17

THE PRINCIPLE OF MINIMIZED ITERATIONS IN THE SOLUTION OF
THE MATRIX EIGENVALUE PROBLEM'

BY
W. E. ARNOLDI
Hamilton Standard Division, United Aircraft Corporation, East Hartford, Conn.

An interpretation of Dr. Cornelius Lanczos’ iteration method, which he has named
“minimized iterations”, is discussed in this article, expounding the method as applied
to the solution of the characteristic matrix equations both in homogeneous and non-
homogeneous form. This interpretation leads to a variation of the Lanczos procedure
which may frequently be advantageous by virtue of reducing the volume of numerical
work in practical applications. Both methods employ essentially the same algorithm,
requiring the generation of a series of orthogonal functions through which a simple
matrix equation of reduced order is established. The reduced matrix equation may be
solved directly in terms of certain polynomial functions obtained in conjunction with
the generated orthogonal functions, and the convergence of the solution may be observed
as the order of the reduced matrix is successively increased with the order of the original
matrix as a limit. The method of minimized iterations is recommended as a rapid means
for determining a small number of the larger eigenvalues and modal columns of a large
matrix and as a desirable alternative for various series expansions of the Fredholm
problem.

1. The conventional iterative procedures. It is frequently required that real latent
roots, or eigenvalues, and modal columns be determined for a real numerical matrix, u,
of order, n, in the characteristic homogeneous equation,*

O — Wk =0 1)

which is satisfied by any of n values of the scalar, A = A, with their associated modal
columns, k¥ = k, . Beginning with an arbitrary column, k, , and repeatedly premulti-
plying by wu, the iterative procedure, k., = wuk, , will converge to the modal column
corresponding to the largest, or dominant, latent root. After obtaining this solution, the
dominant mode may be removed by any of several methods, so that the next largest
root, of the original matrix becomes the dominant root of an altered matrix, whereupon
the same procedure may be repeated to obtain the next root, and so on, until all desired
roots and modal columns have been obtained. Since the accuracy of each root and modal
column is dependent upon the accuracy with which each previous column has been
determined, this method obviously requires a wasteful amount of labor if the initial
roots and modes are not needed, as is often the case in practical applications, and con-
vergence can be extremely slow if the roots are not widely dispersed.

The non-homogeneous equation, or Fredholm problem in matrix form, may be
represented by

A\ — wk =g, (2)

1Received May 15, 1950.

*The general notation used in this discussion to represent matrices, columns, rows, and matrix
equations follows as closely as possible the conventions established in “Elementary Matrices”, Frazer,

Duncan and Collar, Cambridge, 1938. Brackets and braces are employed only when necessary to avoid
confusion, e.g., to distinguish between the column, %;, and the matrix of m such columns, [¥;].
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where A and ¢ are specified and a solution is desired for k. This solution may be obtained
by direct treatment of the array as simultaneous equations, a common algorithm being
the method of pivotal condensation [1], a lengthy and laborious procedure but some-
times indispensable. Among essentially iterative methods are the Schmidt expansion {2],
which requires first the solution for latent roots, modal columns, and modal rows,
whereupon £ is found as

_y 1« _
b= ; A — X k. k. (¢, = modal row).

Another iterative method is based upon the Liouville-Neumann expansion [2], where
the reciprocal matrix is written as an infinite geometric series,

E=A —wlg=2"T+ N "u+ N+ )
whose solution is obtained by iteration:
kisw = N7'q 4+ N uk;

Unfortunately, this method converges only if A is greater in magnitude than the magni-
tude of the dominant root of u. It can also be applied in special cases when the field of
roots can be shifted so as to meet the requirement for convergence, but the method is
nevertheless of limited application and is often subject to slow convergence.

2. A classical method for reducing matrix order. The solution of the original
homogeneous equation may be replaced by the solution of a matrix equation of reduced
order by introducing the approximation that the modal column, k, may be represented
by the sum of a series of arbitrary columns, k; , multiplied by coefficients, ¢, , to be
established in the solution. Substituting

k = ZCJC,' = [k;]c (3)

into Eq. (1) yields

I — w)k]e = 0, )
where [k,] is a rectangular matrix whose columns are %, , and ¢ is a column of elements
¢; . Now premultiply Eq. (4) by another rectangular matrix whose rows are «; , corre-

sponding with k; in such fashion that the row « = > 7. cix; will satisfy the original
matrix in the form,

k(N — w) = 0.

It should be noted that the functions, k; and «; , are also required to satisfy the point
boundary conditions implicit in the matrix, ¥. The matrix equation now becomes

(I — wke = 0,
or, in more concise form,
O — [k;k]  [kuk e = 0. 5)

Equation (5) will henceforth be referred to as the “reduced equation,” and the matrix,
[k;k:] Hk;uk:], will be known as the “reduced matrix.” Since m functions were assumed
to be sufficient for an approximate solution, this equation involves a matrix of m order,
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presumably less than the original n order, hence more rapidly solved than the original
by conventional iterative procedures. If one could hope that m could be chosen sufficiently
small, a solution might be available by direct expansion of the determinant, but it is
usually necessary, in the general form given above, to employ a relatively large number
of functions, k; and «; , so that the advantages of this transformation of the original
matrix are not universally apparent. Furthermore, the labor of calculating the elements
of the reduced matrix may be great, particularly since the inversion of [«;k.] is required.

The Galerkin method [3] is a variation of the process outlined above, differing only
in the choice of «; . By the Galerkin method, each «; is the transposed of the corresponding
column, k; , which somewhat simplifies the determination of the inverse matrix re-
quired. However, it is also objectionable on the basis of tedium.

3. The Lanczos method of minimized iterations. The following exposition differs in
form from the discussion originally given by Lanczos [2], but it arrives at the same
results and makes a further extension of the Galerkin type more evident. Lanczos
reduces the matrix order as described above but eliminates the objections of labor in
the formation of the reduced matrix, indicates a solution in terms of polynomial equa-
tions derived from a direct iterative procedure involving the original matrix, avoids the
necessity for separately forming and solving the reduced matrix, and provides a means
for efficiently generating the required columns and rows in order that a convergent
solution will be obtained with & minimum number.

To deduce the Lanczos method of minimized iterations, it is first observed that the
formation of the reduced matrix would be greatly simplified if the matrix, [x;k;], were
of diagonal form, the otherwise arbitrary rows and columns initially chosen being of
such form as to satisfy «;k; = 0 when ¢ # j. The inverse would then consist of a diagonal
matrix whose individual elements would be the reciprocals of the corresponding elements
in [k;k.], and the reduced equation would take the form

(M —~ [%’“—])a = 0. ()

This form has further potential advantages, obtained by observing that the desired
orthogonality relationship among the chosen rows and columns may be established by
generating these rows and columns from an initial row and column according to the
following expressions:

k;+1 = Uk.' - O!.'ki — Bi—1k¢—1 - ’Yi—zki—z - 5{—31‘?;—3 ) (7)
kivs = kU — A — Bi_ikiog — Cigkicg — Digiig — =+ - . (8)
The necessary scalar constants, «; , 8i-1 , Vi—2, *++ , 4:, Biy, Ci_s, -+, may be de-

fined by forming certain scalars as row-column products and noting that many elements
vanish, due to the orthogonality relation postulated, «,k; = 0 for 7 = j, as follows:

K,'k,'.;.l = K,‘uk,‘ — K,‘k,' = 0,
kikive = kb — Bikik; = O;
kikiss = kukirs — virik; = 0,

ete.
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also
K.'.Hk.' = K,'uk.- —_ A,'K;k,' = O,
Kivoki = kink; — Bixik; = O,
Kivsk: = Kiwotk; — Cixk; = 0,
ete.
whence
kuk, KUk vy kiuk;.g
a. -_— P _— g = T etc-
s K.'k.' b B! K.'k,' 2 ‘Y: K.’k.‘ b b
xuk; ke uk; KiroUk;
A, = == B;=L—' C, = —22 ete.
¢ K.'k.' ? K.'IC.' ’ ' Kak.‘ ’

Note that a; = A, . Other identities may be found as follows:
uk; = kiwr + aik; + Bicikicy + -+ ,

Kivitk; = kinkii .

Also,
kU = ki1 + Aiki + Bigkig + -,
Kc'uki+1 = Kip1Kie1 -
Therefore,
B: = B; .

The later constants will vanish, as is next shown.

kU = ki + Aixi + Bioixicg + Cigrina + - -

Therefore,
kUukipe = 0
whence,
ve = 0.
Similarly, C; = 0, and all further scalars, §; , ¢, , -++ , D, , E,, --- , are also found to
vanish.

The functional relationships by means of which the desired orthogonal rows and
columns are generated thus become

kEivn = vk — ki — Bisikiy ’ 9

Kivr = KU — a;k; — Bio1Kiog (10)
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where

K."UJC_,‘

ks ’

K.'_lukL
Ki—lki—l

Bisr =

a; =

The pertinent scalars and zeros having been established, it is now convenient to identify
the elements of the reduced matrix, outlined as follows:

Klukl Klukg Kluk3 Kluk4 K_lukm
K1k, K1k K1k, K1k, K1k,
Kzukl Kzukz Kguk;; Kzuk4 Kzukm
keky ks Kaka Koo Kk
[ Kjuk{] . K3uk1 K3uk2 K3’I,L’C3 K3uk4 ﬁukm (1 1)
K,'k,' - K3k3 K3k3 K3k3 K3k3 K3k3
K4uk1 K4uk2 K4uk3 K4uk4 £4_uk,,,
Kooy Kekoy (AN Kakos Kekoy
knlihy  kalths  knmlks  kaUKs Kl
Kk Kpkom  Knkom Kk Kb

The elements are easily recognized and replaced, yielding
[+7} ,81 0 0 e 0

]. [2 2 62 O hi 0

K,-uk‘- _ O 1 [+ 2 Ba see O
i : 2

.....................

0 0 0 0 - a,

The vanishing of so many elements makes the expansion of the characteristic determi-
nant extremely simple, so that a treatment of the reduced matrix equation by conven-
tional iterative methods is unnecessary, and the step from the formation of the orthogonal
row and column sequence to the solution for roots and modal columns may be taken
without specifically examining the reduced matrix. The determinant will be expanded
in stages, beginning with first order, which corresponds to the choice of one row and
column, and successively increasing the order until the desired number of rows and
columns has been reached. The resulting polynomials, individually equated to zero, will
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have roots which will represent successive approximations to the roots of the original
matrix. These polynomials, which may be written by inspection, follow:
The determinant is

AN—ao -6 0
-1 A—a —B, -
uk;
I N~ [%.k. ] } = = P (V. (13)
. 0 -1 AN—a; ---
The polynomials are
N =X —a,

22N = A — a)p(N) — By,
ps(N) = A — ag)p(N) — Bap:i(N), (14)
PsN) = (A — a)ps(N) — B:p(N),

pin(V) = \ - a,-n)p.-()\) - 3;1’:‘—1()\)-

The solution for the modal column corresponding to a root of p,.(A) = 0 will be
available after the coefficients, ¢; , have been obtained by direct solution of the reduced
matrix equation as a set of simultaneous scalar equations. Since one coefficient may be
arbitrary, let ¢; = 1. Then,

c = A — o _ p:(A)
: By B’
. = A —aye, — 1 - 22()‘)
: B BiB: ’
= A —ajdes — ¢ _ PN
* Bs £1B:28s ’
Cons = ()\ — ai)ci — Ci—a — :D.-()\)
o 6:‘ BBy - 5.’ ’
and we have the modal column through its initial definition,
S pl()‘) E2(>\> Prni(N)
k= Ko =k E—F k I e A
D N T R v e (15)

It is important to note that, not only is this a finite series, but it is limited in length
to a maximum number of terms, m = 7, the order of the original matrix. The generation
of the orthogonal function sequence stops at this point, since the original matrix on
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which it is based is incapable of defining more than n linearly independent functions,
and when this number has been reached the reduced matrix will yield precisely the
roots and modal columns of the original matrix. This characteristic, more fully dis-
cussed by Lanczos [2], is an important feature of the method of minimized iterations,
since it indicates that this method, unlike the conventional matrix iteration algorithm,
will never require a continuation ad infinitum.

4. Minimized iterations for the non-homogeneous equation. Given the equation

W — wk = ¢, (16)

where A and ¢ are specified and a solution for & is desired, the reduced equation is formed
exactly as for the homogeneous equation, replacing £ and premultiplying by [x;] as

follows:
K,'uk.' _ _K,_
(“ - [ ok, Dc = [k]q

The column on the right side of the equation is vastly simplified by letting &, = ¢
whence

(M - [%])c —{1,0,0, --- 0}. (17)

The method of minimized iterations is now employed to determine the same scalars,
a; and B; , as before, whereupon the solution for ¢ is indicated as follows:

¢ = (u — [%‘%—D_l{l 0,0, --- 0}. (18)

The inverse of a matrix is defined as the quotient of the adjoint of the matrix by its
determinant, and the adjoint is the transpose of a matrix whose elements are the co-
factors of the corresponding elements in the matrix to be inverted. The determinant
of the matrix is already available as p.()\), so it is required to examine the adjoint.
Since the adjoint is used to premultiply a column whose elements all vanish except the
first, only the first row of the adjoint is needed. The elements of this row will be the
cofactors of the elements of the first column in the determinant array of the reduced
equation, (13). These cofactors can be written directly by inspection, using polynomials
of the form already defined in Eq. (14) but in reverse order, beginning with the lower
right corner of the array instead of the upper left. These reversed polynomials will be
designated as

2N =N —a,,
ﬁZ()\) = ()‘ - am—l)z—)l(x) - Bm—l ]
(19)
2_73()\) = ()\ - am—z)ﬁz()\) - Bm—zﬁl()\);
I—7£+1()\) = ()\ - am—i)ﬁf()\) - 6m—iﬁ-’—1()\}-

Using these, the first cofactor is .-1(A), the second is 8,p,.-.(), the third is 8,8:D.-3(\),
and the coefficients, ¢; , may be written,
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SN
TTopaN)
_ g Dn2()

Co B pm()\) )

— E_m—ii(x)
Cs B1B2 D ()\) 3

BIBZ Bn—l pm()\)

Applying these to the definition of &, the solution is complete.

Cq

k= E cik: = p—l(ﬂ (ﬁm—lo\)kl + Blﬁm—zo\)kz + -+ BBy -+ Bm—lkm)' (20)

i=1

5. An outline of the Lanczos algorithm. While the preceding derivation may appear
to be complicated, practical application of minimized iterations to numerical calculations
requires very simple repeated steps, which are outlined below and which may easily be
translated into operations on automatic computing machinery.

First stage: Given « and £, .
FOI'III Klu, ukl 3 Klk, .
Form xuk, .

Kluk1

Compute a; = ik

pl()\)=)\—a1=0
now yields a first approximation to the first root.
Second stage: Form «, = xu — ok , ke = uk, — ajk, .
FOI‘m KU, ukg y szz ) Kzukg 3 Klukz .

Compute o, = Kk, , By =
K2k2

Klukg
Klk]

PN = N —a)p(N) — 8 =0
gives a second approximation to the first root and a first approximation to the second.

Third stage: Form «; = kit — asks — Biky , ks = uky — acky — Bik; .

Form kzu, uks , xsks , rsuks , xotiks .
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K';uki 6 _ Kguk;;
kaks 777 koko

Compute a; =

ps(N) = A — am)p.(N) — Bops(V) = 0

gives the third approximation to the first root, the second approximation to the second
root, and a first approximation to the third root. The calculation is continued as far
as necessary in continued stages. While the process of minimized iterations as described
here can be expected eventually to provide the desired latent roots to any desired degree
of accuracy with any initially chosen row and column, the rate of convergence can be
made extremely rapid by first multiplying the initial row and column several times by
the matrix, u, and then beginning the application of the method. The advantage of
doing this is that the minimized iterations will then begin with functions whose normal
mode components will be “ordered” in the sense that the dominant mode will represent
a large part of the initial functions, the second mode will be somewhat smaller but next
in importance, the third mode will follow, and so on. To a rough degree of approximation,
the orthogonal functions thus generated will then in turn approximate the normal
modes in the same order, and the roots of the successive polynomials will also appear
in this order. Lanczos [2] presents an impressive numerical example which demonstrates
extremely powerful convergence.

It is convenient, particularly in the use of punched card machines, to form certain
of the required products simultaneously and to supplement the required operations by
check calculations which verify the orthogonality of the generated rows and columns.
As an example, consider the third stage. The product, r,u, is indicated first and the
matrix is bordered by several columns as follows:

kalu, by, ks, k3] = [k3u, 0, 0, ksks).

The two zeroes serve as a numerical check. Likewise, the product, uk; , is also formed
in conjunction with others by bordering u with several rows, as follows:

[u, k1w, kou, ksulks = {uks, 0, kouks , kauks}.

The zero here serves also as a check, and all the sealar products required for the com-
putation of a; and B, are available from these operations. In numerical calculations,
when the zeroes may occur as small finite numbers due to rounding errors, a refinement
is possible by using these numbers to determine the constants, v, , 8, , € , etc. of Eq. (7)
and (8), which may be employed as indicated by these equations for the generation of
further orthogonal functions,

6. Minimized iterations in the Galerkin method. It will now be shown that a mini-
mized iteration technique, similar in form but slightly different in detail, is also applicable
to the solution of the eigenvalue problem by the Galerkin method, and that this method
may offer certain computational advantages. Beginning with the reduced equation (5)
in Galerkin form, but with k/k; = 0 for ¢ == j,

(M - [’ZZI‘C’“DC =0 (1)

the generation of suitable columns, k; , will be detailed. Using the same technique
proposed by Lanczos, let
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ki = uk; — acki — Bicikicy — Yizokice — 8iskics -+
and solve for the constants required on the basis that kjk;, = 0 (¢ # 7).
kikiw = kiuk, — a;kik; =0,

k:k.‘.‘.g = kfuk;H - ﬁ.k:k, = O!

klkivs = kiuk,vs — ’Y.'k:k.' = O;
whence
o = kluk, g, = kiuk; . _ kluk; .,
T kR PT ER VT TER

However, in the Galerkin case none of these constants vanish. Nevertheless,
klouk; = kinkin ’

ete.

and '

Klouk, =0 if j§> 1.

Thus, the reduced matrix becomes

1 e B v

0 0 1 o

0O 0 0 0 - a,

(22)

(23)

which is of the same form as Eq. (11), (compare with Eq. (12)), and the polynomial

expansions of the determinant by steps are, beginning with the definition,

N—a —B 41
’ '—]. A - Q3 _Bg L
o - ] - =
i 0 _1 )\ - 3

M) =X—a,

(M) = A — a)p(N) — By,

) = A — ag)p(N) — Bep:(N) — 71

2 = (N — a)ps(N) — Bsp(N) — 122N — 6y,

ete.

(24)

(25)
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The roots of these polynomials, as in the Lanczos method, yield suceessive approxima-
tions to the latent roots of the original matrix.

The solution for the coefficients, ¢; , required in order to define the modal columns,
must here be accomplished in reverse order, due to the triangular form of the reduced
matrix. These coefficients will be expressed in terms of a set of reversed polynomials,
defined as follows:

Let Cwn =1,
Cmos = N — an = Bi(N),
ens = (O = @n-ons = Buot = (A = an- BN — Bacs = BV,
Cnz = (A = @ 2)Cn2 = BnsCmo1 — Ym-2 ,
=\ - m_2)P2(N) = BnaPr(N) — Ym-2 = (M),

etec.

Hence, the modal column is written for X corresponding to a root of p,,(A) = 0, in terms
of the reversed polynomials defined above.

k= 2 ¢k = PuosNky + PosWks + -+ A+ BiWEney + Em (26)
It is interesting to compare Egs. (21)-(26) with their corresponding relationships in the
Lanczos method, Egs. (6)-(15).

7. The Galerkin treatment of the non-homogeneous equation. In a manner similar to
that applied by Lanczos and described in Sec. 4 for the solution of the non-homogeneous
equation by minimized iterations, the method of minimized iterations may be extended
to the solution of the reduced equation obtained by the Galerkin method. The necessary
scalars are determined as described in Sec. 6, thus permitting the determination of the
two sequences of polynomials, p.(A) and 7;(A). The next step is to solve the reduced
equation for the coefficients, ¢; . To accomplish this by determining the cofactors re-
quired from the adjoint of the matrix to be inverted is not convenient, in view of the
triangular matrix form, but the solution can be easily obtained by first solving for the
coefficients in terms of the last, ¢,. , working upward in the array until the use of m — 1
equations provide ¢, through c,—; in terms of ¢,, , and then using the first equation to
evaluate ¢,, . This process follows:

Cm1 = (N — an)en, = Pi(Ne,

Cnz = A — @n-)Cn-1 = Brn-iCm = P2(N)Cnm ,

Cnz3 = A — @n-2)Cnoz — Bm-2tm-1 = Ym-2tm = Ps(N)Cm ,
ete.

(A = a)PmaD) — BiPn2(D) — ¥iPmsD) -+l = 1.
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The coefficients having thus been determined, the solution follows directly.

Ee 3 ok = Pea®h F BocsOks + ot B0k + o

— - = (27)
i=1 ()\ - al)pm—IO\) - B:pm-z(K) - 'Ylpm—.?()\) e

In view of the means by which the ¢, were determined, Eq. (27) does not closely re-
semble Eq. (20).

8. An outline of the minimized iteration algorithm in the Galerkin method. Again it is
desirable to present an outline of the actual steps in numerical calculation by minimized
iterations, from which a logical sequence of operations may be established for purposes
of automatic calculation.

First stage: Givenk, .
Form uk, , kik, .
Form kjuk, .

_ kuk,
Compute o; = xE,
pl()\) = A — O .

Second stage: Form k, = uk, — ok, .

Form wuk, , ksk. , ksuk, , kiuk, 3

Compute a, = ]}C‘A’/Lk? 8 = IZ};CITZ )
20v2 1

P20 = (A ~ am)p (V) — B, .
Third stage:  Form k; = uk, — aks — Bik, -
Form uk; , kiks , kiuks , kiuks , kiuks .

kfuuks gk kiuk,

k;ks )BZ - kz’kz y Y1 = k;kl

Compute a; =

ps(N) = A — ax)p(N) — Bpi(N) — 11 -

As in the Laneczos procedure described in Sec. 5, it is advantageous to precede this proc-
ess with several premultiplications of an arbitrary column in order to control the
relative magnitudes of the various modal components of the column, k; , so that the
roots will be obtained from the successive polynomials in order of relative magnitudes.
As indicated for the Lanczos algorithm, it is convenient in punched card procedures to
form certain of the required products simultaneously and to include check calculations.
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To this end the matrix, u, is bordered by a sequence of rows, as exemplified below for
the third stage.

[w, k1, k2, kslks = {uks , 0, 0, ksks} .

The two zeroes serve as a check on the orthogonality of the generated columns. In
addition, the following operations are necessary:

[ké ] 2’ ) kl’]uks = {ks’uk;; s kg’uka y k{uk3} .

whence the constants, «; , 8, , and v, , may be calculated.

9. General comments on minimized iterations. It should be noted that the foregoing
presentation and extension of the method originally proposed by Lanczos has leaned
toward the pictorial approach to a means of mathematical analysis rather than con-
cerning itself with important considerations of mathematical rigor. The special cases
of equal roots and of unfortunate choice of arbitrary row or column, where a deficiency
in modal components might lead to peculiarities in the results, have been deliberately
ignored, first, because these cases are adequately treated in Lanczos’ paper [2], and
second, because they would detract from the object of presenting a practical procedure
and of emphasizing the computational aspects which are of interest to the applied
mathematician and to the engineer. Furthermore, in the interest of providing a simple
derivation which would admit of obvious extension to the Galerkin type equation, the
original intent of the name, minimized iterations, was passed over lightly, deriving the
basic scalars through strictly algebraic operations without consideration of their more
fundamental purpose of providing the maximum utility with the minimum number of
row and column functions. The advantages of orthogonal functions in computation
provided an equally direct reason for the choice of these scalars.

The method of minimized iterations, in either the Lanczos or the Galerkin varia-
tions, is recommended as an alternative to conventional procedures in the numerical
solution of matrix problems on the basis of potentially large time-saving in computation.
Its advantages are most evident when the determination of a number of eigenvalues, or
latent roots, is of prime interest, and the determination of modal columns or the solution
of non-homogeneous equations can also be greatly expedited, subject to an efficient
organization of problems for whatever type of computing machinery may be available.

The Galerkin variation appears to be of greatest advantage in the eigenvalue prob-
lem, requiring substantially only half the number of matrix-column products involved
in the Laneczos procedure. However, the computation of modal columns by this method
is somewhat more cumbersome, particularly if successive approximations to a modal
column are to be studied, in view of the requirement for reversed polynomials. In the
non-homogeneous equation, on the other hand, this disadvantage applies to both ver-
sions, the only significant difference being that the Galerkin polynomials are longer.
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