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THE PRINCIPLE OF UNIFORM
BOUNDEDNESS AND THE CLOSED GRAPH THEOREM

Veastimin PTAk, Praha
(Received September 22, 1960)

A general theorem of the closed graph type in locally convex vector spaces
is proved which contains as special cases the classical theorems of Hellinger
and Toeplitz.

1. Among the classical results of Functional Analysis there are several theorems
according to which an operator-is continuous provided it satisfies some very weak
conditions of an algebraic or nearly algebraic nature. Let us recall, as an example,
the well known result of E. HELLINGER and O. TogpLITZ: A linear transformation T
defined for all elements of a Hilbert space H and satisfying (Tx, y) = (x, Ty) is
continuous. The proof is based on the principle of uniform boundedness. Indeed,
the relation (Tx, y) = (x, Ty) implies that the adjoint T* is defined on the whole
of H. To show that the operator Tis bounded it is sufficient, by the uniform bound-
edness principle, to prove that (TU, y) is bounded for each y € H. (We denote by U
the unit ball in H.) Now it is sufficient to note that (TU, y) = (U, T*y) and that
the last set is bounded. Similarly, in the case of Hilbert space, the closed graph theorem
(which clearly contains the preceding result of Hellinger and Toeplitz) may be obtain-
ed by the use of the uniform boundedness principle. If T'is a closed linear transfor-
mation defined for all elements of a Hilbert space H, the proof of the continuity of T
proceeds in the following manner. First, the assumption that T'is closed implies that
the domain of T* is dense in H. An application of the uniform boundedness principle
shows that 7* is bounded in D(T). It follows that T* is actually defined on the whole
of H and the proof is concluded exactly as in the preceding case by another application
of the uniform boundedness principle.

It is not difficult to see that the essential point of the proof is the fact that, in both
cases, the adjoint of the given transformation is everywhere defined.

There are further results closely connected with these ideas. In an interesting paper
[8] of A. E. TavrLor an application of the closed graph theorem is given to prove
the continuity of linear transformations of a certain type under very weak hypotheses.
The earlier work on similar questions by S. Izumr and G. Sunoucsr [2] is not
accessible to the author.

523



In our previous work we have been able to point out what we believe to be the
natural generalizations of the open mapping and closed graph theorems. Especially
it turns out that these theorems are essentially based on the properties of one of the
two spaces involved only, namely the space from which the mapping goes in the case
of the open mapping theorem and the space into which the transformation acts in
the case of the closed graph theorem.

No assumption on the other space (the range of the mapping in the case of the
open mapping theorem and the domain of definition in the case of the closed graph
theorem) need be made if we impose some natural conditions on the mapping (it
should be nearly open in the first case and nearly continuous in the second). See
theorems (3.8) and (4.7) of [4].

[n the present remark we intend to present the general form of the Hellinger-
Toeplitz theorems. We analyse first the classical case and show then the general
counterpart of each of the steps in the proofs. In this manner the really essential
points are exhibited; actually the elimination of metrical methods leads to a consi-
derable simplification of the proofs.

The earlier work on the general form of the open mapping theorem is contained
in [3], [4], [5]. The closed graph theorem is discussed in [6]. All definitions, results
and necessary informations concerning these questions may be found in [4].

2. Definitions and notation. We use the term “convex space” instead of “locally
convex Hausdorff' topological vector space over the real field”. Terminology and
notation is that of [4]. For the convenience of the reader we give here the definitions
of some notions which are not yet stabilized in literature and which might lead to
a misunderstandig.

Let X and Ybe two convex spaces. We denote by L(X, Y) the space of all continuous
linear mappings of X into Y. A set P < L(X, Y)is said to be total for X if the following'
implication holds: If p(x) = 0 for each pe P and some x, then x = 0. Let f be
a linear mapping of X into ¥; we denote by D(f’) the set of all -y’ € ¥’ such that
(f(x), y"> is a continuous function of x. The mapping f' of D(f’) into X’ defined
by the relation {f(x), y'> = (x, f(y')) for x € X is called the adjoint of f.

A mapping g of a topological space T into another topological space V is said
to be nearly continuous if the following condition is satisfied: for each ¢, € Tand each
neighbourhood H of g(t,) in ¥ the set g~ *(H) is a neighbourhood of 1, in T. We shall
frequently use the following fact, which is an immediate consequence of this definition.

Let X and Y be two convex spaces and suppose that X is a t-space (if K is a closed
absolutely convex set such that the union of its multiples 2K is the whole of X then K
is a neighbourhood of zero). Then every linear mapping of X into Y is nearly conti-
nuous.

3. Application of the uniform boundedness principle. It is a well-known fact that,
in the case of Hilbert space, the closed graph theorem may be obtained as a conse-
quence of the principle of uniform boundedness. We present here a simple generaliza-
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tion of this fact. Indeed, we show that the proof is actually based on the reflexivity
of the space. At the same time, the method of proof suggests the generalization to
nenmetrizable spaces in quite a natural manner. We begin with a well-known result.

(3,1). Let X and Y be two normed linear spaces (complete or not). Let f be a linear

mapping of X into Y. Suppose that the adjoint f’ is defined on the whole of Y'.
Then f is continuous.

Proof. Since continuity and boundedness are equivalent in normed spaces, it is
sufficient to prove that the set f(U)is bounded, U being the unit ball of X. According
to the principle of uniform boundedness, it is sufficient to show that the set {f(U), y'>
is bounded for each y" e Y’; this, however, follows immediately from the relation
fU), ¥y = <U, f'(y') and the fact that (") has a sense for each ' € ¥".

(3,2). Let X and Y be two normed linear spaces. Suppose that X is a t-space and
that Y is reflexive. Let f be a linear mapping of X into Y the graph of which is
closed in X x Y. Then f is continuous.

Proof. The graph of f being closed, the domain D(f")is dense in Y” in the topology
a(Y’, Y). This is a classical result (for the sake of completeness a proof of this fact is
given in (3,3)).

Let us denote now by T the set of those g e D(f’) for which |g| < 1. If x is an
arbitrary point of X, we have

<6 SATRE = KF), TH1 £ /(%) -
The space X being a t-space, it follows that [f(T)] £ o for some « so that f' is
bounded.

We are going to show now that D(f”) is equal to the whole of ¥’. The space D(f)
is o(Y’, Y) dense in Y’; the space Y being reflexive, D(f’) is dense in Y’ in the norm
topology as well. Take an arbitrary y’ € Y'. There exists a sequence ¢, € D(f”) such
that {g, — »'| — 0. For each x € X, we have

(@) = (%), g0 = {f(x), >
so that the functionals f "(4,) converge to a limit for each x € X. The space X being
a t-space, this limit is bounded, hence an element x’ of X”. Tt follows that X'y =
= (f(x), y'> for each x € X so that y’ e D(f"). We have thus shown that f’ is defined
on the whole of Y'. The continuity of f follows then from (3.1).
We conclude this section with a proof of the well-known fact that D(f’) is dense
if f is a closed operator.

(3,3) Let E and Y be two convex spaces and let f be a linear mapping of E into Y
the graph G of which is closed in E x Y. Then D(f') is dense in (Y, o(Y", Y)).

Proof. Let y,e Y be such that (y,, D(f")y = 0. We are going to show that
[0, yo] € G; this implies y, = 0 and the proof will be complete. To see that [0, y,] € G,
suppose that this is not true. Since G is closed in E x Y, there exists a point [x’, y’]
in E' x Y such that (G, [x/, Y1 =0 and [0, yo], [x', y']> * 0. It follows that
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{x, X"y + {f(x), y'> = Oforevery x € Eand (y,, y'> # 0. The first relation, however,
implies )’ € D(f’) while the second contradicts {yo, D(f")> = 0. Hence [0, y,] € G
and the lemma is established.

4. The general case. We proceed to show what we believe to be the natural genera-
lizations of the essential steps in the classical proofs. Let us clear up first the meaning
of the fact that the adjoint of some mapping is everywhere defined. In the classical
case, we use first the completeness of the adjoint space; this enables us to apply the
principle of uniform boundedness to show that the given mapping is bounded and
consequently continuous. In the general case the adjoint space need not be of the
second category; further, continuity does not follow from boundedness. We shall see
that the following lemma is an adequate substitute for (3.1):

(4,1) Let X and E be two convex spaces and let f be a nearly continuous linear
mapping of X into E. If the adjoint f’ is defined in the whole of E', then f is conti-
nuous.

Proof. Let U be a neighbourhood of zero in E. According to our assumption the
closure of f ~1(U) is a neighbourhood of zero in X. If we show that f ~*(U) is already
closed, the proof will be complete. To see that, take an x, ¢ f ~*(U). Since f(x,) ¢ U,
there exists a ¥ € E' such that y' € U° and (f(x,), "> > 1. Now y’ e D(f’) so
that (xq, f(y')) > 1. At the same time

SFTHOLLOY = SUHU) Y S
The proof is coni;;lete.

The second essential step in the classical proof consists in showing that, if X is
a t-space, then f’ is bounded and D(f’) contains every limit point of a bounded part
of D(f"). If we replace the assumption on X by the assumption that f be nearly con-
tinuous, we have the following substitute for boundedness of f':"the mapping maps
each equicontinuous set in Y’ into an equicontinuous set in X’. These sets being
weakly compact, we are then able to show that the limit points of the equicontinuous
parts of D(f’) belong to D(f’) as well.

(4,2) Let X and E be two convex spaces and let f be a nearly continuous linear
mapping of X into E. Let Q = D(f’) be the domain of f'. Then Q n U° is o(E', E)
closed for every neighbourhood of zero U in E.

Proof. Let U be given; according to our assumption the set W = f- (U) is a neigh-
bourhood of zero in X. We have

STU), FRAUD =Lf(fTHU)), N U =(U, QT

whence f~}(U) < (@ n U°)° so that f(Q nU°) = (fY(U))° = W°. Take now
a y' from the o(E’, E) closure of Q n U°. We mtend to show that ¥y eD(f"). If
Xy, ..., X, is an arbitrary finite sequence in X and ¢ an arbitrary positive number,
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let us denote by W(x,, ..., x,; &) the set of all X’ € W° such that

l<xi9 x,> - <f(xi)$ y’)l é € fOI‘ = 1’ 2,...,".
Clearly these sets are closed subsets of (W°, o(E’, E)). Let us show now that

W(xy, ..., X, €)

is nonvoid. Since ' belongs to the o(E’, E) closure of Q n U®, there is a qgeQnU°
such that |[{f(x;), ¢ — y'>| <e for i=1,2,....,n Since g€ D(f"), we have
f'(q) e w° and '

<f(xi)’ V= <f(xi)7 @+ Og = <xiaf,(q)> + Op
whence f'(q) € W(x, ..., x,; ¢). The system W(xy, ..., X,; €) is thus seen to possess
the finite intersection property. It follows that there exists an x" e W° such that x'
belongs to each W(x,, ..., x,; ). Clearly this means that f(x), ¥y = <(x, x> for
each x € X or, in other words, that ' e D(f"). The proof is complete.

We are now able to formulate the main result:

(4,3) Theorem. Let X and Y be two convex spaces. Let S <« Y’ be total for Y.
Let a(s) be a mapping of S into X' with the following property: for each xe X
there exists a ye Y such that {x, a(s)y =<y, s> for each seS. The mapping
Y = Ax is a linear mapping of X into Y. If X is a t-space and Y a B,-complete
space, then A is continuous.

Proof. It is easy to verify the linearity of A. Since X is a t-space, the mapping A
is nearly continuous. It follows from (4.2) that D(A’) has a o(Y’, Y) closed inter-
section with every set ¥° where V runs over all neighbourhoods of zero in Y. The
identity <x, a(s)) = (A4x, s) implies that § = D(A’) and, consequently, L < D(4")
where Lis the linear subspace of Y’ spanned by S. Since S is total for ¥, Lis dense
in (Y, o(Y’, Y)), so that D(A’) is dense as well. The space Y being B,-complete, it
follows that D(4’) = Y. The conclusion follows from (4.1). i

44) Corollary. Let X, Y, Z be three convex spaces. Let P < L(Y, Z) be total
Jor Y. Let o(p) be a mapping of P into L(X, Z) with the following property: for
each x € X there exists a ye Y such that {x, «(p)> = <y, p) for each pe P. The
mapping y = Ax is a linear mapping of X into Y. If X is a t-space and Y a B-com-
plete space, then A is continuous.

Proof. This is an immediate consequence of the preceding theorem if we take for S
the set of all functionals obtained as a superposition of a pe P and a z’eZ’. If
§ = poz', wetake a(s) = ap) . 2'.

4,5 Corollary. Let X, Y and Z be three convex spaces. Suppose that the ele-
ments of Y are functions defined on a set S with values in Z, with addition and
scalar multiplication carried out in the usual way. We require that the values ¥(s)
depend continuously on y. Let a(s) be a function on § to L(X, Z) such that a(s) x,
as a function. of s, is a member of Y for each x € X. In this manner, a (clearly
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nrey mivrry 4 5f X i Yis defined. If X is a t-space and Y a B,~-complete
space, then A is continuous.

Proof. An immediate consequence of (4.4).
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Pe3zmome

MIPUHLIMAIT PABHOMEPHOU OTPAHUUEHHOCTU
N TEOPEMA O 3AMKHYTOM T'PAOUKE

BIIACTUMMIIL IITAK (Vlastimil Ptak), ITpara

Cpeny KJaCcCHYECKMX PEe3yNbTaTOB (YHKIUMOHANBHOTO AHAJHM3A MMEETCS HEeCKOJib-
KO TeOpeM, IO3BOJITIOMHX OKa3aTh HEeNPEePHIBHOCTSH JHHSHHOTO OIepaTopa B Ciy-
4ae, KOrja OH YHOBJIETBOPSET JIHINb BeCbMa CJabbIM yCIOBHMAM anrebpamyeckoro
WM NOYTH anreGpanveckoro - xapakrepa. HamomuuMm, Hanpumep, KIACCHYECKHI
pesyirar Xeumarepa-Terma:

Jlunetinoe npeobpasosanue T, onpedeaennoe 6o scex mouxax npocmpancmea uns-
bepma H u evinoansrowee paserncmso (Tx, y) = (x, Ty), asasemcs youce Henpepola-
Hoim. JT0OKa3aTesbCTBO OCHOBAHO HA NPUHLHIE pPaBHOMEPHON OTpaHNYCHHOCTH.
DTOT e UPHHLOUN HO3BOJISET NATh JOKA3ATENHCTBO TEOPEMBI O 3aMKHYTOM Tpadu-
ke B npocrpascTse [ibbepra. '

Pe3yaptaTsl aBTOpa, Kacaiougecs TeopeM 00 OTKPBITOM OTOOpakeHUH
¥ 0 3aMkHyTOM rpaduke B OOINMX TOTMOJIOTMYECKUX JIMHEHHBIX IPOCTPAHCTBAX,
MO3BOJIAIOT HOJYyYHTh OO0y Teopemy (4,3), comepKaliyro pe3yibTaThl THNA
Xenmuarepa-Tewmna. IlpoBomuTcss amaauz Kaaccuyeckozo cayyas, u Oaromcs
ecmecmeentbie 000bwenuUs kaxncoo2o cywecmeennozo smana doxasamenscmea. Oxa-
3BIBACTCS, YTO MCKIIOYEHHE METPHUECKAX METOOB HPUBOMMT K YIPOMIEHHIO IOKA-~
3aTENBCTB.
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