
The Principles of
Software QRS Detection
Reviewing and Comparing Algorithms for

Detecting this Important ECG Waveform

The QRS complex is the most striking

waveform within the electrocardio-

gram (ECG). Since it reflects the electri-

cal activity within the heart during the

ventricular contraction, the time of its

occurrence as well as its shape provide

much information about the current state

of the heart. Due to its characteristic

shape (see Fig. 1) it serves as the basis for

the automated determination of the heart

rate, as an entry point for classification

schemes of the cardiac cycle, and often it

is also used in ECG data compression al-

gorithms. In that sense, QRS detection

provides the fundamentals for almost all

automated ECG analysis algorithms.

Software QRS detection has been a re-

search topic for more than 30 years. The

evolution of these algorithms clearly re-

flects the great advances in computer

technology. Whereas in the early years

the computational load determined the

complexity and therefore the perfor-

mance of the algorithms, nowadays the

detection performance is the major devel-

opment objective. The computational

load becomes less and less important.

The only exception from this trend is

probably the development of QRS detec-

tion algorithms for battery-driven de-

vices.

Within the last decade many new ap-

proaches to QRS detection have been

proposed; for example, algorithms from

the field of artificial neural networks [47,

105, 119, 122], genetic algorithms [91],

wavelet transforms, filter banks [2, 54,

66] as well as heuristic methods mostly

based on nonlinear transforms [59, 107,

114]. It is the intention of the authors to

provide an overview of these recent de-

velopments as well as of formerly pro-

posed algorithms that were already

reviewed in [34, 51, 84]. The overview is

focused on the description of the princi-

ples. Algorithmic details can be found in

the original papers that are referenced at

the end of this article.

Beyond QRS detection, many papers

have been published in related fields; e.g.,

ECG signal enhancement [15, 17, 23, 28,

90, 99] or pattern classification [8, 26, 31,

40, 62, 63, 70, 71, 72, 108, 113, 119]. The

algorithms described in these papers are

not the topic of this article. However, al-

though not directly applied to QRS detec-

tion, many of these algorithms may be

useful in processing stages prior to QRS

detection.

Overview
The rapid development of powerful

microcomputers promoted the wide-

spread application of software QRS de-

tection algorithms in cardiological

devices. Beginning about 30 years ago,

software QRS detection has replaced

more and more hardware QRS detectors.

Already in the early years of auto-

mated QRS detection, an algorithmic

structure was developed that is now

shared by many algorithms. As shown in

Fig. 2 it is divided into a preprocessing or

feature extraction stage including linear

and nonlinear filtering and a decision

stage including peak detection and deci-

sion logic. Often an extra processing

block is used for the exact determination

of the temporal location of the assumed

QRS candidate. In this article the different

algorithms are discriminated with respect

to their preprocessing stages, because

most of the decision stages are rather heu-

ristic and dependent on the preprocessing

results.

Approaches Based on Signal
Derivatives and Digital Filters
Typical frequency components of a

QRS complex range from about 10 Hz to

about 25 Hz. Therefore, almost all QRS de-

tection algorithms use a filter stage prior to
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the actual detection in order to attenuate

other signal components and artifacts, such

as P-wave, T-wave, baseline drift, and

incoupling noise. Whereas the attenuation

of the P- and T-wave as well as baseline

drift requires high-pass filtering, the sup-

pression of incoupling noise is usually ac-

complished by a low-pass filter. The

combination of low and high pass means

effectively the application of a bandpass

filter, in this case with cut-off frequencies

at about 10 Hz and 25 Hz.

In many algorithms, high- and low-pass

filtering are carried out separately. Some

algorithms, such as [3, 7, 33, 38, 45, 78,

83], use only the high-pass filter part. The

filtered signals are then used for the gener-

ation of a feature signal in which the occur-

rence of a QRS complex is detected by

comparing the feature against fixed or

adaptive thresholds. Almost all algorithms

use additional decision rules for the reduc-

tion of false-positive detections.

Derivative-Based Algorithms
The high-pass filter is often, in particu-

lar in the older algorithms, realized as a

differentiator. This points out the usage of

the characteristic steep slope of the QRS

complex for its detection. Difference

equations of possible differentiator filters

are [3, 7, 33, 38, 45, 78, 83]

y n x n x n1 1 1( ) ( ) ( )= + − − (1)

y n x n x n

x n x n

1 2 2 1

1 2 2

( ) ( ) ( )

( ) ( )

= + + +

− − − − (2)

y n x n x n1 1( ) ( ) ( )= − − (3)
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Θ

Θ Θ (5)

and Θ is an amplitude threshold deter-

mined from the measured ECG signal

x n( ). In most cases, the differentiator from

Eq. (1) is used. Some algorithms also

compute the second derivative. It can be

estimated by [3, 7]

y n x n x n x n2 2 2 2( ) ( ) ( ) ( )= + − + − . (6)

Typical features z n( ) of such algo-

rithms are the differentiated signal itself

[33, 38, 78]

z n y n( ) ( )= 1 , (7)

a linear combination of the magnitudes of

the first and the second derivative [7]

z n y n y n( ) . | ( )| . | ( )|= +13 111 2 , (8)

or a linear combination of the smoothed

first derivative magnitude and the magni-

tude of the second derivative [3]

z n y n y n( ) ~ ( ) | ( )|= +1 2 (9)

where ~ ( ) { . , . , . }*| ( )|y n y n1 10 25 0 5 0 25= and

*denotes the linear convolution operator.

The detection of a QRS complex is ac-

complished by comparing the feature

against a threshold. Usually the threshold

levels are computed signal dependent

such that an adaption to changing signal

characteristics is possible. For the feature

in Eq. (7), the threshold [33, 38, 78]

Θx x= ⋅0 3 0 4. . max[ ]K (10)

is proposed, where the maximum is deter-

mined online or from the current signal

segment. Most QRS detectors use this or a

similar method to determine the threshold.

The peak detection logic is frequently

completed by further decision rules that

are applied in order to reduce the number

of false-positive detections. Such rules

usually put heuristically found constraints

on the timing and the sign of the features

or introduce secondary thresholds to ex-

clude non-QRS segments of the ECG with

QRS-like feature values [3, 7, 33, 38, 45,

78, 81, 103].

Algorithms Based on Digital Filters
Algorithms based on more sophisti-

cated digital filters were published in [12,

26, 29, 30, 41, 55, 65, 67, 81, 83, 85, 101,

106, 107, 123].

In [83] an algorithm is proposed where

the ECG is filtered in parallel by two dif-

ferent low-pass filters with different

cut-off frequencies. The difference be-

tween the filter outputs is effectively the

bandpass filtered ECG y n1( ), which is af-

terwards further processed by

y n y n y n k
k m

m

2 1 1
2

2

( ) ( ) ( )= +





= −
∑ .

(11)

This nonlinear operation leads to a rel-

ative suppression of small values and a

slight smoothing of the peaks. The feature

signal z n( ) is formed out of y n2( ) by putt-

ing additional sign constraints on the out-

put signal of the low pass with the higher

cut-off frequency. The threshold is com-

puted adaptively by Θ = max[ ( )] /z n 8.

In [106] and [107] the MOBD (multi-

plication of backward difference) algo-

rithm is proposed. It is essentially an
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AND-combination of adjacent magnitude

values of the derivative. The MOBD of

the order N is then defined by

z n x n k x n k
k

N

( ) | ( ) ( )|= − − − −
=

−

∏
0

1

1 .
(12)

In order to avoid a high feature signal

during noisy segments, an additional sign

consistency constraint is imposed; i.e.,

z n

x n k x n k

( )

[ ( )] [ ( )],

=

− ≠ − −

0

1if sign sign

(13)

where k N= −0 1 2, , ,K . A proposed value

for the order of MOBD is N = 4 [107].

The threshold Θ is set to the feature maxi-

mum zmax after the refractory period and

then halved whenever a fixed time period

is elapsed. The threshold is bounded by a

lower limit that is also adaptive.

The algorithms described in [41] and

[85] use basically the same preprocessor.

The ECG is bandpass filtered and after-

wards differentiated. The feature signal z n( )

is computed by squaring and averaging the

output of the differentiator. The bandpass

and differentiator use filter coefficients that

are particularly suited for an implementa-

tion on fixed-point processors with a short

word length. For the peak detection, a vari-

able v is introduced that contains the value

of the most recent feature maximum. Peaks

in the feature signal are detected by compar-

ing the feature againstv. If the feature drops

below v 2 a peak is detected. Then the cur-

rent value of v is taken as the peak height

andv is reset to the current value of the fea-

ture signal; i.e., v z n= ( ). The principle of

the peak detection is shown in Fig. 3. The

fiducial mark is set to the location of the

largest peak in the bandpass-filtered signal

in an interval from 225 ms to 125 ms pre-

ceding a peak detection. The fiducial mark

and the height of the peak are put into an

event vector that is further processed by the

decision stage. In the decision stage, a QRS

peak level LP and a noise level LN are esti-

mated recursively by

L n L n AP P P P P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1

(14)

L n L n AN N N N P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1 ,

(15)

where λN and λP are forgetting factors

(e.g., λ ≈ 0 98. ) and AP is the peak ampli-

tude. Depending on whether a peak is

classified as QRS complex or as a noise

peak, either the QRS peak level LP or the

noise level LN is updated using Eq. (14) or

Eq. (15), respectively. Eventually, the de-

tection threshold is determined from

Θ = + ⋅ −L L LN P Nτ ( ), (16)

where the positive threshold coefficient

τ <1 is a design parameter.

In [67] the feature signal z n( ) is com-

puted in a way similar to [41] and [85] but

using different filters. In contrast to [41]

and [85], the feature signal is divided into

segments of 15 points. The maximum of

each segment is compared to an adaptive

noise level and an adaptive peak level esti-

mate and classified depending on the dis-

tance to each of the estimates. The fiducial

point of the QRS complex is set to the loca-

tion within the QRS segment where the

maximum of the ECG and a zero crossing

in its first derivative occur at the same time.

Although [26] describes an ECG

waveform detection by neural networks,

the QRS detection is accomplished using

a feature extractor based on digital filter-

ing. The feature signal z n( ) is generated by

filtering the ECG with two different

bandpass filters and afterwards multiply-

ing the filter outputs w n( ) and f n( ); i.e.,

z n w n f n( ) ( ) ( )= ⋅ . (17)

This procedure is based on the assump-

tion that a QRS complex is characterized

by simultaneously occurring frequency

components within the passbands of the

two bandpass filters. The multiplication

operation performs the AND-combina-

tion. That is, only if both filter outputs are

high then the feature is high and indicates

a QRS complex. The location of the maxi-

mum amplitude in the feature is taken as

the location of the R-wave.

The use of recursive and nonrecursive

median filters, i.e.

y n y n m y n

x n x n x n m

( ) [ ( ), , ( ),

( ), ( ), , ( )]

= − −

+ +

median

a

K

K

1

1 nd
(18)

y n x n m x n

x n x n x n m

( ) [ ( ), , ( ),

( ), ( ), , ( )],

= − −

+ +

median K

K

1

1
(19)

is proposed, for example, in [123]. The

median operator applied to a vector

x = [ , , ]x xN1 K means sorting the ele-

ments of the vector according to their val-

ues and then taking the midpoint

y N= xsorted ( / )2 as the filter output. In

[123] a combination of two median filters

and one smoothing filter is used to form a

bandpass filter. The additional signal pro-

cessing steps are similar to [41, 85].

Generalized digital filters for ECG

processing with the transfer function

H z z z K LK L( ) ( )( ) ,= − + >
− −1 1 01

(20)
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are proposed in [12, 100]. Such filters

have a linear phase response and are

computationally highly efficient. They

were applied, for example, in [101] where

( , ) ( , )K L = 1 2 at a sampling rate fT =100

Hz and in [29] where ( , ) ( , )K L = 5 4 at a

sampling frequency fT = 250 Hz. Other

reported applications of these filters can

be found in [30, 81].

Digital filters have been widely ap-

plied to QRS detection. However, having

described the major principles, we con-

clude this section here. Further articles on

filter-based QRS detection methods in-

clude [5, 32, 48, 55, 58, 65, 79, 110, 111,

112, 102, 121].

Wavelet-Based QRS Detection

Wavelet Transform and
Singularity Detection

The wavelet transform (WT) of a func-

tion f t( ) is an integral transform defined

by

Wf a b f t t dta b( , ) ( ) ( ),
*=

−∞

∞

∫ ψ .

(21)

where ψ*( )t denotes the complex conju-

gate of the wavelet function ψ( )t . The

transform yields a time-scale representa-

tion similar to the time-frequency repre-

sentation of the short-time Fourier

transform (STFT). In contrast to the

STFT, the WT uses a set of analyzing

functions that allows a variable time and

frequency resolution for different fre-

quency bands. The set of analyzing func-

tions, the wavelet family ψa b, , is deduced

from a mother wavelet ψ( )t by

ψ ψa b t
t b

a, ( ) = ⋅
−


 


1

2 (22)

where a and b are the dilation (scale) and

translation parameter, respectively. The

scale parameter a of the WT is compara-

ble to the frequency parameter of the

STFT. The mother wavelet is a short os-

cillation with zero mean. An example is

depicted in Fig. 4.

The discrete wavelet transform

(DWT) results from discretized scale and

translation parameters; e.g., a j= 2 and

b n j= ⋅ 2 where j and n are integer num-

bers. This choice of a and b leads to the

dyadic DWT (DyWT)

Wf b f t t dtj

j
b

( , ) ( ) ( )
,

*2
2

= ⋅
−∞

∞

∫ ψ
(23)

with

ψ ψ

ψ

2 2

2

1

2 2

1

2 2

j
b j j

j j

t
t b

t
n

j

, /

/

( ) = ⋅
−


 




= ⋅ −


 




and

,n ∈ Z.

.

(24)

Although defined as an integral trans-

form, the DyWT is usually implemented

using a dyadic filter bank where the filter

coefficients are directly derived from the

wavelet function used in the analysis

[14,104]. The input signal to the filter

bank is the sampled ECG signal.

Except for [2] and [39] all wave-

let-based peak detection methods men-

tioned in this review [6, 24, 54, 66, 93] are

based on Mallat’s and Hwang’s approach

for singularity detection and classification

using local maxima of the wavelet coeffi-

cient signals [74]. Therein the correspon-

dence between singularities of a function

f t( ) and local maxima in its wavelet

transform Wf a t( , ) is investigated. It is

shown that singularities correspond to

pairs of modulus maxima across several

scales (see Fig. 12). Figure 5 clarifies the

correspondence between a signal with

singularities and its wavelet coefficients.

Peak classification is accomplished by the

computation of the singularity degree

(peakiness); i.e., the local Lipschitz regu-

larity α , which is estimated from the de-

cay of the wavelet coefficients by [74]

α j
j j

j j

Wf n

Wf n

=

−

+ +log ( , )

log ( , )

2
1 1

2

2

2 (25)

and

α
α α

=
+1 2

2
.

(26)

Singularity
Detection-Based Approaches

The algorithm proposed by Mallat and

Hwang [74] was first applied to QRS de-

tection in [66]. R-peaks are found by scan-

ning for simultaneous modulus maxima in

the relevant scales of the WT. For a valid

R-peak the estimated Lipschitz regularity

must be greater than zero; i.e., α > 0 [66].

Besides the condition on the Lipschitz

regularity, the algorithm in [66] applies

further heuristic decision rules such as

conditions on the sign and the timing of

the peak occurrence within the different

scales.

The methods in [6] and [50] are di-

rectly derived from [66]. Although both

detection methods are extensively simpli-

fied compared to the original algorithm,

the reported results are still very good.

Descriptions of two implementations of

the algorithm from [66] on digital signal

processors can be found in [57] and [95].

Further QRS detection algorithms

based on local maxima are presented in

[24], [93], and [54]. In [24], characteris-

tic points are detected by comparing the

coefficients of the discrete WT on se-

lected scales against fixed thresholds.

The algorithm described in [93] divides

the ECG into segments of a fixed length.

R-peaks are detected when the locations

of modulus maxima of adjacent scales
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exceed a threshold that is calculated for

every segment.

In [39], the wavelet-based zero cross-

ing representation from [73] is used for

pattern recognition. This pattern recogni-

tion method consists of a learning and a

recognition phase. In the learning phase, a

set of generalized feature vectors is gener-

ated from a set of example patterns, using

the zero crossing representation of the ex-

ample. In the recognition phase, the fea-

ture vectors are computed for fixed-length

segments of the ECG and compared

against the generalized feature vectors. If

a percentage match criterion exceeds the

threshold, an R-peak is detected.

Filter-Bank Methods
Filter banks are closely related to

wavelets. Their application to QRS detec-

tion is reported in [2]. Therein a 32-band

fi l ter bank is used to generate

downsampled subband signals. Similar to

[26], it is assumed that the QRS complex

is characterized by a simultaneous

occurrence of ECG frequency compo-

nents in the subbands w l, l =1 4, ,K . From

these subbands three features, p p1 2, , and

p3, are derived; i.e.,

p n w n
l

l1
1

3

( ) ( )=
=
∑

(27)

p n w n
l

l2
1

4

( ) ( )=
=
∑

(28)

p n w n
l

l3
2

4

( ) ( )=
=
∑ .

(29)

Finally, the actual QRS detection is ac-

complished by a sophisticated combina-

tion of the features in the following

five-stage detection logic.

Related Methods
The wavelet transform has also been

used for classification; e.g., in [16, 21, 56,

96]. In [116] the WT was applied to the

detection of ventricular late potentials

(VLPs) in manually segmented ECG sig-

nals. The authors of [21] give a brief sur-

vey of the continuous WT (CWT) of ECG

and heart rate variability (HRV) signals

and demonstrate the possibility of data

compression by thresholding of wavelet

coefficients. In [16] the application of the

CWT to ECG signals of healthy subjects

and patients with cardiac diseases is re-

ported and compared to the short-time

Fourier transform. In [56] energy parame-

ters are derived from the CWT to discrim-

inate between normal sine rhythm and

cardiac arrythmias like ventricular fibril-

lation, ventricular tachycardia, and atrial

fibrillation.

Wavelet-based filtering and noise re-

duction methods with applications to

ECG signal processing are published in

[49, 60] and [77].

Neural Network Approaches
Neural Networks

Artificial neural networks have been

widely applied in nonlinear signal pro-

cessing, classification, and optimization.

In many applications their performance

was shown to be superior to classical lin-

ear approaches.

In ECG signal processing, mostly the

multilayer perceptron (MLP), radial basis

function (RBF) networks, and learning

vector quantization (LVQ) networks are

used. As depicted in Fig. 6, the MLP net-

work consists of several layers of inter-

connected neurons where each neuron

represents a processing function

y f w w i
i

N

i= +










=
∑0

1

x

(30)

with w i as the weight assigned to input xi

and f ( )⋅ as a linear or nonlinear function.

In the nonlinear case, f ( )⋅ is frequently de-

f ined as the logis t ic funct ion

f u e u( ) / ( )= + −1 1 or f u u( ) ( )= tanh . RBF

networks are an implementation of the

functional

y n w
n

i

N

i
i

i

( ) exp
( )

= −
−








=
∑

1

x c

σ
(31)

where x( )n denotes some input data vec-

tor. The number N of neurons, the coeffi-

cients w i, the center vectors c i, and the

standard deviations σi are the parameters

of the network. The exponentials may also

be replaced by other functions; e.g., wave-

lets. RBF networks are closely related to

fuzzy logic methods [13]. The advantage

of RBF networks over MLP networks is,

similar to fuzzy-logic methods, the possi-

bility to interpret the parameters. This

makes the results more predictable and

hence reliable.

The LVQ network consists of an input

layer, a competitive layer, and a linear

layer. The competitive layer automati-

cally learns to classify input vectors into

subclasses, where the maximum number

of subclasses N equals the number of

competitive neurons. In this layer, a clas-

sification is accomplished on the basis of

the Euclidian distance between the input

vector and the weight vector of each of the

competitive neurons. Finally, the linear

layer combines the subclasses of the first

layer to the user-defined target classes.

The structure of the LVQ network is

shown in Fig. 7.

In order to accomplish the applica-

tion-dependent task (e.g. approximation

or classification), the parameters of the

network need to be trained. Whereas the

MLP and RBF networks are trained by su-

pervised learning algorithms, the LVQ

network is adjusted in an unsupervised

manner. Appropriate training algorithms

are described in the literature; for exam-

ple, in [11, 44].
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The application of neural networks in

the field of ECG waveform classification

is reported in [8, 26, 31, 40, 47, 62, 63, 70,

71, 72, 105, 108, 113, 119, 122]. Some of

these algorithms [47, 105, 119, 122], are

also concerned with the QRS detection

problem.

Neural Networks as Adaptive
Nonlinear Predictors

In the context of QRS detection, neural

networks have been used as adaptive

nonlinear predictors [47, 119, 122]. The

objective is to predict the current signal

value x n( ) from its past values x n i( )− ,

i > 0.

Because the ECG consists almost

solely of non-QRS segments, the neural

network converges to a point where sam-

ples from non-QRS segments are well

predicted. Segments with sudden changes

(i.e., QRS segments) follow a different

statistics and lead to a sudden increase in

the prediction error. It follows that the

prediction error e n( ) can be used as a fea-

ture signal for QRS detection.

Due to the nonlinear behavior of the

background noise as described in [122], a

nonlinear prediction filter may show

better performance than its linear counter-

part. In [122, 47, 119] the neural network

is an MLP network with a three-layer

structure. The input layer consists of eight

to ten linear neurons with the time-de-

layed signal samples as inputs; the hidden

layer has three to five nonlinear (logistic

nonlinearity) neurons and the output layer

contains one, again a linear neuron. In

[119] the network is trained prior to the

detection on carefully selected samples.

In contrast to prior learning in [122] the

network is trained online and hence able

to adopt to changing signal statistics. In

[122] the output of the nonlinear predic-

tion filter is further processed by a

matched filter, providing a better attenua-

tion of the residual noise.

Learning Vector Quantization for
QRS Detection

In [105] the authors propose the appli-

cation of a two-layer LVQ network for

QRS detection and the discrimination of

premature ventricular contractions

(PVC). The input and the competitive

layer consist of 20-40 neurons, whereas

in the linear layer there are two neurons

corresponding to the number of output

classes. The input are adjacent samples

of the ECG. Training data were taken

from several records of the MIT/BIH da-

tabase. The classification is carried out

with an overlap of 10-30 samples. As re-

ported in [105], the results do not reach

the results of classical approaches, such

as [85]. However, once trained the LVQ

network offers fast computations and

furthermore a discrimination between

QRS and PVC contractions.

Additional Approaches
Adaptive Filters

The application of adaptive prediction

filters to QRS detection has been investi-

gated (e.g., in [61,42]). Figure 8 shows the

structure of an FIR prediction filter. Simi-

lar to the nonlinear case (see the previous

section) the objective of the filter is to gain

an estimate $( )x n for the current signal

sample x n( ) from the past signal values by

means of a weighted superposition; that

is,

$( ) ( ) ( )x n a n x n i

i

P

i
= −

=

∑
1 (32)

with the time-variant coefficients a n
i
( ),

i P=1K . They are adaptively adjusted ac-

cording to the changing signal statistics.

From the literature several adaption rules

for the coefficients are known; e.g., the

least mean square (LMS) algorithm

a a x( ) ( ) ( ) ( )n n e n n+ = +1 λ (33)

where a( ) [ ( ), ( ), , ( )]n a n a n a n
P

T
= 1 2 K

denotes the coefficient vector at time n, λ

is the step size parameter ,

e n x n x n( ) ( ) $( )= − denotes the prediction

error , and x( ) [ ( ), ( ),n x n x n= − −1 2

x n x n P
T( ), , ( )]− −2 K is the vector of the

time-delayed ECG signal samples. For a

detailed description of the adaptive filter-

ing methods, see [43].

The authors of [61] propose features

on the basis of adaptive filtering. They

suggest to use the differences between the

coefficient vectors a at time n and time

n −1; i.e,

D n a n a n

i

P

i i
( ) | ( ) ( )|= − −

=

∑
1

21 ,
(34)
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and a combination of the difference be-

tween the short time energies of the resid-

ual error of two consecutive segments

D n e i e ie
i n

n m

i n m

n

( ) ( ) ( )= −
=

+

= −

∑ ∑2 2 .
(35)

Further applications of adaptive filters

to QRS detection are reported in [68] and

[22]. In [68] it was shown that at a sam-

pling frequency of fT = 500 Hz two tap

filters are sufficient for a good prediction

performance. In [22] the application of a

midprediction filter

$( ) ( )x n a x n i
k P

P

i= −
= −

∑
(36)

is proposed.

Hidden Markov Models
In [20] the application of hidden

Markov models (HMM) to QRS and ECG

waveform detection is investigated.

HMMs model the observed data sequence

by a probability function that varies ac-

cording to the state of an underlying (hid-

den) Markov chain. By means of the

Markov chain the global structural char-

acteristics of the process are preserved

while the parameters of the probability

density function account for the varying

statistical properties of the observed data.

The objective of the algorithm is to infer

the underlying state sequence from the

observed signal. In the case of ECG sig-

nals, possible states are P-wave, QRS, and

T-wave. The advantage of this detection

method is that not only the QRS complex

is determined but also P- and T-waves.

Problems of the method include a neces-

sary manual segmentation for training

prior to the analysis of a record, its patient

dependence, and the considerable compu-

tational complexity even when the

computationally efficient Viterby algo-

rithm [20] is applied. For further details

about HMMs, see e.g. [92,118].

Mathematical Morphology
The use of mathematical morphology

operators for QRS detection was de-

scribed in [114]. Mathematical morphol-

ogy originates from image processing and

was proposed for ECG signal enhance-

ment in [18]. Therein the successful re-

moval of impulsive noise from the ECG is

reported.

Mathematical morphology is based on

the terms erosion and dilation. Let

f F I: → and k K I: → denote discrete

functions, where the sets F and K are

given by F N= −{ , , , }0 1 1K and

K M= −{ , , , }0 1 1K . I is the set of integer

numbers. The erosion of the function f by

the function k is defined as [18]

( )( ) min ( ) ( )

,...,

, ,
f k m f m n k n

N M m N

n M
� = + −

> =

= −0 1

0

K

for and − M (37)

k is also referred to as the structuring ele-

ment. The values of ( )f k� are always

less than those of f .

The dilation of the function f by the

function k is defined as [18]

( )( ) max ( ) ( )

, ,

, ,

f k m f n k m n

N M m M N

n M

⊕ = + −

> = −

= −0 1

1

K

Kfor and −1.

(38)

The values of f k⊕ are always greater

than those of f .

Erosion and dilation are combined for

additional operations. Opening, denoted

by °, is defined as erosion followed by a

dilation. Closing, denoted by •, is defined

as dilation followed by an erosion. Both

operators manipulate signals in a compa-

rable way. That is, to open a sequence f

with a flat structuring element k will re-

move all peaks. To close the sequence

with the same structuring element will re-

move all pits (negative peaks).

In [114], opening and closing opera-

tions are used for noise suppression as

proposed in [18]; i.e.,

~ [( ) ] [( ) ]
x

x k k x k k
=

• + •o o

2 (39)

where k is a flat structuring element (zero

line). The generation of a feature signal

for the QRS complexes is accomplished

by the operation

z x x B B= − •
~ [(~ ) ]o (40)

where B is now a peaky structuring ele-

ment as shown in Fig. 9. In [114] B has a

length of 13 samples. A QRS complex is

eventually found by comparing the fea-

ture signal against an adaptive threshold.

Matched Filters
Besides the neural-network-based

matched filtering approach in [122], there

are linear matched filtering approaches as,

for example, reported in [94, 27, 69, 25].

In [94], after some analog preprocessing

steps such as an automatic gain control,

the ECG signal is digitized and further

processed by a comb filter (low pass) with

a notch at 50 Hz and a bandpass filter with

cut-off frequencies at 15 Hz and 40 Hz.

This digital filter stage is followed by a

matched filter for further improvement of

the signal-to-noise ratio (SNR). The

matched filtering is accomplished by

y n h i x n i
i

N

( ) ( ) ( )= −
=

−

∑
0

1

(41)

where the impulse response h n( ) is the

time-reversed template of the waveform

to be detected. The impulse response of

the matched filter h n( ) is manually taken

from the first cardiac cycles of the current

measurements; i.e., it needs to be deter-

mined interactively. For further enhance-

ment of the timing accuracy, the output of

the matched filter is interpolated up to

four times the original sampling fre-

quency. The final decision about a QRS

complex is taken by comparing the fil-

tered signal against a fixed threshold. It is

reported in [94] that the matched filter

also improves the timing accuracy of the

detected R-wave.

A similar approach is proposed in [69].

Instead of computing the cross correlation

between the template and the signal as in

Eq. (41), the algorithm searches for the

minimum of the average magnitude cross

difference (AMCD)
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AMCD = − −
=
∑
i

N

x n i h i
1

| ( ) ( )|

(42)

where x n( ) is the ECG signal and h i( ) is

the time-reversed template. This algo-

rithm does not need multiplications and is

therefore computationally inexpensive. In

[69], templates of length N =10 and

N = 20 at a sampling frequency of 500 Hz

are used. The ECG signal as well as the

template need to be detrended before the

calculation of the AMCD.

Further applications of matched filters

are reported in [25] and [27], where inte-

grated circuits are used for the real-time

computation of the correlation coefficient

and a wave digital filter realization is

shown, respectively.

Genetic Algorithms

In [91], genetic algorithms have been

applied to a combined design of optimal

polynomial filters for the preprocessing of

the ECG and the parameters of a decision

stage.

Polynomial filters are defined by [91]

y

a x

n
k

M

k

M

k

M

k M

k k k n d

N

j

N

= ⋅⋅⋅

∑

= = =

≤

⋅⋅⋅ −

∑ ∑ ∑
1 2

1 2

0 0 0
1 244 344

1

1

2

2k

n d

k

n d

k
x x

N

N

− −⋅⋅⋅
(43)

where the d j are delays with respect to the

time n. Three different special cases of a

polynomial filter are investigated:

quasi-linear filters with consecutive sam-

ples (M =1 and N =10), quasi-linear fil-

ters with selected samples (M =1 and

N = 5), and quadratic filters with selected

samples (M = 2 and N = 3).

The decision stage consists mainly of

an adaptive threshold that is compared

against the filtered ECG signal. The

threshold adaption parameters are opti-

mized in conjunction with the polynomial

filter via a genetic optimization algorithm.

Hilbert Transform-Based
QRS Detection

In [124, 82] the use of the Hilbert trans-

form for QRS detection is proposed. The

Hilbert transform of a real signal x is de-

fined by

x t x
x

t
d

x t x t
t

H

H

( ) { }
( )

( ) ( ) *

= =
−

= =

−∞

∞

∫�
1

1

π

τ

τ
τ

π (44)

and may be computed in the frequency do-

main as

X j X j j

X j H j

H ( ) ( ) [ ( )]

( ) ( )

ω ω ω

ω ω

= ⋅ − ⋅

= ⋅

sgn

(45)

where the transfer function of the Hilbert

transform H j( )ω is given by

H j
j

j
( )

.
ω

ω π

π ω
=

− ≤ <

− ≤ <





0

0 (46)

Using the fast Fourier transform

(FFT), the Hilbert transform can easily be

computed. In [82] the ideal Hilbert

transformator is approximated by a

bandlimited ( )2 1N + -tap FIR filter with

the impulse response h n( ). For example,

the impulse response for the filter of the

order N =11 is given by [82]

h n( ) { . , , . , , . , ,

. , , . , ,

= − − −0 038 0 0143 0 0 610 0

0 610 0 0143 0 0. }.038 (47)

Impulse responses for other filter orders

are listed in [82].

The Hilbert transform x nH ( ) of the

ECG signal x n( ) is used for the computa-

tion of the signal envelope [82], which is

given for bandlimited signals by

x n x n x ne H( ) ( ) ( )= +2 2 .
(48)

A computationally less expensive ap-

proximation to the envelope can be made

by [82]

x n x n x ne H( ) | ( )| | ( )|≈ + . (49)

In order to remove ripples from the en-

velope and to avoid ambiguities in the

peak level detection, in [82] the envelope

is low-pass filtered. Additionally, in [82]

a waveform adaptive scheme for the re-

moval of low frequency ECG components

is proposed.

The method published in [124] is re-

lated to the algorithms based on the

Hilbert transform. In [124] the envelope

of the signal is approximated by

x n x n x ne( ) | ( )| | ( )|≈ +1 2 (50)

where x n1( ) and x n2( ) are the outputs of

two orthogonal digital filters; i.e.,

x n x n x n1 6( ) ( ) ( )= − − and (51)

x n x n x n

x n x n

2 2

6 8

( ) ( ) ( )

( ) ( ).

= − −

− − − − (52)

In order to remove noise, the envelope

signal x ne( ) is smoothed by a four-tap

moving average filter.

January/February 2002 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 49

Table 1. Sets Used in Syntactic Approaches for ECG Event Detection.

Set (alphabet) Primitives Symbols Reference

(1) Σ = { , , }a b c square of the first

derivative y1
2

a b c, , depend on amplitude and duration of

peaks of y1
2

[9]

(2) Σ = ∈ ∈ + −{( , )| {/,\, }, { , ,*}}a b a b0 line segments a: slope of the line segment, i.e. positive slope

(/), negative slope (\) or zero slope (0). b: start

point of the line segment, i.e. above (+), below

(–) or on the baseline (*)

[46]

(3) Σ = { , , , , , , }h s s i i l ln n n line segments horizontal (h), small (s), negative small (sn ), in-

termediate (i), negative intermediate (i n ), large (l)

and negative large (l n ) slope

[117]

(4) Σ = {( , , ),( , , ),( , , ),( , , )}l i n s i n s i n l i nP P N N line segments { , , , }l s s lP P N N : slope of line segment; i n, : time

coordinate and duration of line segment

(attribute values)

[87]

(5) Σ Π= + −{ , , , }K K E peak, line and

parabolic segment
K + (positive peak), K − (negative peak), E (line

segment), Π (parabolic segment), and additional

attribute values describing the primitives.

[113]



Length and Energy Transforms
In [36, 37] the application of length

and energy transforms to QRS detection

is investigated. The transforms are de-

fined for multichannel ECG signals but

may also be used for single-channel ECG

analysis. They are given by

L n q i x
k i

i q

j

n

j k( , , ) ( ),=
=

+ −

=

∑ ∑
1

1

2
∆

length transform (53)

E n q i x
k i

i q

j

n

j k( , , ) ( ),=
=

+ −

=

∑ ∑
1

1

2
∆

energy transform (54)

where n is the number of ECG channels, i

is the time index, q denotes the window

length, and ∆x x xj k j k j k, , ,= − −1. These

formulas are based on the assumption that

the derivatives of the ECG channels can

be considered as the elements of a vector.

The length of the vector is determined

from the square root of the second sum in

Eq. (53). The length transform represents

a temporarily smoothed time course of the

vector length. A similar assumption leads

to the energy transform, which can be in-

terpreted as the short-term energy estima-

tion of the vector. The authors of [36, 37]

state that both transforms are superior to

conventional transforms for feature ex-

traction, whereas the length transform

works particularly good in cases of small

QRS complexes.

Syntactic Methods
Syntactic algorithms for ECG process-

ing have been proposed in [9, 19, 86, 97,

113]. A review of several algorithms is

given in [98]. The signal to be analyzed by

a syntactic method is assumed to be a con-

catenation of linguistically represented

primitive patterns; i.e., strings. Using a

grammar, this string representation is

parsed for strings coding a search pattern.

Therefore, a syntatic algorithm for pattern

recognition essentially requires the defi-

nition of primitive patterns, a suitable lin-

guistic representation (alphabet) of the

primitive patterns, and the formulation of

a pattern grammar.

In ECG processing the signal is split

into short segments of a variable or a fixed

length. Each segment is then represented

by a primitive and coded using the

predefined alphabet. Due to their compu-

tational efficiency, most algorithms use

line segments as primitives for the signal

representation [9, 46, 87, 117]. In [113]

the set of line primitives is extended by

peaks, parabolic curves, and additional at-

tributes. An overview of several primitive

patterns, alphabets, and attributes is given

in Table 1.

Various grammars for these alphabets

(i.e., rules describing the set of search pat-

terns) are proposed in [35, 46, 88, 87, 113,

115, 117].

QRS Detection Based
on MAP Estimation

Maximum a posteriori (MAP) estima-

tion can be considered as a special case

within the Bayesian framework, which

provides a very general basis for parame-

ter estimation including the incorporation

of prior knowledge. The MAP estimate
$
θMAP of a parameter θ given the observa-

tion x is defined by

$ ( | )θ θ
θ

θMAP argmax= f x

(55)

where
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10. (a) ECG signal (top: from record 100; bottom: from record 108), (b) first deriva-

tive from Eq. (1), (c) first derivative from Eq. (4), (d) feature from Eq. (8), (e) fea-

ture from Eq. (9), (f) feature from [83], (g) MOBD feature signal.



f
f f

f

x

x
θ

θ
θ

θ θ
( | )

( | ) ( )

( )
x

x

x
=

(56)

is the a posteriori probability density

function (pdf) of θ given x. The a priori

pdf fθ θ( ) of the parameter θ represents the

available prior knowledge.

In [12] a QRS detection method based

on MAP estimation is presented. The pro-

posed model for the N -dimensional vec-

tor x of ECG samples is given by

x n

B s n T w n q k

w n q
i

q

i i i

( )

( , ) ( ) :

( ) : .

=

− + ≤ ≤

=







=
∑

1

1

0

θ

(57)

where q is the number of pulse-shaped

peaks s n T( , ) in the ECG segment and x and

k denote the number of all peaks in the same

segment. Bi, Ti, andθi,i k=1K give the am-

plitude, duration, and arrival time for thei-th

peak, respectively. w n( ) is additive white

Gaussian noise. For a given joint a priori pdf

f qq B T, , , ( , , , )θ θB T , the MAP estimate of

the model parameters is given by

( $, $ , $, $) ( , , , , )
, , ,

q V q
q

B T x B T

B T

θ θ
θ

= argmax
(58)

with V q( , , , , )x B T θ being the log-likeli-

hood funct ion with respect to

f qq B T, , , ( , , , )θ θB T . Detailed consider-

ations of the prior knowledge leading to a

joint a priori pdf f qq B T, , , ( , , , )θ θB T are

described in [12].

Since the maximization process is

computationally expensive, the authors

also present modifications for an approxi-

mate MAP estimation. Further simplifica-

tions are presented in [100].

Zero-Crossing-Based
QRS Detection

QRS detection based on zero crossing

counts is proposed in [59]. After bandpass

filtering, a high-frequency sequence

b n k n n( ) ( ) ( )= ⋅ −1 is added to the filtered

signal y n1( ); i.e.,

y n y n b n2 1( ) ( ) ( )= + . (59)

The amplitude of the high-frequency

sequence k n( ) is determined from a run-

ning average of the modulus of the

bandpass-filtered ECG | ( )|y n1 . Since the

amplitude of k n( ) is lower than the ampli-

tude of the QRS complex, the number of

zero crossings is large during non-QRS

segments and low during the QRS com-

plex. Computing a running average of the

number of zero crossings results in a ro-

bust feature z n( ) for the QRS complexes.

The feature signal z n( ) is compared

against an adaptive threshold for the de-

tection of QRS complexes. The temporal

location of the R-wave is found by a maxi-

mum search in the bandpass-filtered sig-

nal around a detected QRS candidate.

Benchmark Databases
Several standard ECG databases are

available for the evaluation of software

QRS detection algorithms. Tests on these

well-annotated and validated databases

provide reproducible and comparable re-

sults. Furthermore, these databases con-

tain a large number of selected signals

representative for the large variety of

ECGs as well as signals that are rarely ob-

served but clinically important.

Available standard databases include:

1) MIT-BIH Database

The MIT-BIH database [76] provided

by MIT and Boston’s Beth Israel Hospital
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11. (a) ECG signal (top: from record 100; bottom: from record 108), (b) Feature by

[41], (c) feature by [26], (d) LMS prediction error e n( ) (filter order 2, step size

λ = 0 03. ), (e) LMS feature from Eq. (34) (filter order 2, step size λ = 0 03. ), (f) LMS

feature from Eq. (35) (filter order 2, step size λ = 0 03. ), (g) matched filter feature.



consists of ten databases for various test

purposes; i.e., the Arrhythmia Database,

the Noise Stress Test Database, the Ven-

tricular Tachyarrhythmia Database from

Creighton University Cardiac Center, the

ST Change Database, the Malignant Ven-

tricular Arrhythmia Database, the Atrial

Fibrillation/Flutter Database, the ECG

Compression Test Database, the

Supraventricular Arrhythmia Database,

the Long-Term Database, and the Normal

Sinus Rhythm Database. In addition to the

AHA (see below) database and the Euro-

pean ST-T Database (see below), the first

three MIT-BIH databases are required by

the ANSI for testing ambulatory ECG de-

vices.

Most frequently the MIT-BIH Ar-

rhythmia Database is used. It contains 48

half-hour recordings of annotated ECG

with a sampling rate of 360 Hz and 11-bit

resolut ion over a 10-mV range.

Twenty-five recordings (records number

200 and above) with less common

arrhythmias were selected from over 4000

24-hour ambulatory ECG recordings, and

the rest was chosen randomly. Altogether

there are 116137 QRS complexes in this

database. While some records contain

clear R-peaks and few artifacts (e.g., re-

cords 100-107), for some records the de-

tection of QRS complexes is very difficult

due to abnormal shapes, noise, and arti-

facts (e.g., records 108 and 207).

2) AHA Database

The AHA Database for Evaluation of

Ventricular Arrhythmia Detectors [4] of

the American Heart Association contains

155 recordings of ambulatory ECG. The

signals have been digitized with a sam-

pling rate of 250 Hz and a resolution of 12

bits over 20 mV. Each record consists of

2.5 hours of unannotated signal followed

by 30 minutes of annotated ECG. The re-

cords are arranged into eight groups rep-

resenting different levels of ectopic

excitation. Records 1001 to 1020 of the

first group show no extra systoles,

whereas records 8001 to 8010 containing

ECGs with ventricular fibrillation show

the highest level of ventricular ectopy.

3) Ann Arbor Electrogram Libraries

The Ann Arbor Electrogram Libraries

[52] are a collection of more than 800

intracardiac electrograms and surface

ECGs. Each recording consists of

intracardiac unipolar and bipolar

electrocardiograms and a surface ECG.

This database is especially valuable for

the evaluat ion of algori thms for

implantable cardiac devices.

4) CSE Database

The Common Standards for Electro-

cardiography (CSE) Database [10] is fre-

quently used for the evaluation of

diagnostic ECG analyzers. The CSE Da-

tabase consists of about 1000 multilead

recordings (12 or 15 leads).

5) Other Standard Databases

More libraries available for evaluation

of detection and classification algorithms

are the European ST-T Database [80], the

QT Database [64], the MGH Database

[75], the IMPROVE Data Library [120],

and the ECG Reference Data Set [89] of

the Physikalisch-Technische Bunde-

sanstalt (PTB). The ST-T Database con-

tains 90 recordings of two hours of ECG

each, selected for the evaluation of ECG

devices that analyze ST levels and

T-waves. The QT Database was designed

for evaluation of algorithms that detect

waveform boundaries in the ECG. For this
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12. (a) ECG signal (top: from record 100; bottom: from record 108); wavelet

subband signals for the scales j = 1 (b) to j = 5 (f). For the wavelet transform the

spline wavelet proposed in [74] was used.



database, 105 records with a broad variety

of QRS and ST-T morphologies were se-

lected from other databases; e.g., the

MIT-BIH Arrhythmia Database and the

European ST-T Database. Each record

has a length of 15 minutes. The databases

of the Massachusetts General Hospital

and the IMPROVE database are multi-

channel recordings containing a

three-lead ECG and additional signals

such as systemic and pulmonary aterial

pressure (SAP, PAP), central venous

pressure (CVP),CO2,O2, and respiration.

The ECG Reference Data Set of the PTB

is not finished yet. Currently, this data-

base contains more than 500 records with

durations from 38 s to 120 s. The classifi-

cation follows the classification scheme

of the AHA.

Evaluation and Comparison
The usage of software QRS detection

algorithms in medical devices requires the

evaluation of the detection performance.

According to [1], essentially two parame-

ters should be used to evaluate the algo-

rithms; that is,

Se
TP

TP FN
=

+
sensitivity

(60)

+ =
+

P
TP

TP FP
positive predictivity

(61)

where TP denotes the number of true posi-

tive detections, FN the number of false

negatives, and FP the number of false

positives. Furthermore, to achieve com-

parable and reproducible results, the eval-

uation needs to be carried out on standard

databases.

Contrary to the requirements of com-

parability and reproducibility, in practice

there are many publications where no

evaluation is reported at all, the evaluation

has not been done using standard data-

bases, or the performance indices are not

compatible to the sensitivity and positive

predictivity parameters. This effectively

leads to incomparable results.

In order to make a comparison possi-

ble, we rank the reported results with re-

spect to how they were obtained; i.e.,
� reliable results: the algorithm is

tested against a standard database,
� less reliable results; the algorithm is

tested against parts of a standard
database, and

� unreliable results: the algorithm is
tested against a nonstandard
database.

Publications without reported or with

incompatible results are not comparable

and are not considered further. Results

from the same reliability level are re-

garded as comparable. Within each reli-

ability level the algorithms are grouped

according to the reported performance.

The results of this comparison are

shown in Table 1. It provides a quick

overview of the achieved detection results

and gives a good impression on what algo-

rithms are potentially useful for an inte-

gration in larger ECG analysis systems.

However, it should be clear that some

simplifications have been made that need

to be discussed. First of all, although some

results are classified as less reliable or un-

reliable, nothing is said about the perfor-

mance of the algorithm. Despite this

reliability level, the actual algorithm may

perform very well. In particular, in the

case where only parts of a standard data-

base have been used, the intention of the

original authors frequently was to show

the performance of the algorithm on par-

ticularly difficult records, such as records

with pathological or very noisy signals.

However, from an objective point of

view, the reported results are not truly re-

liable, because the algorithm may have

been tuned to perform perfectly on such

pathological signals but not on the normal

ECG. A further simplification is made by

stating only the overall performance. That

is, no statement is given on the worst case

performance, which is also important. A

third simplification is the disregard of the

fact that the results may have been

achieved by an extreme fine tuning of the

parameters. In such cases the good re-

ported results might be difficult to repro-

duce. Final ly , this comparison

discriminates against older algorithms,

because in the early years of software

QRS detection there were no standard

databases available.

The algorithmic comparison with re-

spect to the computational load can be car-

ried out by grouping the algorithms into

the categories low, medium, and high

computational complexity. The compari-

son is shown in Table 2. Only the algo-

rithms from Table 1 are considered. Again

the grouping of the algorithms into these

simple categories provides a quick over-

view, which is gained at the expense of

lost information. In particular, for the

comparison only the generation of the fea-

ture signals is considered. However, this

limitation is reasonable since the feature

generation is carried out for each sample

of the ECG whereas the decision stage is
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feature signal p3 .



usually activated only a few times during

a cardiac cycle. Furthermore, since the ex-

act computational needs of these algo-

rithms are not available, the algorithms

are classified according to our experience.

This simplification is of course subjective

and not generally valid. However, in par-

ticular for researchers who are not famil-

iar with QRS detection, this classification

may give a general idea about the neces-

sary processing power.

In order to give an impression about

the difficulties in ECG analysis and QRS

detection, some features of the presented

algorithms are computed for two very dif-

ferent ECG segments. They are shown in

Fig. 10 to Fig. 13. The signals are taken

from records 100 and 108 of the MIT/BIH

arrhythmia database. Whereas R-peaks in

record 100 are very clear and easy to de-

termine, the detection of QRS complexes

is very difficult in record 108. Generally,

detection problems may occur in case of
� noisy signals, electrode artifacts,

baseline drift, power line interfer-
ence;

� pathological signals;
� small QRS complexes; and
� sudden level changes of the QRS

complex.

As can be seen from the figures, more

sophisticated algorithms tend to cope

better with these problems. Shortcomings

of these features may be partly compen-

sated for by suitable decision rules.

Conclusions
The great variety of QRS detection al-

gorithms presented in this review reflects

the need for a reliable QRS detection in

cardiac signal processing. Sensitivities

and specificities of about 99.5% are possi-

ble for online QRS detectors today with-

out much computational effort. These

detection rates may be sufficient for clini-

cal applications, whereas a higher perfor-

mance may be necessary for research

purposes. In that case, offline ECG analy-

sis, where, for example, backsearch meth-

ods can be applied, may provide higher

performance.

The currently achievable detection

rates reflect only the overall performance

of the detectors. These numbers hide the

problems that are still present in case of

noisy or pathological signals. A satisfying

solution to these problems is still not

found. However, recent advances in clas-

sification techniques such as novel

softcomputing techniques have not been

extensively transferred to the problem of

QRS detection so that there are still many

tools left for further improvements.

Many of the presented algorithms

were not tested against a standard data-

base or any database at all. This makes the

results difficult to compare and to evalu-

ate. With respect to the problems left in

QRS detection, in particular the algorith-

mic behavior in case of noisy and patho-

logical signals, only a comparable and

reproducible evaluation on a standard

database may show the progress achieved

by a novel method.
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Table 2. Comparison of the Results of Different Algorithms.

min[ , ]S P+ Standard Data Base Parts of Standard Data Base Nonstandard Data Base

> 99% Afonso et al. [2],

Bahoura et al. [6],

Hamilton & Tompkins [41],

Inoue & Miyazaki [50],

Kohler et al. [59],

Li et al. [66],

Poli et al. [91]

Gritzali [36],

Hu et al. [47],

Kohama et al. [58],

Ruha et al. [94],

Sahambi et al. [95],

Vijaya et al. [119],

Xue et al. [122]

Belforte et al. [9],

Dobbs et al. [25],

Fischer et al. [32],

Thakor & Webster [109],

Yu et al. [123]

95% - 99% Suppappola & Sun [106][107] Coast et al. [20],

Kadambe et al. [53][54]

Sörnmo et al. [100],

Udupa & Murthy [117]

90% - 95% Papakonstantinou et al. [87],

Trahanias [114]

< 90% Ligtenberg & Kunt [67]

Table 3. Subjective Comparison with Respect to the Computational Load.

Low Medium High

Afonso et al. [2],

Fischer et al. [32],

Köhler et al. [59],

Kohama et al. [58],

Suppappola & Sun [106][107],

Trahanias [114],

Yu et al. [123]

Bahoura et al. [6],

Dobbs et al. [25],

Gritzali [36],

Hamilton & Tompkins [41],

Kadambe et al. [53][54],

Ligtenberg & Kunt [67],

Poli et al. [91],

Ruha et al. [94],

Vijaya et al. [119]

Belforte et al. [9],

Coast et al. [20],

Hu et al. [47],

Inoue & Miyazaki [50],

Li et al. [66],

Papakonstantinou et al. [87],

Sahambi et al. [95],

Sörnmo et al. [100],

Udupa & Murthy [117],

Xue et al. [122]
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