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Glocker, Ch.

The Principles of d'Alembert, Jourdain, and Gauss

in Nonsmooth Dynamics

Part I: Scleronomic Multibody Systems

Die vorliegende Arbeit behandelt die Berechnung der Beschleunigungen in starren Mehrk�orpersystemen, wenn diese dem
Einflu� mengenwertiger Kraftgesetze ausgesetzt sind. Die Kraftgesetze werden �uber nicht-glatte Potentialfunktionen be-
r�ucksichtigt und �uber deren generalisiertes Differential dargestellt. Die dadurch entstehenden Punkt-Mengen-Abbildungen
beinhalten neben glatten Kraftkennlinien auch Kr�afte aus zweiseitigen Bindungen sowie Kombinationen aus beiden wie
einseitige Bindungen, Trockenreibung oder vorgespannte Federn mit Spiel. St�o�e werden nicht behandelt. Die klassi-
schen Prinzipe von d'Alembert, Jourdain und Gauss werden mit Hilfe variationeller Ungleichungen verallgemeinert. Es
wird ein streng konvexes Minimierungsproblem f�ur die unbekannten Beschleunigungen des Systems aufgestellt, das in der
klassischen Mechanik als das Prinzip des kleinsten Zwangs bekannt ist.

The paper treats the evaluation of the accelerations in rigid multibody systems which are subjected to set-valued force
interactions. The interaction laws may be represented by non-smooth potential functions, and then derived through gen-
eralized differentiation. The resulting multifunctions contain the cases of smooth force characteristics, bilateral con-
straints, as well as combinations of them like unilateral constraints, dry friction, or prestressed springs with play. Im-
pacts are excluded. A generalization of the classical principles of d'Alembert, Jourdain, and Gauss in terms of
variational inequalities will be given. A strictly convex minimization problem depending on the unknown accelerations of
the system will be stated, known in classical mechanics as the Principle of Least Constraints.

1. Introduction

In classical mechanics the concept of virtual work is used in order to classify displacement-dependent forces. Forces are
called ªactiveº or ªapplied forcesº if they produce virtual work, otherwise they are called ªpassiveº or ªconstraint
forcesº. Both types are treated completely different with respect to formulation and evaluation of the equations of
motion: Applied forces are continuous functions of the displacements and can therefore be directly evaluated when the
displacements are known. Passive forces originate from bilateral constraints and can not be represented by such func-
tions. Usually certain displacements are prescribed but the forces are arbitrary. The evaluation of the passive forces is
thus done either by inverting the corresponding force characteristics which yields additional equations depending on
the displacements known as constraints, or by choosing appropriate reduced sets of new coordinates, called ªminimal
coordinatesº, such that the constraints are automatically satisfied and thus eliminated from the equations of motion.
This approach makes sense as long as the above mentioned classification applies to all forces within a multibody
system. However, there are forces of intermediate type acting in some regions as applied forces, in other regions as
constraints. Usually one becomes aware of them when dealing with dry friction, unilateral constraints, or impact
effects. This type of forces leads to variational and hemivariational inequalities which are variational expressions for
multivalued differential equations obtained by subdifferentiation or generalized differentiation of certain convex or non-
convex superpotential functions, as it is today well-known in continuum mechanics, cf. [1]ÿ[3]. In classical mechanics
only small attention is paid to the case of inequality constraints. One may find, for example, certain partial results on
inequality Lagrange multipliers in the book [4], as well as in [5] and [6] where also the inequality form of the Principle
of Virtual Work is discussed. Even in modern literature only a few works have appeared until now concerning inequal-
ity constraints and nondifferentiable energy functions. We refer especially to the papers [7]ÿ[10] and to the few refer-
ences given there.

Nearly all publications touching non-smooth dynamics are concentrated on the unilateral contact problem with
Coulomb friction and/or impacts. They may be classified with respect to the level on which the interaction laws are
stated: In [10] the displacement level is used in order to express the unilateral constraints which leads to the Principle
of d'Alembert in inequality form. Every kind of dry friction as well as impacts are excluded because they demand a
representation using velocities. Additionally the accelerations of the system are not accessible from this formulation.
Based on the velocity level the complete friction-impact problem is treated in [8] as well as in [11], see e.g. [12] for
further references. But even there only a few comments are made on how to determine the accelerations if they exist.
In [13]ÿ[17] the interaction laws are stated heuristically on the acceleration level after splitting off the impact equa-
tions. This approach has the advantage that accelerations may be directly computed when needed, but up to now an
analytical back-up is missing. The aim of the presented paper is thus twofold. Besides of the main purpose of determin-
ing the accelerations of the dynamic system we try to find an analytical approach which connects the three different
representations of interaction laws, i.e. the formulations using the displacement, velocity, and acceleration level, respec-
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tively. Secondly, we try to discuss how methods used in classical mechanics fit into this setting and how classical
terminology might be understood when applied to non-smooth systems. We do not treat the impact itself. Impacts are
beyond the scope of this paper. We are only interested in the accelerations of the system. Pre- and post-impact veloci-
ties, however, enter fully our description. Furthermore, we restrict ourselves to dry friction, i.e. Coulomb friction with
given normal force. This restriction is necessary because all what follows is based on a potential theory approach. We
allow, however, arbitrary friction laws like Stribeck-curves, and additionally multivalued displacement dependent inter-
actions.

The paper is organized as follows. In Section 2 some preliminaries concerning differentiation of non-smooth func-
tions are stated. It contains especially the definition of the generalized and the one-sided directional derivative together
with the generalized gradient and the subdifferential which will be used throughout the rest of the paper. In Section 3
the equations of motion for non-smooth dynamic systems are derived from Lagrange's equations. Following [8], [18] the
velocities are considered as functions of bounded variations, and the balance of the changes in momenta and forces is
replaced by an equality of measures which covers both, impacts and impact free motion. This equality is then split into
a purely atomic and a Lebesgue measurable part taking into account the impacts and the motion without velocity
jumps which might be also nonsmooth, respectively. The remaining part of the paper treats only impact free motion.
The impact equations are no longer considered. Section 4 deals with systems subjected to forces resulting from a dis-
placement potential. Without making any difference between passive and active forces three variational inequalities are
stated, together with the corresponding differential inclusions. Following classical mechanics they are called the Princi-
ples of d'Alembert, Jourdain, and Gauss, where the latter provides a strictly convex minimization problem closely
related to the Principle of Least Constraints. In Section 5 a proof of the equivalence of the principles introduced above
is sketched. The proof uses variational techniques and is mainly based on the classical idea that displacements and
velocities must not be varied when velocity and acceleration variations are considered, respectively. Section 6 contains
some remarks on how the reservoirs of forces provided by the three principles are connected together, and how to deal
with accelerations when interested in the evolution of the dynamics leading into the past. In Sections 7ÿ9 the pre-
sented theory is applied to smooth interaction forces, unilateral, and bilateral constraints in order to show its compat-
ibility with respect to the different classical approaches. Finally, in Section 10 the theory is extended to non-integrable
potential functions depending on displacements, and also on velocities which makes it possible to include even forces
related to viscous damping, dry friction, and nonholonomic constraints.

2. Preliminaries

In this section some basic definitions, notations, and properties of elements of nonsmooth analysis that will be used
later in the paper are put together. Most of the material is taken from [1] and then applied to finite dimensional
spaces. For detailed information we refer the reader to this book and especially to the references given there.

Let D be a non-empty subset of Rm and v 2 D. Following [19] the contingent cone KD and the tangent cone TD

to D at v may be defined by

KD�v� � fu j u 2 Rm; for mn ! 0� there exists un ! u with v� mnun 2 Dg ; �2:1�

TD�v� � fu j u 2 Rm; for mn ! 0� and vn !
D

v there exists un ! u with vn � mnun 2 Dg : �2:2�

We set K;�v� � ;, T;�v� � ;, and KD�v� � ;, TD�v� � ; if v 62 D. Both cones are closed, and, if not empty, they always
contain 0. Furthermore, TD�v� is convex and is always contained in KD�v�, TD�v� � KD�v�. For D being convex we
have KD�v� � TD�v�. If D is a smooth manifold of class C1, then KD�v� � TD�v�, and they are identified with the usual
tangent vector space to D at v which is a subspace of Rm. Note that for v 2 intD both cones become
TD�v� � KD�v� � R

m. We say that a set D is regular at a point v if TD�v� � KD�v�. Regularity holds especially in the
three cases mentioned above, i.e. whenD is a convex set, or D is a smooth manifold, or v is not a boundary point of D.

The normal cone ND�v� to D at v is defined as

ND�v� � fw j w 2 Rm; hu; wi � 0 for all u 2 TD�v�g : �2:3�

We set N;�v� � ; and ND�v� � ; if v 62 D. The normal cone is a closed, convex cone always containing 0 if not empty.
In our case it is the polar (see e.g. [20]) of the closed, convex tangential cone, i.e. ND�v� and TD�v� are mutually polar.
Observe that ND�v� � R

m , TD�v� � 0 and vice versa. If TD�v� is a halfspace then ND�v� degenerates to a ray perpen-
dicular to the boundary of TD�v�. If TD�v� is a subspace, for example the tangent space to a smooth manifold D, then
ND�v� is its orthogonal complement.

The three cones introduced above will be applied in two different situations: By defining the generalized gra-
dients of a function f on Rn as subsets of Rn� 1 and, later in the paper, by investigating the properties of f on
its domain as subsets of Rn. We will deal with functions taking values in the extended real line, i.e.
f : Rn ! R [ f�1g � �ÿ1; �1�, but we will restrict ourselves to proper and lower semicontinuous (l.s.c.) functions
only, i.e. functions for which f 6� �1, and functions for which the set fx j x 2 Rn; f�x� � lg is closed for every l 2 R
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(see e.g. [1]). The effective domain of f is defined by

dom f � fx j x 2 Rn; f�x� < �1g ; �2:4�

and the epigraph of f by

epi f � f�x; l� j l � f�x�; l 2 R; x 2 Rng ; �2:5�

which is due to the properness and lower semicontinuity of f a non-empty closed subset of Rn� 1 [19]. With the help of
(2.3), (2.5) one defines the generalized gradient �@f�x� to be (see e.g. [1])

�@f�x� � fy j y 2 Rn; �y; ÿ1� 2 Nepi f�x; f�x��g ; �2:6�

which is a convex, closed subset of Rn if f�x� is finite. In [1] the generalized gradient (2.6) is used in order to define
the generalized directional derivative f"�x; z� in the sense of Rockafellar,

f"�x; z� � supfhz; yi j y 2 �@f�x�g ; �2:7�

who has given another equivalent definition of it [21], [22]. Obviously one can express the generalized gradient �@f�x� in
terms of the generalized directional differential (2.7),

�@f�x� � fy j y 2 Rn; f"�x; z� � hy; zi for all zg ; �2:8�

or by the hemivariational inequality

y 2 �@f�x� , f"�x; z� � hy; zi for all z : �2:9�

The generalized directional derivative (2.7) as a function of z has some important properties which will be used
throughout the paper. As we will see in Section 3 this function provides the velocity and the acceleration potential
corresponding to a given displacement potential of a dynamic system. Let x be fixed in (2.7) and define

g : z ! f"�x; z� : �2:10�

The following properties are proved in [22]: The function g�z� is convex, l.s.c., positively homogeneous,

g�lz� � lg�z� for l > 0 ; �2:11�

and subadditive,

g�w� z� � g�w� � g�z� ; �2:12�

when g�z� > ÿ1 for all z, and one has

epi g � Tepi f�x; f�x�� : �2:13�

The function g�z� may be considered as a ªlinearization of f at x as far as possibleº : The graph of g consists of rays
emanating from (0, 0) which are all tangent (in the sense of the definition (2.2)) to the set obtained by translating
epi f so that the point �x; f�x�� is moved to the origin. The cone generated by these rays is Tepi f�x; f�x��.

For convex functions f one can show [1] that

�@f�x� � @f�x� and f"�x; z� � lim inf
�z! z

f 0�x; �z� ; �2:14�

where @f�x� denotes the subdifferential from convex analysis [20] of f at x defined by

@f�x� � fy j f�z� ÿ f�x� � hy; zÿ xi for all zg ; �2:15�

and f 0�x; z� is the one-sided directional derivative for convex functions f�x�,

f 0�x; z� � inf
m> 0

1

m
�f�x� mz� ÿ f�x�� ; �2:16�

which exists for all z when f�x� is finite at x. Moreover,

f"�x; z� � f 0�x; z� � f�x� z� ÿ f�x� ; �2:17�

where the first inequality follows from equation (2.14), and the second inequality is obvious when setting m � 1 in
(2.16).

For f�x� continuously differentiable at x we have

�@f�x� � rf�x� and f"�x; z� � hrf�x�; zi : �2:18�

Note that in this case the function g�x� from (2.10) can be replaced by the linear mapping z ! hrf�x�; zi. Its graph is
a hyperplane of Rn� 1 which is tangent to the graph of f at the point �x; f�x��.
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3. Lagrange's equations and nonsmooth dynamics

We consider a mechanical system consisting of a finite number of rigid bodies subjected to some geometrical and
physical interactions which are specified later. Such a system is called a multibody system (MBS). We assume the MBS
to have f degrees of freedom, due to some bilateral constraints, and we introduce the set of generalized coordinates
q 2 Rf in the classical sense. This set has the property that every possible (within the bilateral constraints) position
and orientation of all of the bodies within the MBS can be uniquely determined by the values of q and vice versa, and
the dimension of q is minimal.

Motion is defined by making q dependent on time t. We are interested in a motion of the system on a compact
time interval I � �tA; tE�. Following [8] we do not suppose the function q : I ! R

f differentiable everywhere. Instead
we assume the velocities to be functions of bounded variations (BV) on I, i.e. we introduce a velocity function
u : I ! R

f , u 2 BV�I; Rf� such that

8t 2 I : q�t� � q�tA� �
�

t

tA

u�t� dt ; �3:1�

and hence q is absolutely continuous on I (see e.g. [23]). Since u is of bounded variations its left limit uÿ�t� exists at
every point of �tA; tE�, its right limit u��t� exists at every point of �tA; tE�, and the set of points at which u is discon-
tinuous is at most countable and will be denoted by ftig. Moreover, we have _q � u for Lebesgue-almost every
t 2 �tA; tE�, and _q� � u�, _qÿ � uÿ for every t 2 �tA; tE�. Due to the discontinuities of u the accelerations do not exist
at times ti, hence the derivative of u must be understood in the distributional sense. Following [8] we introduce the
differential measure of u and denote it by du. With that measure one has, for every compact subinterval �tk; tl� of I,

�

�tk; tl �

du � u��tl� ÿ uÿ�tk� ; �3:2�

which admits a representation of the velocities in the form

u��t� � uÿ�tA� �
�

�tA ; t�

du ; uÿ�t� � uÿ�tA� �
�

�tA ; t�

du ; �3:3�

when t > tA. Note especially that the term u��t� ÿ uÿ�t� �
�

�t�

du obtained by (3.2) when setting tk � tl � t vanishes

almost everywhere, except of the discontinuity points ti of u. It is known that the differential measure du of a function
u 2 BV�I; Rf� can be split into three parts, i.e.

du � duL � duA � duC : �3:4�

The first term is absolutely continuous with respect to the 1-dimensional Lebesgue measure dt and has a density func-
tion which coincides almost everywhere with the derivative _u of u,

duL � _u dt : �3:5�

This means that u 2 BV�I; Rf� is differentiable a.e., _u 2 L1�I; Rf�, and we denote the at most countable set of points at
which u is not differentiable by ftjg. Note that the set of discontinuity points ftig of u and the set of points ftjg where u is
not differentiable may be different. Since _u exists almost everywhere we may introduce its left limit _uÿ and its right limit
_u� which are defined for every t 2 �tA; tE� with �qÿ � _uÿ and �q� � _u�. With it, equation (3.5) may be rewritten as

duL � _u� dt ; duL � _uÿ dt : �3:6�

Note that _u� � _uÿ � _u for �dt�-a.e. t, and hence _u� dt � _uÿ dt � _u dt which guarantees the validity of (3.6). The
second term in (3.4) is a 0-dimensional measure, i.e. purely atomic and may be represented by

duA � �u� ÿ uÿ� dh ; �3:7�

where dh is concentrated on the set of discontinuities ftig of u. It turns out that dh is the sum of the Dirac point
measures ddi,

dh �
P

i

ddi�Ikl� with ddi�Ikl� �
1 if ti 2 Ikl
0 if ti 62 Ikl

;

�

�3:8�

where Ikl denotes any one-dimensional cell, i.e. any open or closed or half-open interval with endpoints tk and tl. The
third term in (3.4), the measure duC, is singular with respect to dt, and it may have support on sets which have
Hausdorff dimensions between 0 and 1, cf. [24]. We assume duC � 0 because we are not dealing with MBS containing
interaction forces of fractal type.

In order to derive the equations of motion of the MBS we will use Lagrange's equations of second kind [25] with
_q � u a.e.,

d

dt

@T

@u

� �

ÿ
@T

@q

� �

� f for �dt� a:e: t 2 I ; �3:9�
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where f is the covariant vector of the generalized forces, and T is the kinetic energy of the MBS which reads for the
holonomic-scleronomic case

T � 1
2 miju

iuj �3:10�

with mij � mji depending on qk. Same upper and lower indices have to be understood as implying summation. The
evaluation of Lagrange's equations (3.9) yields the equilibrium of the changes in the linear and angular momenta and
the forces of the MBS,

mij _u
j � G ijku

juk � fi for �dt� a:e: t 2 I : �3:11�

Here G ijk are the Christoffel symbols of first kind,

G ijk �
1
2 �mik; j �mij; k ÿmjk; i� � G ikj ; �3:12�

where mab; c denotes the partial derivative of mab with respect to qc; mab; c � @mab=@qc. Setting

hi � ÿG ijku
juk ; �3:13�

and fhig � h; fmijg � M; f _uig � _u; ffig � f we obtain from (3.11) the expression

M�q� _uÿ h�q; u� � f for �dt� a:e: t 2 I �3:14�

with a symmetric and positive definite mass matrix M 2 Rf; f (see e.g. [25]) and a vector h 2 Rf which is a smooth
function of �q; u� containing the gyroscopical accelerations of the MBS.

Equation (3.14) is not suitable for further investigations because exactly the points of interest, i.e. the disconti-
nuity points of u and of its derivative _u are excluded. Thus we try to get rid of the restriction ªalmost everywhereº
and replace equation (3.14) as in [8] by the corresponding equality of measures,

M�q� duÿ h�q; u� dt � dR ; �3:15�

which holds for every t 2 I. From the mechanical point of view this equality should be understood as an equilibrium of
momenta and impulsions at the impact, and as a balance of changes in momenta and of forces for impact free motion.
The measure dR in (3.15) contains both, Lebesgue-measurable forces f and purely atomic impact impulsions F . In-
deed, with

dR � f dt� F dh ; �3:16�

du � duL � duA from (3.4), and duA from (3.7), equation (3.15) becomes

M�q� duL �M�q��u� ÿ uÿ� dhÿ h�q; u� dt � f dt� F dh ; �3:17�

and can be split into the atomic and the Lebesgue parts, i.e.

M�q��u� ÿ uÿ� dh � F dh ; M�q� duL ÿ h�q; u� dt � f dt : �3:18�

From the atomic part we obtain after evaluation of dh with respect to (3.8) the impact equations of the system,

M�qi��u
�
i ÿ uÿi � � Fi ; �3:19�

where qi � q�ti�; u
�
i � u��ti�; Fi � F �ti�, and ti is any of the discontinuity points of the velocity u. Since the right

equation in (3.18) is not affected by any changes of Lebesgue measure zero we may rewrite it with the help of (3.6) in
order to obtain the two equivalent expressions

M�q� _u� dtÿ h�q; u�� dt � f� dt ; M�q� _uÿ dtÿ h�q; uÿ� dt � fÿ dt : �3:20�

Note that the points where u� 6� uÿ and _u� 6� _uÿ are immaterial and hence Lebesgue-negligible. In this setting it is
quite natural to assume similar properties for the forces f in the right-hand sides of equations (3.18) and (3.20).
Considered as functions of time we propose f� � fÿ � f for �dt�-a.e. t, where f� and fÿ denotes the right and left
limits of f , respectively. Now we ªdivideº both equations in (3.20) by dt. Considering �q� � _u� and _q� � u� we
obtain

M�q� �q� ÿ h�q; _q�� � f� ; M�q� �qÿ ÿ h�q; _qÿ� � fÿ ; �3:21�

and have the following r e s u l t : Every motion q�t� which fulfills the impact equation (3.19) and one of the equations in

(3.21), is also a solution of the measure equality (3.15). In the following we are only interested in the values of the
accelerations. Thus the impact equation (3.19) will no longer be considered. The left equation in (3.21) represents the
evolution of the MBS with respect to the future, because _q� and �q� are the right limits of the velocities and accelera-
tions, respectively. Suppose, for example, that q; _q�, and f� are given at a certain time point. In this case we may
directly compute �q� from the left equation in (3.21) which describes the behaviour of the solution for succeeding times.
Analogously, the right equation in (3.21) contains the evolution of the system pointing into the past, i.e. the evolution
after reversal of the time arrow.
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Finally we want to discuss once again how the discontinuity points ftig of the velocities _q and ftjg of the accele-
rations �q are connected together. For almost every t we have _q� � _qÿ and �q� � �qÿ, i.e. continuity. At the discontinuity
points ftig of the velocities we have _q� 6� _qÿ. These velocity jumps may be accompanied by continuous accelerations
�q� � �qÿ or even discontinuous accelerations �q� 6� �qÿ as it can already be seen by the most primitive impact system:
We consider the bouncing ball problem with completely elastic impact. At the impact time the velocity _qÿ < 0 is
reversed, _q� � ÿ _qÿ. The acceleration at the impact time is continuous because it is obtained by the equation of motion
for the free-flight state �q � �q� � �qÿ � ÿg, where g denotes gravity. Now we consider the same system but under the
influence of a completely inelastic impact. The acceleration before the impact is �q � ÿg. At the impact the velocity
_qÿ < 0 is changed to _q� � 0, i.e. after the impact the ball remains at the impact surface, and hence �q� � 0. Suppose
now that the velocities are continuous � _q � _q� � _qÿ, i.e. t 62 ftig�. Even in this case there might be an acceleration
jump �q� 6� �qÿ as it can be seen by the following e x amp l e : We consider a mass m sliding on a plane with a velocity
_q > 0 under the influence of dry friction (here: Coulomb friction with a given normal load). The equations of motion
during sliding are �q � ÿmg, where m is the coefficient of friction, and g denotes gravity as above. The mass is deceler-
ated until it comes to a rest. After it has stopped moving we have �q � 0, and hence for the transition point
�qÿ � ÿmg 6� 0 � �q� without any velocity jump.

4. The Principles of d'Alembert, Jourdain, and Gauss: The holonomic case

In this section we will define the Principles of d'Alembert, Jourdain, and Gauss for holonomic sceleronomic MBS, and
we will show that the Principle of Gauss is equivalent to a strictly convex optimization problem which corresponds to
the classical Principle of Least Constraints. In the following we are only interested in the right limits of the accelera-
tions, i.e. in the values of �q� from the first equation in (3.21),

M�q� ÿ h � f� : �4:1�

In order to obtain a complete description of the dynamics of the MBS we must introduce some force laws which
connect the forces f�, and the displacements q, and velocities _q�. We will assume that these interaction laws may be
derived from a potential function V through generalized differentiation. We call the MBS to be holonomic if V does
not depend on the velocities _q�, and we call it to be scleronomic if V does not depend on time t. These definitions do
not agree with the traditional where both terms are used only in context with constraints. However, we will see that
constraints are now taken into account by the potential functions, thus these terms should be applied there. For the
holonomic scleronomic case we thus have V as a function of q, i.e. as a displacement potential, and we will equip it
with the following properties: Let V : Rf ! R [ f�1g be a (non-smooth, non-convex) l.s.c. function with effective
domain C such that epi V consists of regular points only, TepiV �q; V �q�� � KepiV �q; V �q��. With that assumption we
have excluded the so-called ªreintrant cornersº [26], the physical meaning of which being not yet well understood in
multibody dynamics. The potentials V �q� considered here thus ªshare the properties of nonsmooth convex and smooth
nonconvex functionsº rather than being general which, however, seems to be sufficient at the present time with respect
to application problems. We will now assume force laws of the form

ÿf� 2 �@V �q� ; �4:2�

where �@V �q� denotes the generalized gradient (2.6) of V at q. If we are interested in the accelerations from the past
��qÿ� we have to consider the second equation in (3.21) together with the force law ÿfÿ 2 �@V �q�. Note that both, ÿfÿ

and ÿf� belong to the same set �@V �q� but might be different. They coincide, for example, if �@V �q� consists of one
element only, i.e. for example in the smooth case where we have ÿf� � ÿfÿ � rV �q�.

By using the force law (4.2) we are able to take into account ªsmoothº interaction forces in the classical sense,
for example springs with nonlinear characteristics, as well as unilateral and additional (this also means all) smooth
bilateral constraints, and certain set-valued interactions. Examples will be given in Sections 7ÿ9 and can also be found
in [1]. Every kind of viscous and dry friction is excluded as well as nonholonomic constraints. They demand a represen-
tation via velocity potentials which is subject of Section 10.

Combining (4.1) and (4.2) we get the differential inclusions of the system (see e.g. [10] for the convex case)

ÿ�M�q� ÿ h� 2 �@V �q� : �4:3�

With the help of (2.9) the inclusion (4.2) can also be expressed by means of a hemivariational inequality

ÿf� 2 �@V �q� , V "�q; q? ÿ q� � hÿf�; q? ÿ qi ; q 2 C ; for all q? ; �4:4�

where V "�q; q? ÿ q� denotes the generalized directional derivative (2.7) of V at q in the direction �q? ÿ q�. Together
with (4.1) we obtain the expression

�A� ÿ hM�q� ÿ h; q? ÿ qi � V "�q; q? ÿ q� ; q 2 C ; for all q? ; �4:5�

6



which holds for every fixed time t, and which we will call the Principle of d'Alembert. Note that the variations �q? ÿ q�
are not restricted to any subset of Rf , thus values V "�q; q? ÿ q� � �1 which occur when q is at the boundary of C are
allowed. The physical dimension of equation (4.5) is that of ªworkº [Nm]. Indeed, we will see in Section 9 when dealing
with bilateral constraints that (4.5) leads to the classical result known as ªconstraint forces produce no workº.

Like in classical mechanics we will now introduce a variational principle similar to equation (4.5) but with the
physical dimension of a power [Nm/s] which is also based on a potential function. For that purpose we define the
function

F : p ! V "�q; p� �4:6�

and call it the velocity potential of the MBS. Note that the velocity potential F is nothing else than the generalized
directional derivative of V at a point q considered as a function of the direction p. By equations (2.10)ÿ(2.13) the
velocity potential is convex, l.s.c., positively homogeneous, and subadditive, and obviously dom F � TC�q� for every
fixed q. We define the Principle of Jourdain for every fixed time t to be

�J� ÿ hM�q� ÿ h; _q� ÿ _q�i � F"� _q�; _q� ÿ _q��; q 2 C ; _q� 2 TC�q� ; for all _q� : �4:7�

Although F is convex we have used the generalized directional derivative F"� _q�; �� from (2.7) but not the directional
derivative F0� _q�; �� from (2.16). This is necessary in order to overcome difficulties at the boundary of TC�q� where both
derivatives may not coincide, even for convex functions. The magnitude _q� denotes just any arbitrary velocity in order to
express that the inequality in equation (4.7) has to be valid for every direction � _q� ÿ _q��. There is no connection between
q? in (4.5) and _q� in (4.7), at least not now, and one must not understand _q� to be the derivative of q?. Things will be clear
in the next section where we will show how the principles (4.5) and (4.7) are connected together. With the help of equa-
tion (2.9) we may find analogously to (4.3) a differential inclusion which is equivalent to Jourdains Principle (4.7),

ÿ�M�q� ÿ h� 2 @F� _q�� ; �4:8�

where due to the convexity of F one may use the subdifferential (2.15) instead of the generalized gradient, cf. (2.14).
In order to define the Principle of Gauss we proceed in the same manner as above. We introduce the accelera-

tion potential to be the generalized directional derivative of the velocity potential as a function of its direction,

Y : p ! F"� _q�; p� ; �4:9�

and notice that Y�p� is also convex, l.s.c., positively homogeneous, and subadditive, and its effective domain is given
by dom Y � TTC�q�� _q

�� for every fixed q; _q�. We define the Principle of Gauss for every fixed time t to be

�G� ÿ hM�q� ÿ h; �q� ÿ �q�i � Y"��q�; �q� ÿ �q�� ;

q 2 C ; _q� 2 TC�q� ; �q� 2 TTC�q�� _q
��; for all �q� ; �4:10�

which has the physical dimension of a power per time [Nm/s2], and where the term �q� has to be understood in the
same sense as _q� above. With the help of (2.9) we obtain the differential inclusion

ÿ�M�q� ÿ h� 2 @Y��q�� ; �4:11�

which is an equivalent representation of (4.10).
Equation (4.11) constitutes the necessary and sufficient optimality conditions of a strictly convex optimization

problem [20], which is obvious by rewriting it in the form

0 2 M�q� ÿ h� @Y��q�� : �4:12�

The accelerations �q� are hence the optimal solutions of the strictly convex program

�Z� �q� � arg minff���q��g ; f��q�� � 1
2 hM�q�; �q�i ÿ hh; �q�i �Y��q�� ; �4:13�

which is called in classical mechanics the Principle of Least Constraints. The cost function f is strictly convex because
M is a symmetric and positive definite matrix, and the acceleration potential Y is convex. Moreover, since f is strictly
convex, the optimal solutions �q� are unique.

5. The connection between the principles

In this section we will show that the three principles are equivalent, at least for a certain class of potential functions.
For that purpose we have to consider the potential functions V; F, and Y at different time points which we will
denote by lower indices for brevity. For example, qn means q�tn�; and qy means q�ty� if we are interested in the displace-
ments q at time tn and time ty, respectively. In the first part of the section we will show the equivalence of d'Alem-
bert's and Jourdain's principle, (J) = (A). The connection between Jourdain's and Gauss' principle is discussed in the
second part. As a result the equivalence (G) = (J) is expected to hold for certain types of potential functions.
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The main idea of the proofs below consists of the following reflections (cf. [20], p. 235): Suppose that ty is a
given time point, and qy and _q�y are the displacements and right velocities at ty. Let q1; q2; . . . be a sequence of displace-
ments at times t1 > t2 > . . . > ty which approaches qy asymptotic to the half-line emanating from qy in the direction of
_q�y . In this case, the forces ÿf�n 2 �@V �qn� should tend toward the portion of the boundary of �@V �qy� consisting of the
forces ÿf�y at which _q�y is normal to �@V �qy�.

Let ty be given, tn > ty, and let qy � q�ty�, qn � q�tn� such that qy; qn 2 dom V � C. Let q?n � q?�tn� be any other
displacement at time tn not necessarily belonging to dom V . In the following we restrict ourselves to displacements
qn; q

?
n sufficiently close to qy and replace V �q� by its first order approximation ~V �q� at q � qy, i.e. we consider, instead

of V �q�, the function

~V �q� � V �qy� � V "�qy; q ÿ qy� ; dom ~V � qy � TC�qy� ; �5:1�

which is assumed to be proper. Note that ~V �q� is a l.s.c. convex function because it is the translate of the l.s.c. posi-
tively homogeneous convex function q ! V "�qy; q� such that the point (0, 0) is moved to �qy; V

"�qy; qy��. Note also that
the effective domain of ~V is a closed convex set, i.e. the set obtained by translating the origin of the closed convex cone
TC�qy� to the point qy. Under these assumptions the following proposition (cf. [20], Theorem 24.6) holds.

Proposition 5.1: Let ~V : Rf ! �ÿ1; �1� be the l.s.c. proper convex function defined in (5.1) with qy 2 C. Let

ftng be a sequence such that t1 > t2 > . . . > ty, and tn ! ty for n ! 1. Let q�t� be an absolutely continuous function

such that q�ty� � qy; q�tn� � qn with qn 2 dom ~V , and qn not necessarily distinct from qy. Then

i) ~F"� _q�y ; _h�y� �
~V "�qy; _h�y� for all _h�y ;

ii) lim sup
n!1

~V "�qn; _h�y� �
~V "�qy; _h�y� for all _h�y ; �5:2�

iii) lim sup
n!1

~V "�qn; _h�y� �
~F"� _q�y ; _h�y� for all _h�y ;

where qn ! qy as n ! 1, ~F��� � ~V "�qy; �� is the velocity potential (4.6) of ~V at qy, and _q�y is the right velocity of q at

time ty with _q�y 2 TC�qy�.

Proo f : By property (2.17), the one-sided generalized directional derivative ~F" in (5.2) fulfills

~F"� _q�y ; _h�y� �
~F� _q�y � _h�y� ÿ

~F� _q�y � : �5:3�

Since ~F��� is subadditive (2.12) we have

~F� _q�y � _h�y� �
~F� _q�y � �

~F� _h�y� : �5:4�

Combining equations (5.3) and (5.4) yields

~F"� _q�y ; _h�y� �
~F� _h�y� ; �5:5�

which proves the first assertion, because ~F� _h�y� �
~V "�qy; _h�y� by definition.

By assumption, ~V ��� is a proper convex function on Rf , and qn 2 dom ~V with dom ~V closed. Thus, the function
~V "��; _h�y� is u.s.c. and assertion ii) holds.

In order to prove the third assertion we have to state the potential ~V at different displacements corresponding to
different time points. Let qy � q�ty�; qn � q�tn� 2 dom ~V as mentioned above, and let q?n � q?�tn� be any other displace-
ment, not necessarily belonging to dom ~V . We have

~V "�qn; q
?
n ÿ qn� � ~V �q?n� ÿ

~V �qn� ; �5:6�

because ~V �q� is convex and hence property (2.17) applies. Note that q?n may not belong to dom ~V , i.e. values
~V �q?n� � �1 are allowed, but by assumption qn 2 dom ~V , and hence ~V �qn� < �1. Equation (5.6) holds for any arbi-
trary sequence fq?ng. It holds particularly for sequences fq�ng � fq?ng approaching qy for n ! 1. Thus we set

qn ÿ qy � tn _q
�
n ; q�n ÿ qy � tn _q

�
n ; �5:7�

where tn � tn ÿ ty > 0, and tn # 0, qn ! qy, q
�
n ! qy for n ! 1. Note that

lim
n!1

1

tn
�qn ÿ qy� � _q�y ; lim

n!1

1

tn
�q�n ÿ qy� � _q�y ; �5:8�

which is the definition of the right derivatives of the absolutely continuous functions q�t� and q��t� at time ty, where
q��t� has been chosen such that q��ty� � q�ty� but _q�y is arbitrary. This agrees with the well-known classical result that
displacements must not be varied when velocity variations are considered. Since qn 2 dom ~V � qy � TC�qy� by assump-
tion (cf. also (5.1)), and qn ÿ qy � tn _q

�
n by (5.7), and tn > 0 we have _q�n 2 TC�qy� for every n because TC�qy� is a closed

convex cone. Especially for n ! 1 we obtain _q�y 2 TC�qy�. Putting (5.7) into (5.6) with fq�ng � fq?ng yields

~V "�qn; tn� _q
�
n ÿ _q�n �� �

~V �qy � tn _q
�
n� ÿ

~V �qy � tn _q
�
n � : �5:9�
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With the help of (5.1) we evaluate the right-hand members of (5.9) and obtain

~V "�qn; tn� _q
�
n ÿ _q�n �� � V "�qy; tn _q

�
n� ÿ V "�qy; tn _q

�
n � : �5:10�

Since ~V "�qn; �� and V "�qy; �� are positively homogeneous and tn > 0, property (2.11) applies, and (5.10) becomes

~V "�qn; _q
�
n ÿ _q�n � � V "�qy; _q

�
n� ÿ V "�qy; _q

�
n � : �5:11�

Considering that V "�qy; �� � ~V "�qy; �� by equation (5.1) and that ~V "�qy; �� � ~F��� by definition we are now able to write
the inequality (5.11) in the form

~V "�qn; _q
�
n ÿ _q�n � �

~F� _q�n� ÿ
~F� _q�n �: �5:12�

Equation (5.12) is valid for every sequence f _q�ng. We choose sequences

_q�n ÿ _q�n � m _h�yk ; m > 0 ; �5:13�

with arbitrary _h�yk; _h�y such that _h�yk ! _h�y when k ! 1 and eliminate _q�n from (5.12), i.e.

~V "�qn; _h�yk� �
1

m
� ~F� _q�n � m _h�yk� ÿ

~F� _q�n �� : �5:14�

This inequality holds for any m > 0, where the most restrictive case is given when the right-hand side attains its
infimum with respect to m. In that case we have, together with the definition of the directional derivative (2.16),

~V "�qn; _h�yk� � inf
m> 0

1

m
� ~F� _q�n � m _h�yk� ÿ

~F� _q�n �� �
~F0� _q�n ; _h�yk� : �5:15�

Now we let k ! 1, i.e. _h�yk ! _h�y . Taking the ªlim infº of the left-hand member and the right-hand member of (5.15)
we obtain

~V "�qn; _h�y� � lim inf
_h�
yk
! _h�

y

~V "�qn; _h�yk� � lim inf
_h�
yk
! _h�

y

~F0� _q�n ; _h�yk� �
~F"� _q�n ; _h�y� ; �5:16�

where the first inequality holds because ~V "�qn; �� is l.s.c., and the equality is due to (2.14). Finally we let n ! 1,
where qn ! qy and _q�n ! _q�y by equations (5.7) and (5.8), respectively. Since ~V "��; _h�y� as well as ~F"��; _h�y� are u.s.c. we
may take the ªlim supº in order to obtain

lim sup
n!1

~V "�qn; _h�y� � lim sup
n!1

~F"� _q�n ; _h�y� �
~F"� _q�y ; _h�y� for all _h�y ; �5:17�

which proves assertion iii). k
We expect that Proposition 5.1 applies also to V �q� when taken from a certain class of non-convex functions. In

this case we may write according to equation (5.2)

lim sup
n!1

V "�qn; _h�y� � F"� _q�y ; _h�y� � V "�qy; _h�y� for all _h�y : �5:18�

This seems at least to be true when the graphs of V and ~V are locally C1-diffeomorph at the point �qy; V �qy��. A situ-
ation where (5.18) obviously does not hold is given when epi V is not regular at qy, i.e. in the case of reintrant corners.

Theorem 5.2: The principles of d'Alembert (4.5) and Jourdain (4.7) are equivalent if (5.18) holds: Suppose that

q�t� is a given absolutely continuous function on the time interval �tA; tE� such that d'Alembert's principle holds for

every ty 2 �tA; tE�. Then Jourdain's principle holds on �tA; tE�. If Jourdain's principle holds on �tA; tE�, then d'Alem-

bert's principle also does.

Proo f : We state d'Alembert's principle (4.5) at time tn > ty with fq�ng � fq?ng and q�n ÿ qn � tnm _h
�
y according to

equations (5.7), (5.13),

ÿh�M�q� ÿ h�n; _h�yi � V "�qn; _h�y� ; qn 2 C ; for all _h�y : �5:19�

Together with (5.18) we obtain for n ! 1,

ÿh�M�q� ÿ h�y; _h�yi � lim sup
n!1

V "�qn; _h�y� � F"� _q�y ; _h�y� � V "�qy; _h�y� for all _h�y ; �5:20�

where qy 2 C and _q�y 2 TC�qy� due to Proposition 5.1. Suppose that Jourdain's principle holds at ty, i.e.
ÿh�M�q� ÿ h�y; _h�yi � F"� _q�y ; _h�y�. Due to F"� _q�y ; _h�y� � V "�qy; _h�y� the inequality ÿh�M�q� ÿ h�y; _h�yi � V "�qy; _h�y� also
holds which is d'Alembert's principle at ty. Suppose that d'Alembert's principle holds for every tn > ty. It holds particu-
larly for the limit tn ! ty, where ÿh�M�q� ÿ h�y; _h�yi � lim sup

n!1
V "�qn; _h�y�. Since lim sup

n!1
V "�qn; _h�y� � F"� _q�y ; _h�y�, we

have ÿh�M�q� ÿ h�y; _h�yi � F"� _q�y ; _h�y� which is Jourdain's principle at ty. This proves Theorem 5.2 because ty 2 �tA; tE�
is arbitrary. k
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In the remaining part of the section we will sketch the connection between Jourdain's and Gauss' principles. The
calculations are basically the same as in the first part and thus shortened. As in (5.1) we will consider, instead of the
velocity potential ~F, its first order approximation

�F� _q�� � ~F� _q�y � �
~F"� _q�y ; _q

� ÿ _q�y � ; dom �F � _q�y � TTC�qy�� _q
�
y � ; �5:21�

which is a l.s.c. proper convex function of _q�, and which is independent of q. Additionally to the assumptions made in
Proposition 5.1 we have

Proposition 5.3: Let �F : Rf ! �ÿ1; �1� be the l.s.c. proper convex function (5.21) with _q�y 2 TC�qy�. Let

ftng be a sequence such that t1 > t2 > . . . > ty, and tn ! ty for n ! 1. Let _q��t� be locally absolutely continuous such

that _q��ty� � _q�y ; _q��tn� � _q�n with _q�n 2 dom �F and _q�n not necessarily distinct from _q�y . Then

i) �Y"��q�y ; �h
�
y � �

�F"� _q�y ; �h
�
y � for all �h�y ;

ii) lim sup
n!1

�F"� _q�n ; �h
�
y � �

�F"� _q�y ; �h
�
y � for all �h�y ; �5:22�

iii) lim sup
n!1

�F"� _q�n ; �h
�
y � �

�Y"��q�y ; �h
�
y � for all �h�y ;

where _q�n ! _q�y , �q
�
n ! �q�y as n ! 1, �Y��� � �F"� _q�y ; �� is the acceleration potential (4.9) of �F at _q�y , and �q�y is the right

derivative of _q� at time ty, i.e. the right acceleration of q at time ty with �q�y 2 TTC�qy�� _q
�
y �.

Proo f : The proof of the first and the second assertion works analogously to the proof of Proposition 5.1. Since
�Y is a positively homogeneous convex function and hence subadditive we can apply (5.3)±±(5.5) when replacing ~F; _q�y ,
_h�y by �Y ; �q�y ; �h

�
y . Furthermore, �F��� is a proper convex function on Rf , and _q�n 2 dom �F which is a closed convex set.

Hence, the function �F"��; �h�y � is u.s.c. In order to prove the third assertion we state, similarly to equation (5.6), the
velocity potential �F at time tn with respect to the velocities _q�n � _q��tn� and _q�n � _q��tn�. Since �F is convex we have

�F"� _q�n ; _q
�
n ÿ _q�n � �

�F� _q�n� ÿ
�F� _q�n � : �5:23�

This equation holds for any arbitrary sequence f _q�ng. It holds particularly for sequences f _q�n g � f _q�ng approaching _q�y for
n ! 1. Similarly to (5.7) we set

_q�n ÿ _q�y � tn�q
�
n ; _q�n ÿ _q�y � tn�q

�
n ; �5:24�

where tn � tn ÿ ty > 0, and tn # 0, _q�n ! _q�y , _q
�
n ! _q�y for n ! 1. As in (5.8) we have

lim
n!1

1

tn
� _q�n ÿ _q�y � � �q�y ; lim

n!1

1

tn
� _q�n ÿ _q�y � � �q�y ; �5:25�

which is the definition of the right accelerations of _q��t� and _q��t� at time ty. Note that _q��t� has been chosen such
that _q��ty� � _q��ty�, but �q�y is arbitrary which agrees with the classical approach that velocities (and displacements)
must not be varied under acceleration variations. Since _q�n 2 dom �F � _q�y � TTC�qy�� _q

�
y �, and _q�n ÿ _q�y � tn�q

�
n , and

tn > 0, we have �q�n 2 TTC�qy�� _q
�
y � for every n, particularly, �q�y 2 TTC�qy�� _q

�
y � because �q�n ! �q�y when n ! 1. Now we sub-

stitute (5.24) into (5.23) with f _q�n g � f _q�ng and perform the same steps as in equations (5.9)±±(5.12) in order to obtain

�F"� _q�n ; �q
�
n ÿ �q�n � �

�Y��q�n � ÿ
�Y��q�n � ; �5:26�

which holds for every sequence f�q�n g. As in (5.13) we choose sequences

�q�n ÿ �q�n � m�h�yk ; m > 0 ; �5:27�

with arbitrary �h�yk; �h
�
y such that �h�yk ! �h�y when k ! 1. With the help of (5.27) we eliminate �q�n from (5.26), take the

ªinfº with respect to m, let k ! 1 and n ! 1 as in (5.14)±±(5.17). This finally provides

lim sup
n!1

�F"� _q�n ; �h
�
y � �

�Y"��q�y ; �h
�
y � for all �h�y �5:28�

and proves the third assertion of Proposition 5.3. k
We expect even here that Proposition 5.3 may be generalized to certain classes of functions F� _q�� � V "�q; _q��.

In this case we may write according to (5.22),

lim sup
n!1

F"� _q�n ; �h
�
y � � Y"��q�y ; �h

�
y � � F"� _q�y ; �h

�
y � for all �h�y : �5:29�

Theorem 5.4: The principles of Jourdain (4.7) and Gauss (4.10) are equivalent if equation (5.29) holds. Sup-

pose that q�t� is given on the time interval �tA; tE� such that Jourdain's principle holds for every ty 2 �tA; tE�. Then

Gauss' principle holds on �tA; tE�. If Gauss' principle holds on �tA; tE�, then Jourdain's principle also does.
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Proo f : We state Jourdain's principle (4.7) at time tn > ty with f _q�n g � f _q�ng and _q�n ÿ _q�n � tnm�h
�
y according to

(5.24) and (5.27). For n ! 1 we obtain together with (5.29),

ÿh�M�q� ÿ h�y; �h
�
y i � lim sup

n!1
F"� _q�n ; �h

�
y � � Y"��q�y ; �h

�
y � � F"� _q�y ; �h

�
y � for all �h�y ; �5:30�

with _q�y 2 TC�qy� and �q�y 2 TTC�qy�� _q
�
y �. The rest of the proof works analogously to the proof of Theorem 5.2. k

6. Remarks

The main result of Section 5 may be summarized as follows: The principles of d'Alembert, Jourdain, and Gauss are
equivalent for a certain class of non-convex potential functions which are ªnot too far awayº from the convex case. One
important property of such systems may be expressed via the inequalities (5.20) and (5.30),

ÿhM�q� ÿ h; �h�i � Y"��q�; �h�� � F"� _q�; �h�� � V "�q; �h�� for all �h� ; �6:1�

or, by taking into account the representation (2.8) of the generalized gradients (and subdifferentials) together with
equation (6.1), via the inclusions

ÿ�M�q� ÿ h� 2 @Y��q�� � @F� _q�� � �@V �q� ; �6:2�

cf. equations (4.3), (4.8), and (4.11). The advantages of introducing acceleration potentials and solving Gauss' principle
instead of d'Alembert's principle are multiple: First of all we were able to proceed from a non-convex displacement
potential to a convex and hence much better behaved acceleration potential which is positively homogeneous in addi-
tion. Secondly, since the set @Y��q�� is contained in �@V �q� (see (6.2)) the numerical evaluation of it becomes easier.
Sometimes it may happen that @Y��q�� consists of one element only whereas �@V �q� is really ªbigº. For systems allow-
ing the formulation of the generalized gradients via linear complementarity conditions the dimension of the matrix of
the corresponding Linear Complementarity Problem is directly related to the dimensions of the sets in (6.2). Finally,
by the Principle of Gauss we achieved a representation of the dynamics equations which enables a direct access to the
right accelerations of the system. Moreover, these accelerations are uniquely determined by the corresponding strictly
convex optimization problem (4.13) which is the Principle of Least Constraints.

An interesting task is to examine the conditions under which the equations (6.1) and (6.2) can be written as
equalities. Besides of the smooth case which is discussed in Section 7 we may derive some results when the velocities
and/or accelerations vanish. First we will show that V "�q; _h�� � F"�0; _h��. For that we look again at equation (5.18)
together with the sequence fqng stated in equation (5.7), i.e. qn ÿ qy � tn _q

�
n . Equation (5.18) holds for every sequence

fqng. We consider a sequence such that q1 � q2 � . . . � qy. Since tn > 0 we have _q�1 � _q�2 � . . . � _q�y � 0. With this
sequence equation (5.18) becomes V "�qy; _h�y� � F"�0; _h�y� � V "�qy; _h�y� which proves the equality V "�qy; _h�y� � F"�0; _h�y�.
The same can be done for sequences f _q�n g from (5.24), _q�n ÿ _q�y � tn�q

�
n . Choosing _q�1 � _q�2 � . . . � _q�y we have

�q�1 � �q�2 � . . . � �q�y � 0 which yields together with (5.29) the equality F"� _q�y ; �h
�
y � � Y"�0; �h�y �. Thus

F"�0; _h�� � V "�q; _h�� for all _h� ; and Y"�0; �h�� � F"� _q�; �h�� for all �h� ; �6:3�

and we have for the corresponding generalized gradients the well-known relations

@F�0� � �@V �q� and @Y�0� � @F� _q�� : �6:4�

If somebody is interested, for example, in a steady state motion, i.e. a motion with �q� � 0, one obtains from (6.2) the
implicit differential inclusion

h�q; _q�� 2 @F� _q�� � �@V �q� ; �6:5�

where @Y�0� � @F� _q�� due to equation (6.4). Analogously we get from (6.2) the condition for equilibrium points
��q� � 0; _q� � 0� of the system,

0 2 �@V �q� ; �6:6�

where h�0; 0� � 0 due to equations (3.6), (3.7), and @Y�0� � @F�0� � �@V �q�.
In the following we will look a bit closer at the three different sets �@V �q�, @F� _q��, and @Y��q�� in order to get a

better understanding of their structure. By equation (4.2) these sets consist of forces which we will denote by f�V ; f
�
F ,

and f�Y , respectively. In a first step we will examine the connection between �@V �q� and @F� _q��. By equations (4.6) and
(2.7) the velocity potential F� _q�� is defined to be

F� _q�� � V "�q; _q�� � supfh _q�; ÿf�V i j ÿf�V 2 �@V �q�g : �6:7�

In terms of convex analysis [20] the velocity potential F� _q�� is the support function of the convex set �@V �q�, i.e. the
conjugate of the indicator function of �@V �q�. From (6.7) we see immediately that

F� _q�� � h _q�; ÿf�V i for all ÿf�V 2 �@V �q� �6:8�
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for fixed _q�, which is Fenchel's inequality for indicator and support functions. Furthermore, it is known [20] that, for
fixed _q�, equation (6.8) holds as an equality if and only if we can find an element ÿf�

F of �@V �q� which is a subgradient
of F at _q�, i.e.

F� _q�� � h _q�; ÿf�Fi , ÿf�F 2 @F� _q�� : �6:9�

Combining equations (6.7) and (6.9) we are able to state the subdifferential @F� _q�� as

@F� _q�� � fÿf�F 2 �@V �q� j h _q�; ÿf�Fi � suph _q�; ÿf�V i; ÿf�V 2 �@V �q�g : �6:10�

In the same manner we obtain the set @Y��q��, i.e.

@Y��q�� � fÿf�Y 2 @F� _q�� j h�q�; ÿf�Y i � suph�q�; ÿf�Fi; ÿf�F 2 @F� _q��g : �6:11�

By equation (6.10) we have shown that the subdifferential of the velocity potential consists of the elements
ÿf�F 2 �@V �q� for which the expression h _q�; ÿf�Fi achieves its maximum when _q� is fixed. The value of this maximum
is given by equation (6.9), i.e. h _q�; ÿf�Fi � F� _q�� � V "�q; _q��. Analogously, the set @Y��q�� consists of the elements
ÿf�Y 2 @F� _q�� for which the equality F"� _q�; �q�� � h�q�; ÿf�Y i holds.

For completeness we will shortly discuss the case when we are interested in the accelerations from the past �qÿ.
The equations of motion and the force law (cf. equations (3.21) and (4.1), (4.2)) are

M�qÿ ÿ h � fÿ ; ÿfÿ 2 �@V �q� : �6:12�

According to equations (4.5), (4.7), and (4.10) we may state the three principles in the form

�A� ÿhM�qÿ ÿ h; q? ÿ qi � V "�q; q? ÿ q� ; for all q?; q 2 C ;

�J� ÿhM�qÿ ÿ h; _q� ÿ _qÿi � F"�ÿ _qÿ; _q� ÿ _qÿ� ; for all _q�; q 2 C; ÿ _qÿ 2 TC�q� ;

�G� ÿhM�qÿ ÿ h; �q� ÿ �qÿi � Y"��qÿ; �q� ÿ �q�� ; for all �q�; q 2 C; ÿ _qÿ 2 TC�q�; ÿ�qÿ 2 TTC�q��ÿ _qÿ� ;

�6:13�

where, in correspondence with equations (4.6) and (4.9), the velocity and the acceleration potential are defined to be

F�p� � V "�q; p� ; Y�p� � F"�ÿ _qÿ; p� : �6:14�

As in (4.3), (4.8), and (4.11) we finally state the differential inclusions which are equivalent formulations of the three
principles (6.13),

ÿ�M�qÿ ÿ h� 2 �@V �q� ; ÿ�M�qÿ ÿ h� 2 @F�ÿ _qÿ� ; ÿ�M�qÿ ÿ h� 2 @Y��qÿ� : �6:15�

Note the additional negative sign in Jourdain's principle. Instead of F"� _q�; _q� ÿ _q�� when dealing with the evolution of
the system with respect to the future (4.7) we now have F"�ÿ _qÿ; _q� ÿ _qÿ�, see second equation of (6.13). This sign
enters the problem at equations (5.10) and (5.11), because now we must consider a sequence of time points ftng such
that t1 < t2 < . . . < ty, hence tn � tn ÿ ty < 0. When eliminating tn from (5.10) we obtain now, instead of (5.11), the
inequality

~V "�qn; ÿ� _q�n ÿ _q�n �� � V "�qy; ÿ _q�n� ÿ V "�qy; ÿ _q�n � : �6:16�

This negative sign will drop out at the acceleration level in the same manner as it appeared at the velocity level. Thus
we are still able to formulate Gauss' principle in terms of a strictly convex optimization problem (4.13) and to obtain
uniquely determined accelerations �qÿ.

7. Example: Smooth potential functions

In this section we will discuss the classical case of smooth potential functions. We assume that V �q� is a C1-potential
with dom V � Rf , i.e. V �q� is continuously differentiable on Rf . Potentials like that contain all classical displacement
interaction forces such as forces resulting from gravity, forces from springs with linear or smooth nonlinear force char-
acteristics, or even springs the force characteristics of which are continuous but contain corners.

Throughout this section we cancel the upper indices ª+º and ª±±º because there is no reason for a jump in the
velocities or in the accelerations as we will see. Since V �q� is differentiable the generalized gradients and generalized direc-
tional derivatives may be replaced by the gradients and the corresponding inner products as it was already pointed out in
equation (2.18). Particularly, the velocity and the acceleration potential in equations (4.6) and (4.9) become

F�p� � hrV �q�; pi ; Y�p� � hrF� _q�; pi � hrV �q�; pi : �7:1�

With it, we may obtain the generalized gradients and subdifferentials in (6.2). They consist of one element only,

�@V �q� � @F� _q� � @Y��q� � rV �q� ; �7:2�
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and the three corresponding differential inclusions (4.3), (4.8), (4.11) reduce to a single differential equation well
known from classical mechanics,

ÿ�M�q ÿ h� � rV �q� : �7:3�

This equation, multiplied by the displacement-, velocity-, and acceleration-variations yields the principles (4.5), (4.7),
and (4.10). They hold as equalities, i.e.

�A� ÿhM�q ÿ h; q? ÿ qi � hrV �q�; q? ÿ qi ; for all q? ;

�J� ÿhM�q ÿ h; _q� ÿ _qi � hrV �q�; _q� ÿ _qi ; for all _q� ;

�G� ÿhM�q ÿ h; �q� ÿ �qi � hrV �q�; �q� ÿ �qi ; for all �q� ;

�7:4�

which can also be seen directly from (4.5) by choosing variations �q? ÿ q� and ÿ�q? ÿ q�, and analogously from (4.7),
and (4.10) concerning appropriate variations. Finally, the Principle of Least Constraints (4.13) becomes

�Z� �q � arg minff���q�g ; f��q� � 1
2 hM�q; �qi ÿ hh; �qi � hrV �q�; �qi ; �7:5�

which is a classical quadratic program without constraints.

8. Example: Unilateral constraints

It is a well known fact by now that unilateral constraints may be taken into account by indicator functions. We will
consider the case of a multibody system, the displacements of which being subjected to some geometrical restrictions
q 2 domV � C. The indicator function IC of a set C is defined by

IC�q� �
0 if q 2 C
�1 if q 62 C

;

�

�8:1�

and has some important connections to the normal and the tangential cone of C. In [21], [22] it is shown that

�@IC�q� � NC�q� ; �8:2�

and

I"C�q; p� � ITC�q��p� : �8:3�

We assume that only forces resulting from unilateral constraints act on the multibody system. In this case the displace-
ment potential V �q� is

V �q� � IC�q� : �8:4�

In order to derive the velocity potential (4.6) and the acceleration potential (4.9) we just have to apply equation (8.3).
We obtain

F�p� � I"C�q; p� � ITC�q��p� ; Y�p� � I"TC�q�
� _q�; p� � ITTC �q�� _q���p� : �8:5�

With the help of (8.2) we get immediately from (8.4) and (8.5) the three sets �@V �q�, @F� _q��, and @Y��q��. They are

�@V �q� � NC�q� ; @F� _q�� � NTC�q�� _q
�� ; @Y��q�� � NTTC �q�� _q����q

�� ; �8:6�

and the differential inclusion (6.2) becomes

ÿ�M�q� ÿ h� 2 NTTC �q�� _q����q
�� � NTC�q�� _q

�� � NC�q� : �8:7�

At that point, note the polarity (2.3) between the normal and the tangential cones. Due to (8.7) we obviously have

TC�q� � TTC �q�� _q
�� � TTTC �q�� _q����q

�� : �8:8�

The tangential cones increase from the displacement level to the acceleration level in the same manner as the corre-
sponding normal cones decrease. One may say that the accelerations are in some sense less constrained than the dis-
placements, a fact completely different from bilaterally constrained motion as we will see. Using the potential functions
in (8.4), (8.5), the three principles (4.5), (4.7), and (4.10) become

�A� ÿhM�q� ÿ h; q? ÿ qi � I"C�q; q
? ÿ q� ; for all q?; q 2 C ;

�J� ÿhM�q� ÿ h; _q� ÿ _q�i � I"TC�q�
� _q�; _q� ÿ _q�� ; for all _q�; q 2 C; _q� 2 TC�q� ;

�G� ÿhM�q� ÿ h; �q� ÿ �q�i � I"TTC �q�� _q��
��q�; �q� ÿ �q�� ; for all �q�; q 2 C; _q� 2 TC�q�; �q

� 2 TTC�q�� _q
�� :

�8:9�

3 Z. Angew. Math. Mech., Bd. 78, H. 1
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We apply again equation (8.3) to the right-hand sides of the inequalities in (8.9) and choose the variations of the
displacements, velocities, and accelerations such that they belong to the sets specified by the resulting indicator func-
tions. The values of the indicators are then equal to zero, and (8.9) becomes

�A� ÿhM�q� ÿ h; q? ÿ qi � 0 ; for all �q? ÿ q� 2 TC�q�; q 2 C ;

�J� ÿhM�q� ÿ h; _q� ÿ _q�i � 0 ; for all � _q� ÿ _q�� 2 TTC�q�� _q
��; q 2 C; _q� 2 TC�q� ;

�G� ÿhM�q� ÿ h; �q� ÿ �q�i � 0 ; for all ��q� ÿ �q�� 2 TTTC �q�� _q����q
��; q 2 C; _q� 2 TC�q�; �q

� 2 TTC�q�� _q
�� :

�8:10�

Setting M�q� ÿ h � f� (cf. equation (4.1)) we see that the virtual work, power, . . . produced by forces from unilateral
constraints is always greater than or equal to zero. The Principle of d'Alembert for unilateral constraints was stated in
1821 by Fourier and can also be found in [26], [13]. Moreau's work is completely based on Jourdain's principle in
the second line of (8.10) but contains additionally impacts and Coulomb friction [8], [18]. The Principle of Gauss as
stated in the third equation of (8.10) can be found in [13] and is often heuristically used in multibody dynamics, cf. for
example [14]. Taking the acceleration potential (8.5) we may state the Principle of Least Constraints (4.13),

�Z� �q� � arg minff���q��g ; f��q�� � 1
2 hM�q�; �q�i ÿ hh; �q�i � ITTC �q�� _q����q

�� ; �8:11�

which is a strictly convex program with inequality constraints, i.e. find �q� such that 1
2 hM�q�; �q�i ÿ hh; �q�i becomes

minimal under the restriction that �q� belongs to the closed convex cone TTC�q�� _q
��.

9. Example: Bilateral constraints

Bilateral constraints are completely included in the concept describing the unilateral case. In order to treat them we
just have to find an appropriate set defining the admissible displacements, and then to apply the indicator function on
it. We assume the system to be constrained on a C1-manifold M. With that assumption we may cancel the upper
indices ª+º and ª±±º because systems like that are free of jumps in the velocities or in the accelerations. The displace-
ment potential is then, according to equation (8.4),

V �q� � IM�q� ; �9:1�

where IM�q� is the indicator function of the manifold M. Since M is C1 it consists of regular points only, i.e. the
tangent cone TM�q� and the contingent cone KM�q� of M coincide for every point q 2 M. Moreover, TM�q� reduces to
the classical tangent space to M at q which is a subspace of Rf . Particularly we have ÿp 2 TM�q� if p 2 TM�q�. The
normal cone NM�q� is also a subspace of Rf . It is the orthogonal complement of TM�q� which can be seen immediately
from equation (2.3),

NM�q� � fÿf j hÿf; pi � 0 for all p 2 TM�q�g : �9:2�

Since ÿp 2 TM�q� if p 2 TM�q� we have replaced the inequality in (2.3) by the corresponding equality hÿf; pi � 0, i.e.
the elements of NM�q� and TM�q� are orthogonal. Note especially that the tangent space to M at q 2 M and the
tangent space to TM�q� at _q 2 TM�q� are identical. Thus, instead of the inclusion (8.8) we now have equality,

TM�q� � TTM �q�� _q� � TTTM �q�� _q���q� ; �9:3�

if q 2 M; _q 2 TM�q�, and �q 2 TTM �q�� _q�. The same holds for the normal spaces due to orthogonality, i.e.

NTTM �q�� _q���q� � NTM �q�� _q� � NM�q� : �9:4�

With it, the differential inclusion (8.7) reduces to

ÿ�M�q ÿ h� 2 NM�q� : �9:5�

Since M�q ÿ h � f we have ÿf 2 NM�q�, i.e. the classical result that constraint forces are orthogonal to the manifold M.
They are additionally not restricted to any direction because f also belongs to NM�q� if ÿf does. With the help of
(9.3) we rewrite (8.10) and obtain

�A� ÿhM�q ÿ h; q? ÿ qi � 0 ; for all �q? ÿ q� 2 TM�q�; q 2 M ;

�J� ÿhM�q ÿ h; _q� ÿ _qi � 0 ; for all � _q� ÿ _q� 2 TM�q�; q 2 M; _q 2 TM�q� ;

�G� ÿhM�q ÿ h; �q� ÿ �qi � 0 ; for all ��q� ÿ �q� 2 TM�q�; q 2 M; _q 2 TM�q�; �q 2 TM�q� ;

�9:6�

which are the classical principles of d'Alembert, Jourdain, and Gauss. The equalities in (9.6) result from the property
that ÿ�q? ÿ q� 2 TM�q� if �q? ÿ q� 2 TM�q� and so on. In classical text books the terms �q? ÿ q�; � _q� ÿ _q�, and ��q� ÿ �q�
are usually denoted by dq; d0 _q, and d00�q, and are called virtual displacements, virtual velocities, and virtual accelera-

tions. Since M�q ÿ h � f we see from (9.6) that constraint forces produce no virtual work, power, etc. Finally we state

14



the classical Principle of Least Constraints (4.13)

�Z� �q � arg minff���q�g ; f��q� � 1
2 hM�q; �qi ÿ hh; �qi � ITM �q���q� ; �9:7�

which is a strictly convex program with linear equality constraints, i.e. find �q such that 1
2 hM�q; �qi ÿ hh; �qi becomes mini-

mal under the restriction that �q belongs to the linear space TM�q�. This relation may be found in many classical text books
as well as in [27] where emphasis is put on the computer oriented formulation and evaluation of closed loop systems.

10. Nonholonomic systems

Up to now we have only considered potential functions F; Y which result from a displacement potential V �q�. With
this approach one is able to take into account a vast class of displacement dependent interaction forces of single-valued
and set-valued type as described in the foregoing sections. However, there are other types of forces depending also on
velocities which share one common property: There is no way to express them via displacement potentials, i.e. they are
non-integrable. It is well known that viscous damping belongs to this class. Other examples are every kind of dry
friction (i.e. Coulomb friction with given normal force) as well as nonholonomic constraints. Surprisingly a l l forces
mentioned above fit into the concept of using velocity potentials. As we have seen in Section 4 one is able to express
displacement dependent forces also by velocity potentials F. On the other hand, there are the viscous and the dry
friction type forces which demand a representation via velocity potentials. Finally, by using indicator-like (velocity-)
potential functions one is able to take into account even forces resulting from (non-)holonomic constraints. Thus we
assume force laws of the form

ÿf� 2 �@F� _q�� ; �10:1�

where �@F� _q�� denotes the generalized gradient of a velocity potential F� _q�� defined by

F� _q�� � P�q; _q�� : �10:2�

The properties of the function P : Rf �Rf ! R [ f�1g that are required in order to be able to pass from Jourdain's
to Gauss' principle and vice versa are not yet known. We expect, however, that P�q; _q�� should be at least u.s.c. with
respect to q, l.s.c. with respect to _q�, and the epigraph of F should consist of regular points only. Furthermore we
assume that dom P � C � S�q�, where S is a convex cone depending on the displacements q. For example, we have
P�q; _q�� � V "�q; _q�� due to (4.6) with dom P � C � TC�q� when forces resulting from displacement potentials are
considered. In this setting we may use Jourdain's and Gauss' principle as in equations (4.7) and (4.10),

�J� ÿhM�q� ÿ h; _q� ÿ _q�i � F"� _q�; _q� ÿ _q�� ; for all _q�; q 2 C; _q� 2 S�q�;

�G� ÿhM�q� ÿ h; �q� ÿ �q�i � Y"��q�; �q� ÿ �q�� ; for all �q�; q 2 C; _q� 2 S�q�; �q� 2 TS�q�� _q
�� ;

�10:3�

where the acceleration potential Y��q�� is the convex l.s.c. function defined in (4.9), and d'Alembert's principle does no
longer exist due to the non-integrability of the velocity potential. The corresponding differential inclusions are (cf.
equations (4.8) and (4.11)),

ÿ�M�q� ÿ h� 2 �@F� _q�� ; ÿ�M�q� ÿ h� 2 @Y��q�� : �10:4�

Note that we have used the subdifferential instead of the generalized gradient in the second inclusion in (10.4) because Y
is a convex function. Finally we may state the Principle of Least Constraints as in (4.13),

�Z� �q� � arg minff���q��g ; f��q�� � 1
2 hM�q�; �q�i ÿ hh; �q�i �Y��q�� ; �10:5�

which is obtained after ªintegratingº the second inclusion in (10.4). As in (4.13) we have a strictly convex cost function
which leads to unique optimal solutions �q�.

For completeness we will also state the two principles when dealing with the accelerations from the past, cf. also
equations (6.12)±±(6.15) for displacement potentials. We have

�J� ÿhM�qÿ ÿ h; _q� ÿ _qÿi � F"� _qÿ; _q� ÿ _qÿ� ; for all _q�; q 2 C; _qÿ 2 S�q� ;

�G� ÿhM�qÿ ÿ h; �q� ÿ �qÿi � Y"�ÿ�qÿ; �q� ÿ �qÿ� ; for all �q�; q 2 C; _qÿ 2 S�q�; ÿ�qÿ 2 TS�q�� _q
ÿ� ;

�10:6�

and the corresponding inclusions are

ÿ�M�qÿ ÿ h� 2 �@F� _qÿ� ; ÿ�M�qÿ ÿ h� 2 @Y�ÿ�qÿ� : �10:7�

As in (6.13) and (6.15) an additional negative sign enters the equations, but now on the acceleration level. After
ªintegratingº the second inclusion in (10.7) we obtain the cost function

�Z� f��qÿ� � 1
2 hM�qÿ; �qÿi ÿ hh; �qÿi ÿY�ÿ�qÿ� : �10:8�

3*
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This is a non-convex function because 1
2 hM�qÿ; �qÿi is strictly convex and ÿY is concave. Thus the Principle of Least

Constraints reduces to the problem: Find �qÿ such that the cost function f becomes stationary. Uniqueness with respect
to the accelerations �qÿ may no longer be expected which is a well-known property of dry friction: Nobody knows
whether or when a body has stopped moving under the influence of dry friction if it is resting on a surface. Uniqueness
holds for example if the positively homogeneous function Y is additionally linear, i.e. in the case of viscous damping or
nonholonomic linear constraints. Finally one should note that the source of the non-uniqueness of the accelerations
from the past is closely related to the reintrant corner problem: Since Y is a positively homogeneous convex function
its epigraph is a convex cone. Consider now the concave function ÿY . Its epigraph coincides with the contingent cone
at �0; ÿY�0�� which is generally a non-convex set. Thus Kepi ÿY �0; ÿY�0�� 6� Tepi ÿY �0; ÿY�0��, i.e. a reintrant corner.

11. Conclusion

The topic of the presented paper may be described as follows: When considering the velocities of a MBS as functions
of bounded variation the accelerations of the system exist almost everywhere. In this case there must be a way to
determine their values directly from the equations of motion. For that purpose we considered at first the equations of
motion of a system under the influence of forces which were derived by generalized differentiation from a displacement
potential. The corresponding differential inclusion was reformulated in terms of a hemivariational inequality; this is the
Principle of d'Alembert. Following classical mechanics we also introduced a variational principle on the velocity and on
the acceleration level, i.e. the Principles of Jourdain and Gauss, respectively. We expect the equivalence of the three
principles for rather general classes of potential functions to hold. The main ideas of the proof were sketched in Section
5. We showed by examples that classical smooth interaction laws, unilateral constraints, and smooth bilateral con-
straints were covered by the chosen approach, where in the latter case the principles turned out to be the classical
ones. In Section 10 this approach was extended to non-integrable potential functions on velocity level in order to take
into account additional forces resulting from viscous damping, dry friction, and nonholonomic constraints. At a first
view these forces seem to be of completely different nature sharing only the property of non-integrability of some
related functions. It is a remarkable fact that all of them can be treated by the unified concept of using velocity
potentials.

For complicated mechanical systems with given (displacement-) potential one should rather try to apply some
decomposition rules than to derive the corresponding velocity and acceleration potential via the definition of the gener-
alized directional derivative. The method of treating decomposed force interactions coincides also with the natural way
of modelling mechanical systems: Starting from a physical model one develops an appropriate mathematical descrip-
tion of it. One step in this process consists of assigning to each single force in the model a reasonable force character-
istic. At this point the computation of the corresponding parts of the overall displacement-, velocity-, and acceleration-
potential is usually much easier than after summing up all the forces. This decomposition technique, applied to MBS
depending also explicitely on time will be the subject of a forthcoming paper.
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