having no limit point in {x =C [Im «>0}.

(i) Let keC, and Im x>0. Then v if and only if «* belongs to the
point spectrum of H, where H is a densely defined, closed linear operator in L, given
by
DH)=H",

2.1
1) Hu = Lu.
For k= C . —>) with Im x>0 belongs to the resolvent set of H.

Theorem 2.2. (the limiting absorption principle for L). Let (1.1) and
(1.2) be satisfied and let € and 3" be as above. Assume that M is an open set of C
such that MN3=¢ and M M, with some a>0, M being the closure of M and
M, being given as in Theorem 1.2.

(i) Then for amy pair (x, f)YEM XL, oo there exists a umique solution
u=u(«, f) of the equation

(2 2) { (L—lcz)u =f’ uEHZ,loc n Lz, -Q+e)/z
| Dullc-14e072, £, <0 .

(ii) The solution u=u(r, f), (x, f )EM X Ly, ¢, 10725 Satisfies the estimates

C
||u”—(1+e)/z§m ”f”(1+z)/2 ’

(23) ”g)u”(-u-e)/z, EléD“f”(He)/z ’
nun-w,z,E,gﬁ(1+p)-*/2nfn“+m (p=1)

with a positive constant C=C(M, L, €).

6) D(T)is the domain of T.
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(iii) If we define an operator (L—«*)™* by
24) L—=e)y'f=uk[) (fELs,aren)

fgr k€M, then (L—«x?)~" is @ B(Ly1e52 L, _eo2)-valued, continuous function on
M”, and we have

25  IL—e)sE (e, C=CW, L, §)),

]

where ||(L— «*)7*|| means the operator norm of B(L;, ¢ 1e)20 Lz, -14072)-

(iv) (L—£)€C(L,, verzs Lo, —civer)®.  Moreover we have the following:
let {f,} be any bounded sequence of L, (o, and let {x,} be any sequence contained
in M. Then the sequence {(L—x2)7*f,} is relatively compact in L, _ .

(V) (L—«*)Vis a B(Ly, 1os2 Lo, 1ve32)-valued, analytic function on M.

Finally let us show some properties of the spectrum o(H) of H defined by
(2.1). Its point spectrum, continuous spectrum and residual spectrum are
denoted by o ,(H), o.(H) and o,(H), respectively. We define the essential
spectrum o ,(H) of H as in [3]°.

Theorem 2.3 (the properties of o(H)). Let (1.1) and (1.2) be satisfied and
let H be as defined in (2.1). Then we have the following (i)~ (iv):

(i) ofH)=[0, «).

(ii) o, (H)=¢.

(i) o(H)N(C—[0, ) Co,(H) and o, (H)N(0, o)=¢, and hence
a (H)D(0, o).

(iv) The eigenvalues in C—[0, o), if they exist, are of finite multiplicity and
they form an isolated, bounded set having no limit point in C— [0, oo).
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