THE PRINCIPLES OF MATHEMATICS

BERTRAND RUSSELL

TABLE OF CONTENTS

																			PA	GE
Introduc	TIO	N TO	TH	e Si	ECO	ND I	Editi	ON												v
PREFACE	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	·	•	•	•	хv

PART I.

THE INDEFINABLES OF MATHEMATICS

CHAPTER I.

DEFINITION OF PURE MATHEMATICS.

	. 3	3
	. 3	3
	. 4	4
	4	4
	. 5	5
	. 5	õ
	. 6	ô
	. 7	7
ot		
	. 8	3
	. 8	3
	 ot .	(

CHAPTER II.

SYMBOLIC LOGIC.

12.	Definition and scope of symbolic logic The indefinables of symbolic logic			•						-		10			
13.	Symbolic logic consists of three parts .	•	•	•	•	٠	٠	•	•	•	•	11			
	A. The Propositional Calculus.														
14.	Definition											13			
15.	Distinction between implication and for	mal	imp	licati	ion							14			
	Implication indefinable Two indefinables and ten primitive prop														
11.	Two moennames and ten primitive prop	osiu	ons	m u	ins c	aucu	ius	•	•	•	•	10			

													PA	GE
18.	The ten primitive propositions													16
19.	Disjunction and negation defined													17
	B. The	Cal	culu	is of	Cla	sses								
20.	Three new indefinables													18
21.	The relation of an individual to i	ts cl	ass											19
22.	Propositional functions													19
23.	The notion of such that													20
24.	Two new primitive propositions													20
25.	Relation to propositional calculus													21
26.	Identity													23
		-	-	-		-		-	-	-		-	-	
	C. The (Calc	ulus	of	Rela	tion	s.							
27.	The logic of relations essential to	ma	the	nati	cs									23
28.	New primitive propositions													24
29.	Relative products													25
30.	Relations with assigned domains													26
•••			•	•	•	•	-	•		-	-	-	•	
	D. Pea	no's	Syn	nbol	ic L	ogic.								
31.	Mathematical and philosophical of	lefir	vitio	ns										26
32.	Peano's indefinables													27
33.	Elementary definitions													28
34.	Peano's primitive propositions													29
35.	Negation and disjunction .	•	•	•	•	•	•	·	·	·	•	•	•	31

CHAPTER III.

IMPLICATION AND FORMAL IMPLICATION.

37.	Meaning of implication									33
	Asserted and unasserted propositions .									34
39.	Inference does not require two premisses									35
40.	Formal implication is to be interpreted exte	ensio	nally							36
41.	The variable in a formal implication has an	unre	stric	ed	field					36
42.	A formal implication is a single propositional	al fur	netior	1, n e	ot a	rela	tion	of tv	vo	38
43.	Assertions									39
44.	Conditions that a term in an implication ma	ay be	e vari	ed						39
45.	Formal implication involved in rules of infe	renc	е.							40

CHAPTER IV.

PROPER NAMES, ADJECTIVES AND VERBS.

46.	Proper names, adjectives and verbs distin	igui	shed					42
47.	Terms			•				43
48 .	Things and concepts							44
	Concepts as such and as terms							
5 0.	Conceptual diversity							46
	Meaning and the subject-predicate logic							

xxvi

xxvii

					PA	GE
52.	Verbs and truth					47
53.	All verbs, except perhaps is, express relations					49
54 .	Relations per se and relating relations					49
55.	Relations are not particularized by their terms					50

CHAPTER V.

DENOTING.

56.	Definition of denoting		•							•	53
57.	Connection with subject-predicate proposition										54
58.	Denoting concepts obtained from predicates										55
59.	Extensional account of all, every, any, a and	some									56
60.	Intensional account of the same										58
61.	Illustrations							•			59
62.	The difference between all, every, etc. lies in	the	obje	cts (dena	ted,	not	in i	the		
	way of denoting them										61
63.	The notion of the and definition										62
64.	The notion of the and identity										63
	Summary										64

CHAPTER VI.

CLASSES.

66.	Combination of intensional and extension	al si	tand	lpoin	ts i	requi	ed				•	66
67.	Meaning of <i>class</i>											67
68.	Intensional and extensional genesis of class	SS										67
69.	Distinctions overlooked by Peano											68
70.	The class as one and as many											68
71.	The notion of and											69
72.	All men is not analyzable into all and men	ı									•	72
73.	There are null class-concepts, but there is	s no	nu	ll cla	SS							73
74.	The class as one, except when it has one t	erm	ı, is	disti	nct	from	the	cla	ss as	mai	лу	76
75.	Every, any, a and some each denote one	obje	ect,	but a	in a	ambig	guou	is of	ne			77
76.	The relation of a term to its class											77
77.	The relation of inclusion between classes			•								78
78.	The contradiction											79
79.	Summary						•	•	•			80

CHAPTER VII.

PROPOSITIONAL FUNCTIONS.

	Indefinability of such that									82
81.	Where a fixed relation to a fixed term is asser	rted,	a p	rop	ositi	onal	fune	ction	ì	
	can be analyzed into a variable subject a	nd a	cor	istar	nt as	sert	ion			83
82.	But this analysis is impossible in other cases									84
83.	Variation of the concept in a proposition .									86

xxviii

															PA	٩GE
84.	Relation of propositiona	l fun	ctio	ns to	o ela	sses										88
85.	A propositional function	is in	ge	nera	l no	t ana	alyza	able	into	a co	onsta	ant a	ınd a	L		
	variable element		•				•									88

CHAPTER VIII.

THE VARIABLE.

86.	Nature of the variable				•		•				89
87.	Relation of the variable to any										89
88.	Formal and restricted variables						•				91
89.	Formal implication presupposes	any									91
90.	Duality of any and some										92
91.	The class-concept propositional	funct	ion	is in	defi	nabl	е			•	92
	Other classes can be defined by										
93.	Analysis of the variable								•		93

CHAPTER IX.

RELATIONS.

94.	Characteristics of relations	•						•		•	•	95
95.	Relations of terms to themselves .											96
96.	The domain and the converse domain	in of	a re	elatio	on							97
97.	Logical sum, logical product and rela	ative	e pro	oduc	t of	relat	tions					98
98.	A relation is not a class of couples											99
99 .	Relations of a relation to its terms											99

CHAPTER X.

THE CONTRADICTION.

100.	Consequences of the contradiction .									101
101.	Various statements of the contradiction									102
102.	An analogous generalized argument									102
103.	Variable propositional functions are in ge	nera	ıl ina	dmi	issib	le				103
104.	The contradiction arises from treating as	one	a cla	ass v	vhic	h is	only	ma	any	104
105.	Other primâ facie possible solutions appe	ear i	nade	qua	te					105
106.	Summary of Part I		•							106

PART II.

NUMBER.

CHAPTER XI.

DEFINITION' OF CARDINAL NUMBERS.

107.	Plan of Part II					•	•		•		•		•				111
------	-----------------	--	--	--	--	---	---	--	---	--	---	--	---	--	--	--	-----

							PAGE
108.	Mathematical meaning of definition						111
109.	Definition of numbers by abstraction						112
110.	Objections to this definition .					•	114
111.	Nominal definition of numbers .					•	115

CHAPTER XII.

ADDITION AND MULTIPLICATION.

112.	Only integers to be considered at present				117
113.	Definition of arithmetical addition			•	117
114.	Dependence upon the logical addition of classes				118
115.	Definition of multiplication				119
116.	Connection of addition, multiplication and exponentiation				119

CHAPTER XIII.

FINITE AND INFINITE.

.

117.	Definition of finite and infinite								•		121
118.	Definition of a_0										121
119.	Definition of finite numbers by	matł	nem	atica	ıl inc	ducti	on				123

CHAPTER XIV.

THEORY OF FINITE NUMBERS.

120.	Peano's indefinables and primitive propositions .				124
121.	Mutual independence of the latter				125
122.	Peano really defines progressions, not finite numbers				125
123.	Proof of Peano's primitive propositions				127

CHAPTER XV.

ADDITION OF TERMS AND ADDITION OF CLASSES.

124.	Philosophy and mathematics distinguished					129
125.	Is there a more fundamental sense of number than that defi	ined	abov	e?		130
126.	Numbers must be classes					131
127.	Numbers apply to classes as many		• •			132
128.	One is to be asserted, not of terms, but of unit classes .					132
129.	Counting not fundamental in arithmetic				•	133
130.	Numerical conjunction and plurality					133
131.	Addition of terms generates classes primarily, not numbers	•				135
132.	A term is indefinable, but not the number 1					135

CHAPTER XVI.

WHOLE AND PART.

PAGE

133.	Single terms may be either simple or complex				137
134.	Whole and part cannot be defined by logical priority		•		137
135.	Three kinds of relation of whole and part distinguished				138
136.	Two kinds of wholes distinguished				140
137.	A whole is distinct from the numerical conjunction of its parts				141
138.	How far analysis is falsification			•	141
139.	A class as one is an aggregate				141

CHAPTER XVII.

INFINITE WHOLES.

140.	Infinite aggregates must be admit	tted	Ι.							143
141.	Infinite unities, if there are any, a	ire	unkı	now	n to	us				144
142.	Are all infinite wholes aggregates	of	term	ıs?				• •		146
	Grounds in favour of this view									
					2					

CHAPTER XVIII.

RATIOS AND FRACTIONS.

144.	Definition of ratio	•	149
	Ratios are one-one relations		150
146.	Fractions are concerned with relations of whole and part		150
147.	Fractions depend, not upon number, but upon magnitude of divisibility		151
148.	Summary of Part II		152

PART III.

QUANTITY.

CHAPTER XIX.

THE MEANING OF MAGNITUDE.

149.	Previous views on the relation of number and quantity			-	157
150.	Quantity not fundamental in mathematics				158
151.	Meaning of magnitude and quantity				159
152.	Three possible theories of equality to be examined .				159
153.	Equality is not identity of number of parts				160
154.	Equality is not an unanalyzable relation of quantities .				162
155.	Equality is sameness of magnitude				164
156.	Every particular magnitude is simple		•		164
157.	The principle of abstraction		•		166

											PAGE
158.	Summary	y									167
	Note					-					168

CHAPTER XX.

THE RANGE OF QUANTITY.

159.	Divisibility	does	not b	pelon	g to	all q	uanti	ties								170
160.	Distance												•			171
	Differential															173
162.	A magnitud	le is r	never	divis	ible,	but	may	be	a ma	agni	tude	of o	livis	ibili	ty	173
163.	Every mag	nitude	e is u	nanal	yzab	le									•	174

CHAPTER XXI.

NUMBERS AS EXPRESSING MAGNITUDES: MEASUREMENT.

164.	Definition of me	easuren	nent										•		•	176
165.	Possible ground	s for ho	olding	g all	mag	mitu	ıdes	to b	e m	easu	rabl	е.				176
166.	Intrinsic measur	ability							•							177
167.	Of divisibilities													•		178
168.	And of distances	s														179
169.	Measure of dista	ance an	d me	asu	re of	stre	etch									181
170.	Distance-theorie	es and s	streto	h-th	eori	es o	f geo	ome	try							181
171.	Extensive and in	ntensiv	e ma	gnit	udes	•				•						182

CHAPTER XXII.

ZERO.

172.	Difficulties as to zero							•	•			184
173.	Meinong's theory .			-								184
174.	Zero as minimum											185
175.	Zero distance as identity											186
176.	Zero as a null segment									•		186
177.	Zero and negation .											186
178.	Every kind of zero magn	itud	le is	in a	a sei	nse i	inde	finał	ole			187

CHAPTER XXIII.

INFINITY, THE INFINITESIMAL, AND CONTINUITY.

Problems of infinity not specially quantitative	₹ •							188
Statement of the problem in regard to quantity								188
Three antinomies								189
Of which the antitheses depend upon an axiom	of fin	itud	e					190
And the use of mathematical induction	•							192
Which are both to be rejected								192
Provisional sense of continuity								193
Summary of Part III						•		194
	Statement of the problem in regard to quantity Three antinomies	Statement of the problem in regard to quantity . Three antinomies	Statement of the problem in regard to quantity . Three antinomies . . Of which the antitheses depend upon an axiom of finitud And the use of mathematical induction . Which are both to be rejected . . Provisional sense of continuity . .	Statement of the problem in regard to quantity . Three antinomies . . Of which the antitheses depend upon an axiom of finitude And the use of mathematical induction . . Which are both to be rejected . . . Provisional sense of continuity . . .	Statement of the problem in regard to quantity	Statement of the problem in regard to quantity	Statement of the problem in regard to quantity	Problems of infinity not specially quantitative

xxxii

4

Table of Contents

PART IV.

ORDER.

CHAPTER XXIV.

THE GENESIS OF SERIES.

PAGE

187.	Importance of order						199
188.	Between and separation of couples .						199
189.	Generation of order by one-one relation	ons.	•				200
190.	By transitive asymmetrical relations .						203
191.	By distances				•		204
192.	By triangular relations						204
193.	By relations between asymmetrical relations	ations					205
194.	And by separation of couples	•	•			•	205

CHAPTER XXV.

THE MEANING OF ORDER.

195.	What is order?				•							207
196.	Three theories of between .						•					207
197.	First theory											208
198.	A relation is not between its term	ns										210
199.	Second theory of <i>between</i> .											211
200.	There appear to be ultimate tria	ngul	ar re	latio	ns		•					211
201.	Reasons for rejecting the second	the	ory	•								213
202.	Third theory of between to be re	ject	ed									213
203.	Meaning of separation of couples					•	•					214
204.	Reduction to transitive asymmetry	rical	rela	tion	5							215
205.	This reduction is formal											216
206.	But is the reason why separation	lea	ds to	o ord	er							216
207.	The second way of generating se	ries	is al	one i	fund	ame	ntal	, an	d gi	ves	the	
	meaning of order	•		•								216

CHAPTER XXVI.

ASYMMETRICAL RELATIONS.

208.	Classification of relations as regards symmetry an	d	transi	itive	ness		218
209.	Symmetrical transitive relations						219
210.	Reflexiveness and the principle of abstraction						219
211.	Relative position						220
212.	Are relations reducible to predications?						221
	Monadistic theory of relations						222
214.	Reasons for rejecting this theory						222
215.	Monistic theory and the reasons for rejecting it						224
21 6.	Order requires that relations should be ultimate		•				226

xxxiii

DACE

CHAPTER XXVII.

DIFFERENCE OF SENSE AND DIFFERENCE OF SIGN.

												1.101
217.	Kant on difference of sense											. 227
218.	Meaning of difference of sense	е										. 228
219.	Difference of sign											. 228
220.	In the cases of finite numbers	;							•			. 229
221.	And of magnitudes											. 229
222.	Right and left										•	. 231
223.	Difference of sign arises from	diffe	eren	ce o	f sei	ise a	moi	ng tr	ansi	tive		
	asymmetrical relations		•									. 232

CHAPTER XXVIII.

ON THE DIFFERENCE BETWEEN OPEN AND CLOSED SERIES.

224.	What is the difference between open and closed series?				234
225.	Finite closed series		•		234
226.	Series generated by triangular relations				236
227.	Four-term relations				237
228.	Closed series are such as have an arbitrary first term .	•			238

CHAPTER XXIX.

PROGRESSIONS AND ORDINAL NUMBERS.

229.	Definition of progressions .							239
	All finite arithmetic applies to e							240
231.	Definition of ordinal numbers	•						242
232.	Definition of "nth"				•			243
233.	Positive and negative ordinals							244

CHAPTER XXX.

DEDEKIND'S THEORY OF NUMBER.

234.	Dedekind's principal ideas									245
235.	Representation of a system					•				245
236.	The notion of a <i>chain</i> .					•				246
237.	The chain of an element .									246
238.	Generalized form of mathem	atic	al in	duc	tion					246
239.	Definition of a singly infinite	sys	tem							247
240.	Definition of cardinals .									247
	Dedekind's proof of mathema									248
242.	Objections to his definition of	of or	dina	ıls						248
243.	And of cardinals									249

CHAPTER XXXI.

DISTANCE.

PAGE

244.	Distance not essential to orde	er									252
245.	Definition of distance .										253
246.	Measurement of distances					•					254
247.	In most series, the existence	of	dista	nces	is	doub	tful				254
248.	Summary of Part IV										255

PART V.

INFINITY AND CONTINUITY.

CHAPTER XXXII.

THE CORRELATION OF SERIES.

259
260
260
262
262
263
264
267
269

CHAPTER XXXIII.

REAL NUMBERS.

258.	Real numbers are not l	imits	of s	erie	s of	ratio	onals				270
259.	Segments of rationals					•					271
	Properties of segments										
261.	Coherent classes in a se	eries									274
	Note										274

CHAPTER XXXIV.

LIMITS AND IRRATIONAL NUMBERS.

262.	Definition of a limit				276
263.	Elementary properties of limits		•		277
264.	An arithmetical theory of irrationals is indispensable				277
265.	Dedekind's theory of irrationals				278
266.	Defects in Dedekind's axiom of continuity				279
267.	Objections to his theory of irrationals	•			280
268.	Weierstrass's theory				282

ł

PAGE 269. Cantor's theory 200. 283 270. Real numbers are segments of rationals 200. 285

CHAPTER XXXV.

CANTOR'S FIRST DEFINITION OF CONTINUITY.

271.	The arithm	etica	d th	eory	of c	onti	nuity	y is	due	to C	Canto	r					287
272.	Cohesion			•			•										288
273.	Perfection																290
	Defect in (291
275.	The exister	ice o	f lin	nits 1	must	not	be	assu	med	l wit	hout	spe	ecial	gro	unds		293

CHAPTER XXXVI.

ORDINAL CONTINUITY.

Continuity is a purely ordinal notion									296
Cantor's ordinal definition of continuity .							•		296
Only ordinal notions occur in this definition									298
Infinite classes of integers can be arranged in	n a	conti	nuo	us se	eries				298
Segments of general compact series									299
Segments defined by fundamental series .									300
Two compact series may be combined to for	m a	ı serie	s w	hich	ı is n	ot e	com	pact	303
	Cantor's ordinal definition of continuity . Only ordinal notions occur in this definition Infinite classes of integers can be arranged in Segments of general compact series Segments defined by fundamental series .	Cantor's ordinal definition of continuity Only ordinal notions occur in this definition . Infinite classes of integers can be arranged in a Segments of general compact series Segments defined by fundamental series	Cantor's ordinal definition of continuity Only ordinal notions occur in this definition Infinite classes of integers can be arranged in a contin Segments of general compact series Segments defined by fundamental series	Cantor's ordinal definition of continuity Only ordinal notions occur in this definition Infinite classes of integers can be arranged in a continuo Segments of general compact series Segments defined by fundamental series	Cantor's ordinal definition of continuity Only ordinal notions occur in this definition Infinite classes of integers can be arranged in a continuous segments of general compact series	Cantor's ordinal definition of continuity Only ordinal notions occur in this definition	Cantor's ordinal definition of continuity	Cantor's ordinal definition of continuity	Continuity is a purely ordinal notion

CHAPTER XXXVII.

TRANSFINITE CARDINALS.

Transfinite cardinals differ widely from transfinite ordinals	. 304
Definition of cardinals	. 304
Properties of cardinals	. 306
The smallest transfinite cardinal α_0	. 309
Other transfinite cardinals	. 310
Finite and transfinite cardinals form a single series by relation to greater	
and less	. 311
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CHAPTER XXXVIII.

TRANSFINITE ORDINALS.

290.	Ordinals are classes of serial relations				•					312
291.	Cantor's definition of the second class	of o	ordir	nals				•		312
292.	Definition of ω									314
	An infinite class can be arranged in m									
294.	Addition and subtraction of ordinals	•	•							317
295.	Multiplication and division								•	318
296.	Well-ordered series									319
297.	Series which are not well-ordered	•							•	320

XXXV

								PAGE
298.	Ordinal numbers are types of well-orde	red s	erie	s .				321
299.	Relation-arithmetic							321
	Proofs of existence-theorems							
301.	There is no maximum ordinal number							323
302.	Successive derivatives of a series							323

CHAPTER XXXIX.

THE INFINITESIMAL CALCULUS.

The infinitesimal has been usually supposed essent	ntial	to t	he (calcu	ılus			325
Definition of a continuous function								326
Definition of the derivative of a function								328
The infinitesimal is not implied in this definition								329
Definition of the definite integral								329
Neither the infinite nor the infinitesimal is involved	ved i	n th	is d	efin	ition			330
	Definition of a continuous function Definition of the derivative of a function The infinitesimal is not implied in this definition Definition of the definite integral	Definition of a continuous function Definition of the derivative of a function	Definition of a continuous function Definition of the derivative of a function The infinitesimal is not implied in this definition Definition of the definite integral 	Definition of a continuous function . . . Definition of the derivative of a function . . . The infinitesimal is not implied in this definition . . . Definition of the definite integral . . .	Definition of a continuous function Definition of the derivative of a function The infinitesimal is not implied in this definition Definition of the definite integral 	Definition of a continuous function .	Definition of a continuous function .	The infinitesimal has been usually supposed essential to the calculus . Definition of a continuous function . . Definition of the derivative of a function . . The infinitesimal is not implied in this definition . . Definition of the definite integral . . Neither the infinite nor the infinitesimal is involved in this definition .

CHAPTER XL.

THE INFINITESIMAL AND THE IMPROPER INFINITE.

309.	A precise definition of the infinitesimal is seldom given				331
310.	Definition of the infinitesimal and the improper infinite				331
311.	Instances of the infinitesimal				332
312.	No infinitesimal segments in compact series				334
313.	Orders of infinity and infinitesimality				335
314.	Summary	•			337

CHAPTER XLI.

PHILOSOPHICAL ARGUMENTS CONCERNING THE INFINITESIMAL.

0.1 5			000
315.	Current philosophical opinions illustrated by Cohen	•	338
316.	Who bases the calculus upon infinitesimals		338
317.	Space and motion are here irrelevant		339
318.	Cohen regards the doctrine of limits as insufficient for the calculus		339
319.	And supposes limits to be essentially quantitative		340
320.	To involve infinitesimal differences		341
321.	And to introduce a new meaning of equality		341
322.	He identifies the inextensive with the intensive		342
323.	Consecutive numbers are supposed to be required for continuous change		344
324.	Cohen's views are to be rejected		344

CHAPTER XLII.

THE PHILOSOPHY OF THE CONTINUUM.

325.	Philosophical sense of co	ontir	nuity	y not	t he	e in	que	stio	n			346
326.	The continuum is comp	osed	of	mutu	ıally	exte	ernal	l un	its			346
327.	Zeno and Weierstrass											347

xxxvii

						PAGE
328.	The argument of dichotomy					348
329.	The objectionable and the innocent kind of endless re-	egre	SS			348
330.	Extensional and intensional definition of a whole					349
331.	Achilles and the tortoise					350
332.	The arrow					350
333.	Change does not involve a state of change					351
334.	The argument of the measure					352
335.	Summary of Cantor's doctrine of continuity					353
	The continuum consists of elements					353

CHAPTER XLIII.

THE PHILOSOPHY OF THE INFINITE.

337.	Historical retrospect	355
338.	Positive doctrine of the infinite	356
339.	Proof that there are infinite classes	357
340.	The paradox of Tristram Shandy	358
341.	A whole and a part may be similar	359
342.	Whole and part and formal implication	360
343.	No immediate predecessor of ω or α_0	361
344.	Difficulty as regards the number of all terms, objects, or propositions	362
345.	Cantor's first proof that there is no greatest number	363
346.	His second proof	364
347.	Every class has more sub-classes than terms	366
348.	But this is impossible in certain cases	366
349.	Resulting contradictions	367
350.	Summary of Part V	368

PART VI.

SPACE.

CHAPTER XLIV.

DIMENSIONS AND COMPLEX NUMBERS.

351.	Retrospect				371
352.	Geometry is the science of series of two or more dimens	ions			372
353.	Non-Euclidean geometry				372
	Definition of dimensions				374
355.	Remarks on the definition				375
356.	The definition of dimensions is purely logical				376
357.	Complex numbers and universal algebra				376
358.	Algebraical generalization of number				377
359.	Definition of complex numbers				378
360.	Remarks on the definition				379

xxxviii

,

Table of Contents

CHAPTER XLV.

PROJECTIVE GEOMETRY.

	PROJECTIVE GEOMETRY.					PAGE
361.	Recent threefold scrutiny of geometrical principles .					381
362.	Projective, descriptive and metrical geometry					381
363.	Projective points and straight lines					382
364.	Definition of the plane			•		384
365.	Harmonic ranges					384
366.	Involutions					385
367.	Projective generation of order					386
368.	Möbius nets					388
369.	Projective order presupposed in assigning irrational coor	dina	ites			389
370.	Anharmonic ratio					390
371.	Assignment of coordinates to any point in space					390
372.	Comparison of projective and Euclidean geometry					391
373.	The principle of duality				•	392

CHAPTER XLVI.

DESCRIPTIVE GEOMETRY.

374.	Distinction be	etw	ееп	pro	jecti	ve a	and	desc	ripti	ive ge	eom	etry	•				. 39	3
375.	Method of Pa	sch	an	dΡe	ano				•	•							. 39	4
376.	Method empl	oyi	ng	seria	l rel	atio	ns										. 39	5
377.	Mutual indep	enc	len	ce of	f axio	oms											. 39	6
378.	Logical defini	tior	ı of	the	clas	s of	des	cript	tive	space	s						. 39	7
379.	Parts of straig	ht :	line	es	•												. 39	7
380.	Definition of	the	pla	ane												•	. 39	8
																	. 39	n
381.	Solid geometr																	σ
381. 382.	Solid geometri Descriptive g																	9
	Descriptive g	éon	neti	ry ap	oplie	s to	Eue	lide	an a	nd hy	yper	boli	ic, b	ut n		lipti	с	9
382.	Descriptive g	éon ts	neti	ryap	oplie	s to	Eue	lide	an a	nd hy	yper	boli	ic, b	ut n	ot el	lipti	с . 39	9 0
382. 383.	Descriptive g space Ideal element	éon ts	neti	ryap	oplie:	s to	Euo ·	elide	an a	nd hy	yper	boli	ic, b	ut n	ot el	lipti	c . 39 . 40	9 0 0
382. 383. 384.	Descriptive g space Ideal element Ideal points	eon	neti	ry ap	oplie	s to	Eu · ·	elide	an a	nd hy	yper	boli	ic, b	ut n	ot el	lipti	c . 39 . 40 . 40	9 0 0 1
382. 383. 384. 385.	Descriptive g space Ideal element Ideal points Ideal lines	eon	neti	ry ap	plie	s to	Eu	elide	an a	nd hy	yper	boli	ic, b	ut n	otel	lipti	c . 39 . 40 . 40 . 40	9 0 0 1

CHAPTER XLVII.

METRICAL GEOMETRY.

388.	Metrical geometry presupposes projective or desc	riptive	geon	netry		404
389.	Errors in Euclid		-			404
390.	Superposition is not a valid method					405
391.	Errors in Euclid (continued)		•			406
392.	Axioms of distance					407
	Stretches					408
394.	Order as resulting from distance alone					409
395.	Geometries which derive the straight line from d	istance				410
396.	In most spaces, magnitude of divisibility can be u	ised inst	ead	of dist	ance	411

.

xxxix

						PAGE
397.	Meaning of magnitude of divisibility					411
398.	Difficulty of making distance independent of stretch					413
399.	Theoretical meaning of measurement					414
400.	Definition of angle					414
401.	Axioms concerning angles	•				415
402.	An angle is a stretch of rays, not a class of points .	•	•	•	•	416
403.	Areas and volumes					417
404.	Right and left					417

CHAPTER XLVIII.

RELATION OF METRICAL TO PROJECTIVE AND DESCRIPTIVE GEOMETRY.

Non-quantitative geometry has no m	ietric	al p	resu	ppos	itio	ns				•	419
Historical development of non-quant	titati	ve g	eom	etry							420
Non-quantitative theory of distance		•	•								421
In descriptive geometry											423
											425
											426
New projective theory of distance											427
	Historical development of non-quant Non-quantitative theory of distance In descriptive geometry And in projective geometry Geometrical theory of imaginary poi	Historical development of non-quantitativ Non-quantitative theory of distance . In descriptive geometry And in projective geometry Geometrical theory of imaginary point-pa	Historical development of non-quantitative g Non-quantitative theory of distance In descriptive geometry And in projective geometry Geometrical theory of imaginary point-pairs	Historical development of non-quantitative geometry Non-quantitative theory of distance In descriptive geometry And in projective geometry	Historical development of non-quantitative geometry Non-quantitative theory of distance In descriptive geometry And in projective geometry Geometrical theory of imaginary point-pairs	Historical development of non-quantitative geometry . Non-quantitative theory of distance . In descriptive geometry . And in projective geometry . Geometrical theory of imaginary point-pairs .	Historical development of non-quantitative geometry . . Non-quantitative theory of distance . . In descriptive geometry . . And in projective geometry . . Geometrical theory of imaginary point-pairs . .	Historical development of non-quantitative geometry . Non-quantitative theory of distance . . In descriptive geometry . . . And in projective geometry . . . Geometrical theory of imaginary point-pairs . . .	Historical development of non-quantitative geometry . . Non-quantitative theory of distance . . . In descriptive geometry And in projective geometry Geometrical theory of imaginary point-pairs 	Historical development of non-quantitative geometry .	Non-quantitative geometry has no metrical presuppositions

CHAPTER XLIX.

DEFINITIONS OF VARIOUS SPACES.

412.	All kinds of spaces are definable in purely logical terms			429
413.	Definition of projective spaces of three dimensions .			430
414.	Definition of Euclidean spaces of three dimensions			432
415.	Definition of Clifford's spaces of two dimensions			434

CHAPTER L.

THE CONTINUITY OF SPACE.

416.	The continuity of a projective space	437
417.	The continuity of a metrical space	438
418.	An axiom of continuity enables us to dispense with the postulate of the circle	440
419.	Is space prior to points?	440
420 .	Empirical premisses and induction	441
421.	There is no reason to desire our premisses to be self-evident	441
422.	Space is an aggregate of points, not a unity	442

CHAPTER LI.

LOGICAL ARGUMENTS AGAINST POINTS.

423.	Absolute and relative position			•		445
424.	Lotze's arguments against absolute position		•			446
425.	Lotze's theory of relations					446
426.	The subject-predicate theory of propositions			۰.		448

					PAGE
427.	Lotze's three kinds of Being				449
428.	Argument from the identity of indiscernibles .				451
429.	Points are not active				452
430.	Argument from the necessary truths of geometry				454
431.	Points do not imply one another	•			454

CHAPTER LII.

KANT'S THEORY OF SPACE.

432.	The present work is diametrically	y op	pose	d to	Kai	nt				456
433.	Summary of Kant's theory .			•						456
434.	Mathematical reasoning requires	no	extra	ι-log	ical	elen	aent			457
435.	Kant's mathematical antinomies			•						458
436.	Summary of Part VI						•			461

PART VII.

MATTER AND MOTION.

CHAPTER LIII.

MATTER.

437.	Dynamics is here considered as a branch of pure	mathe	matic	s		465
438.	Matter is not implied by space					465
439.	Matter as substance					466
440.	Relations of matter to space and time					467
441.	Definition of matter in terms of logical constants					468

CHAPTER LIV.

MOTION.

44 2.	Definition of change						469
	There is no such thing as a state						
44 4.	Change involves existence .						471
445.	Occupation of a place at a time						472
446.	Definition of motion						472
447.	There is no state of motion .				•		473

CHAPTER LV.

CAUSALITY.

448.	The descriptive theory of dynamics	•				474
449.	Causation of particulars by particulars					475
450.	Cause and effect are not temporally contiguous					476

					PAGE
451.	Is there any causation of particulars by particulars?				477
452.	Generalized form of causality				478

CHAPTER LVI.

DEFINITION OF A DYNAMICAL WORLD.

453.	Kinematical motions .							480
454.	Kinetic motions						•	480

CHAPTER LVII.

NEWTON'S LAWS OF MOTION.

455.	Force and acceleration are fictions			•			482
456.	The law of inertia						482
457.	The second law of motion						483
458.	The third law					۰.	483
459.	Summary of Newtonian principles						485
460.	Causality in dynamics						486
461.	Accelerations as caused by particulars						487
462.	No part of the laws of motion is an à priori trut	th.					488

CHAPTER LVIII.

ABSOLUTE AND RELATIVE MOTION.

463.	Newton and his critics .							489
464.	Grounds for absolute motion							490
465.	Neumann's theory							490
466.	Streintz's theory .	•						491
467.	Mr Macaulay's theory							491
	Absolute rotation is still a cha							
469.	Mach's reply to Newton .							492

CHAPTER LIX.

HERTZ'S DYNAMICS.

470.	Summary of Hertz's system			. 494	ŀ
	Hertz's innovations are not fundamental from the po				
	mathematics			. 495	5
472.	Principles common to Hertz and Newton		 •	. 496	3
473.	Principle of the equality of cause and effect			. 496	3
474.	Summary of the work			. 497	1

APPENDIX A.

	THE LOGICAL AND ARITHMETICAL DOCTRINES OF FREGE.	PAG	Е
475.	Principal points in Frege's doctrines	. 50)1
476.	Meaning and indication	. 50)2
477.	Truth-values and judgment	. 50)2
478.	Criticism	. 50)3
479.	Are assumptions proper names for the true or the false?	. 50)4
480.	Functions	. 50)5
481.	Begriff and Gegenstand	. 50)7
482.	Recapitulation of theory of propositional functions	. 50)8
483.	Can concepts be made logical subjects?	. 51	.0
484.	Ranges	. 51	.0
485.	Definition of ε and of <i>relation</i>	. 51	2
486 .	Reasons for an extensional view of classes	. 51	3
487.	A class which has only one member is distinct from its only member .	. 51	3
488.	Possible theories to account for this fact	. 51	4
489.	Recapitulation of theories already discussed	. 51	5
490.	The subject of a proposition may be plural	. 51	.6
491.	Classes having only one member	. 51	7
492.	Theory of types	. 51	8
493.	Implication and symbolic logic	. 51	8
494.	Definition of cardinal numbers	. 51	9
495.	Frege's theory of series	. 52	:0
496.	Kerry's criticisms of Frege	. 52	:0

APPENDIX B.

THE DOCTRINE OF TYPES.

525
526
527

Index .		•		•	•	•	•	•	•		•	529