Terri Attwood is a Royal Society University Research Fellow and Professor of Bioinformatics at Manchester.

The PRINTS database: A resource for identification of protein families

Terri K. Attwood Date received (in revised form): 10th June 2002

Abstract

The PRINTS database houses a collection of protein fingerprints, which may be used to assign family and functional attributes to uncharacterised sequences, such as those currently emanating from the various genome-sequencing projects. The April 2002 release includes 1,700 family fingerprints, encoding ~10,500 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. Fingerprints are groups of conserved motifs that, taken together, provide diagnostic protein family signatures. They derive much of their potency from the biological context afforded by matching motif neighbours; this makes them at once more flexible and powerful than single-motif approaches. The technique further departs from other pattern-matching methods by readily allowing the creation of fingerprints at superfamily-, family- and subfamily-specific levels, thereby allowing more fine-grained diagnoses. Here, we provide an overview of the method of protein fingerprinting and how the results of fingerprint analyses are used to build PRINTS and its relational cousin, PRINTS-S.

INTRODUCTION

The first step in analysing a newly determined sequence usually involves trawling a sequence database with pairwise search tools such as BLAST¹ or FastA.² Such searches quickly reveal similarities between the query and a range of database sequences. The trick then lies in the reliable inference of homology (the presumption of divergent evolutionary descent) and hence of family ties and functional relationships. Ideally, a search output will show unequivocal similarity to a well-characterised protein over the full length of the query; at worst, it will reveal no significant hits; but the usual scenario is a list of weak matches to diverse proteins, many of them uncharacterised, some with dubious or contradictory annotations.³

Deciding how much functional annotation can legitimately be inherited by a query sequence and achieving consistent, reliable assignments can be a complicated process. As a result, in addition to routine searches of the sequence databases, it is now customary to extend search strategies to include a range of family or 'pattern' resources. These distil information within groups of related sequences into potent descriptors that aid diagnosis. In principle, searching family repositories is more powerful than sequence database searching because derived discriminators can detect weaker regions of similarity. Different analytical approaches have been used to create a bewildering array of discriminators, which are variously termed regular expressions, profiles, fingerprints, blocks, etc.^{4,5} These different descriptors have been used to generate different family databases, which differ significantly in content. Here, we will describe the method that gives rise to the PRINTS database, whose current status we will review.

The database is accessible for BLAST, fingerprint and text searches.⁶

IDENTIFICATION OF PROTEIN FAMILIES

At the heart of the analysis methods that underpin family databases is the multiple sequence alignment. When building an

Keywords: protein family, sequence alignment, similarity search, pattern recognition, function annotation

T. K. Attwood, School of Biological Sciences & Department of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PT, UK

Tel: +44 (0) 161 275 5766 Fax: +44 (0) 161 275 5082 e-mail: attwood@bioinf.man.ac.uk

	alignment, as more distantly related sequences are included, insertions are often required to bring equivalent parts of adjacent sequences into the correct register (see Figure 1). As a result of this gap-insertion process, islands of conservation emerge from a backdrop of mutational change. These conserved
Diagnostic opportunity	regions (typically around 10–20 residues
	in length) tend to correspond to the core structural or functional elements of the protein, and are commonly termed
Motif	motifs.
Fingerprint	Several techniques have evolved to exploit the conservation encoded in alignments, all of which involve the derivation of some kind of discriminatory representation of the conserved elements. Broadly, these can be categorised into three main approaches: those that use single motifs to encapsulate the most conserved feature (or features) of an alignment; those that exploit multiple motifs to build a diagnostic signature of
Domain	family membership; and those that encode complete domains, including both conserved regions and the gapped areas between them (an overview of the methods and the databases they underpin

is shown in Figure 1). Each of these methods has different diagnostic strengths and weaknesses, and consequently optimum areas of application – none should be regarded as the best, as each offers a different perspective and a different (often complementary) diagnostic opportunity. We will now take a closer look at one of these approaches – namely protein fingerprinting.

PROTEIN FINGERPRINTING

Within a multiple alignment, it is usual to find not one but several motifs that characterise the aligned family. Diagnostically, it makes sense to use many or all such conserved regions to build a family signature or fingerprint. In a database search, there is then a greater chance of identifying a distant relative, whether or not all parts of the signature are matched: eg a sequence that matches only four of seven motifs may still be diagnosed as a true match if the motifs are matched in the correct order in the sequence, and the distances between them are consistent with those expected of true neighbouring motifs, as illustrated in

Figure I: Overview of the three main sequence analysis approaches and the databases to which they give rise: single motif methods that exploit regular expressions (regexs) underpin PROSITE and eMOTIF; multiple motif approaches that use either identity or weight matrices are the basis of PRINTS and Blocks; and full-domain methods that exploit either absolute or probabilistic scores underpin Profiles and Pfam

© HENRY STEWART PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS, VOL 3. NO 3. 252-263. SEPTEMBER 2002

Biological context

Figure 2. The potency of fingerprints thus derives from the mutual context provided by motif neighbours - the more motifs it contains, the better able it is to identify distant relatives, even when parts of the signature are absent; conversely, the fewer **Familial hierarchies** the motifs, the poorer its diagnostic performance. Fingerprints with only two motifs are diagnostically little better than single-motifs, and are therefore more likely to make false-positive matches. Overall, fingerprinting is thus more flexible and powerful than single-motif approaches - the ability to tolerate mismatches, both at the level of individual residues within motifs, and at the level of motifs within the complete signature, renders it a powerful diagnostic approach.

Signature GPCR

The technique further departs from other pattern-matching methods by

Figure 2: Graphical output from fingerprint searches illustrating both full and partial matches. Within the graphs, the x-axis represents the sequence and the y-axis the percentage score (identity) of each fingerprint element (0-100 per motif). Filled blocks mark the positions of motif matches above a 20 per cent threshold. Blocks appearing in a systematic order along the length of the sequence and above the level of noise indicate matches with the constituent motifs. Unequivocal family membership is denoted in (a) by strong matches to each of the seven motifs of the GPCR superfamily fingerprint. By contrast, (b) shows a partial match that exhibits characteristics, such as motifs being in the correct order and having acceptable inter-motif distances, that allow us to infer with a degree of confidence that it is a related family member, even though it fails to make significant matches with three of the seven GPCR superfamily motifs

readily allowing the creation of fingerprints at superfamily-, family- and subfamily-specific levels. This is possible because the approach is manual and allows one to focus not only on regions of shared similarity (such as those that characterise superfamilies), but also on the regions of difference (such as those that resolve subfamilies from closely related siblings within a family, and/or that distinguish families from their parent superfamilies). This is crucial because it is the subtle differences between close relatives that largely determine their functional specificities. This hierarchical approach has been used to analyse a range of proteins, especially those of pharmaceutical interest, eg to resolve G protein-coupled receptor (GPCR) superfamilies into their constituent families and receptor subtypes,^{7–9} and to finely classify a variety of channel proteins, transporters and enzymes. Fingerprinting thus provides a useful complement to profile-based and other 'catch-all' methods, which tend to specialise in the diagnosis of superfamilies.

THE FINGERPRINT **METHOD**

In detail, the method involves manual creation of a seed alignment, and location and excision of conserved motifs for searching the source database (a SWISS-PROT/TrEMBL¹⁰ composite from which fragments have been extracted) - for historical reasons, the motifs may number up to a maximum of 15, with maximum length of 30 residues. The database-scanning algorithm converts the excised motifs into a series of frequency (identity) matrices - in other words, no mutation or other similarity data are used to weight the motifs. This is because the generation of fingerprints must be a selective process, to avoid being corrupted by spurious matches, and identity matrices are more stringent and produce cleaner discrimination than do similarity matrices, which are inherently noisy.¹¹ The scoring process uses a sliding-window approach, whereby each

	motif is scanned across each database
	sequence in turn. For each position of the
	window (which, by definition, is the
	width of the motif), the algorithm simply
	sums the residue scores with reference to
	the motif frequency matrix. The best
Frequency matrix	match is achieved when a position is
. ,	found in the sequence where most of the
	residues within the sliding window match
	high-scoring terms in the frequency
	matrix
Distance constraint	For each motif, results are stored in a
	hit-list that is rank-ordered by score
	Diagnostic performance is enhanced by
Iterative search	iterative database scanning: at each sten
	hit_lists are compared to determine which
	sequences have matched all the motifs in
	the fingerprint: if there are more matches
	the ingerprint, if there are more matches
	additional information from these new
	sequences is added to the motify and the
	detabase is seenabled again. The motifs
	therefore grows and maxima with each
Manual annotation	
	database pass, as more sequences are
	The true of drug to university of the process.
	The procedure terminates when no more
	new sequences that match all the motifs
	can be identified between successive
Convergence	database scans, ie when the scans have
Convergence	converged.
	An important point to note about the
	motif-matching process is that, unlike
	other methods, fingerprinting does not
	use an absolute scoring threshold to
	determine whether a match has been
	made or whether it is significant. During
	the iterative scanning procedure, the
	default hit-list length is 2,000 hits, but this
	can be varied by the user, depending on
	family size – if a family is thought to
	contain 1,000–2,000 members, hit-lists of
	2,000 will clearly not be adequate. When
	the lists are compared to ascertain which
	sequences have matched all the motifs, the
	default comparison length is 300 (in other
	words, the top 300 hits are sliced off each
	hit-list and compared, irrespective of
	individual match scores). Thus the process
	only requires that a sequence appears
	within the given sample length, and
	makes no assumptions about score
	significance. However, the user may also

vary this parameter - if too much noise appears in the result, the sample length can be reduced (eg by top-slicing only the first 100 hits); or, if true matches appear to have been missed, the sample length can be increased (eg to include the top 500 hits, or whatever). The approach is thus flexible with regard to score, the only rule being that the motifs must match in the correct order. Results can also be fine-tuned by imposing a distance constraint (ie that motif intervals should be consistent with those normally expected of true neighbouring motifs), but this option is usually used only as a cosmetic step to remove noise once the scans have converged – this avoids true matches being thrown away early in the process, which may later turn out to be outliers.

Once the scanning process has converged, and the results fine-tuned in the manner described above, they are then annotated manually (with biological information and literature, database crossreferences, etc.) prior to inclusion in the database.¹² The complete fingerprint process is summarised in Figure 3.

DATABASE FORMAT

PRINTS is built as single ASCII (text) file – see Figure 4. The contents are separated into specific fields, relating to

Figure 3: Overview of the iterative process by which fingerprints are generated from seed sequence alignments prior to annotation and deposition in PRINTS

ac; PRION gx; PR00341 gn; COMPOUN COMPOUND(8) 19-OCT-1992; UPDATE 07-JUN-1999 qa; qt; Prion protein signature INTERPRO; IPRO00817 PROSITE; PS00291 PRION_1; PS00706 PRION_2 PFAM; PF00377 prion gp; gp; gp; bb: gr; gr; 1. STAHL, N. AND PRUSINER, S.B. gr; FASEB J. 5 2799-2807 (1991). gr; gr; 2. BRUNORI, M., CHIARA SILVESTRINI, M. AND POCCHIARI, M. gr; The scrapie agent and the prion hypothesis. gr; TRENDS BIOCHEM.SCI. 13 309-313 (1988). ar: 3. PRUSINER, S.B. ar S. PROSINER, S.B. Scrapie prions. ANNU.REV.MICROBIOL. 43 345-374 (1989). gr; qr; bh. hh Prion protein (PrP) is a small glycoprotein found in high quantity in the brain of animals infected with certain degenerative neurological diseases, such as sheep scrapie and bovine spongiform encephalopathy (BSE), and the human dementias Creutzfeldt-Jacob disease (CJD) and Gerstmann-Straussler syndrome (GSS). PrP is encoded in the host genome and is expressed both in normal and infected cells. During infection, however, the PrP molecules become altered and polymerise, yielding fibrils of modified PrP protein. qd; qd; ad: gd; gd; gd; gd; PrP molecules have been found on the outer surface of plasma membranes of nerve cells, to which they are PrP molecules have been found on the outer surface of plasma membranes of nerve cells, to which they are anchored through a covalent-linked glycolipid, suggesting a role as a membrane receptor. PrP is also expressed in other tissues, indicating that it may have different functions depending on its location. The primary sequences of PrP's from different sources are highly similar: all bear an N-terminal domain containing multiple tandem repeats of a Pro/Gly rich octapeptide; sites of Asn-linked glycosylation; an essential disulphide bond; and 3 hydrophobic segments. These sequences show some similarity to a chicken glycoprotein, thought to be an acetylcholine receptor-inducing activity (ARIA) molecule. It has been suggested gd; that changes in the octa-peptide repeat region may indicate a predisposition to disease, but it is not known for gd; certain whether the present can be used as a finanzemit to indicate guescatibility. gd; gd; gd; ad: gd; gd; qd; ad: repeat can be used as a fingerprint to indicate susceptibility PRION is an 8-element fingerprint that provides a signature for the prion proteins. The fingerprint was derived from an initial alignment of 5 sequences: the motifs were drawn from conserved regions spanning virtually the full alignment length, including the 3 hydrophobic domains and the octapeptide repeats (WGQPHGGG). Two iterations on OWL18.0 were required to reach convergence, at which point a true set comprising 9 sequences was identified. Several partial matches were also found: these include a fragment (PRIO_RAT) lacking part of the sequence bearing the first motif, and the PrP homologue found in chicken - this matches well with only 2 of the 3 hydrophobic motifs (1 and 5) and one of the other conserved regions (6), but has an N-terminal signature based on a sextapeptide repeat (YPHNPG) rather than the characteristic PrP octapeptide. gd; qd; ad : gd; gd; qd; gd: gd; gd; od: An update on SPTR37 9f identified a true set of 37 sequences, and 1 partial match. bb bb si; SUMMARY INFORMATION si; 37 codes involving 8 elements
7 elements
6 elements sd: 0 codes involving 0 codes involving sd; 5 elements sd; 0 codes involving 0 codes involving 1 codes involving sd: 4 elements 3 elements 2 elements sd 0 codes involving sd; bb; hh COMPOSITE FINGERPRINT INDEX ci cr cd. 37 37 37 37 37 37 37 37 cd; 0 0 0 0 0 0 0 0 cd; 6 0 0 0 cd: 0 0 0 0 0 0 0 0 cd; cd; cd; 4 3 2 0 c ñ Ő Ō c Ő 0 0 0 0 cd; 0 0 0 0 cd; cđ 1 2 3 4 5 6 7 8 bb; bb; tp; PRIO_COLGU tp; PRIO_GORGO tp; PRIO_SHEEP tp; PRIO_ATEPA PRIO_MACFA PRIO_PANTR PRIO_CALJA PRIO CEREL PRIO ODOHE PRIO_HUMAN PRIO_BOVIN 046648 PRP2_BOVIN PRIO_PONPY PRIO_SAISC PRIO_PREFR PRIO_CAPHI PRP1_TRAST PRIO_CANFA PRIO_RAT tp; 075942 PRIO CEBAP PRIO_CAMDR PRP2_TRAST PRIO_FELCA PRIO_PIG Q15216 tp; PRIO_RABIT tp; PRIO_CRIGR PRIO_CERAE PRIO_CRIMI PRIO_MUSPF tp; PRIO MUSVI PRIO_MESAU PRIO_MOUSE 046593 tp; PRIO_TRIVU bb; Codes involving 3 elements sn; st: PRIO CHICK bb bb;

Figure 4: Sample data from PRINTS, showing the fingerprint for the prion protein family. For convenience, only the first motif is depicted. The two-letter code in the left-hand margin separates the information into specific fields (relating to text, references, motifs, etc.), which allows indexing of the data for rapid querying

© HENRY STEWART PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS. VOL 3. NO 3. 252-263. SEPTEMBER 2002

many sequences matched all the motifs

tt;	PRIO_COLGU		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	(PRP27-30)	(PRP33-35C)	- COLOBUS (GUEREZA
tt;	PRIO_MACFA		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	(PRP27-30)	(PRP33-35C)	- MACACA FA	ASCICULA
tt;	PRIO_CEREL		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	- CERVUS E	LAPHUS (RED	DEER)	
tt;	PRIO_ODOHE		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	- ODOCOILE	US HEMIONUS	(MULE DEER)	(BLACK-
tt;	PRIO_GORGO		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	(PRP27-30)	(PRP33-35C)	- GORILLA (GORILLA
tt;	PRIO_PANTR		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	(PRP27-30)	(PRP33-35C)	- PAN TROGI	LODYTES
tt;	PRIO_HUMAN		MAJOR	PRION	PROTEIN	PRECURSOF	(PRP)	(PRP27-30)	(PRP33-35C)	(ASCR) - HO	OMO SAPI
tt;											
tt;	PRIO_CHICK		MAJOR	PRION	PROTEIN	HOMOLOG F	PRECURSO	R (PR-LP)	(ACETYLCHOLI	NE RECEPTOR-	-INDUCIN
bb;											
bb;											
sh;	SCAN HISTORY										
sh;											
dn;	OWL18_0	2	30 NSI	INGLE							
dn;	OWL19_1	1	30 NSI	INGLE							
dn;	OWL26_0	1	160 NSI	INGLE							
dn;	OWL29_1	1	150 NSI	INGLE							
dn;	SPTR37_9f	2	134 NSI	INGLE							
bb;											
bb;											
im;	INITIAL MOTI	F-SE	TS								
im;											
ic;	PRION1										
il;	16										
it;	Prion protei	n mo	tif I -	- 1							
id;	WMLVLFVATWSI	DLGLC			PRIC	D_HUMAN	7	7			
id;	WILVLFVAMWSI	VGLC			PRIC	D_BOVIN	9	9			
id;	WILVLFVAMWSI	VGLC			PRIC)_SHEEP	9	9			
id;	WILVLFVAMWSI	VGLC			PRII	P_BOVIN	9	9			
id;	WLLALFVAMWTI			PRIC)_MESAU	7	7				
id;	WLLALFVTMWTI	VGLC			PRIC	D_MOUSE	7	7			
bb.											

Figure 4: (continued)

general information, bibliographical

	references, text, lists of matches and the	and how many made only partial matches
	motifs themselves – each line of a field is	(ie failed to match one or more motifs)
	assigned a distinct two-letter code,	– the fewer the partial matches, the better
Database indices	allowing the database to be indexed for	the fingerprint. The table that follows the
	fast querying of its contents. ¹³ In the	summary breaks down this result to
	general field at the top of the file, each	indicate how well individual motifs have
A second on number	entry is assigned a code by which it can be	performed, from which it is possible to
Accession number	identified, and an accession number	deduce which motifs are missing from any
Partial match	(which takes the form PR00000). This is	partial matches.
	followed by a description of the type of	After the summary are listed the
	entry – the term 'compound' indicates	protein identification codes of all full and
	that the fingerprint contains several	partial true- and false-positive matches,
	elements, the number of constituent	followed by their database titles. The scan
	motifs being indicated in parentheses.	history then indicates which version of
	Details of the creation and latest update	the source database was used to derive the
	information are then given, followed by a	fingerprint, and on which versions it has
T	descriptive title, and cross-references to	been updated, how many iterations were
l ime-positive match	entries in a variety of other databases	required, what hit-list length was used,
	(InterPro, ¹⁴ PDB, ¹⁵ etc.). A list of	and the scanning method employed: the
	bibliographical references is then	default scanning method is termed
	provided – this relates to a detailed	NSINGLE."
	abstract of the family that describes its	The final field relates to the motifs
	function and structure (where known), its	themselves, listing both the initial and
	disease associations, evolutionary	final motifs, the motif lengths and their
	relationships and so on. Every abstract also	starting locations. The intervals between
	contains a technical description of how	adjacent motifs are also provided. Each
	the fingerprint was derived.	motif is assigned a discrete code, ie the
	Fingerprint diagnostic performance is	general identification code with the
	indicated via a summary that lists how	number of that particular motif appended.

For convenience, only initial motif 1 (PRIONI) is shown in Figure 4. CURRENT RELEASE PRINTS is released in major and minor versions: minor releases reflect updates, bringing the contents in line with the current version of the source database; major releases denote the addition of new material to the resource. Major releases are made quarterly, each release including **Gribskov** profiles 50 new families. To date, 1,700 fingerprints, encoding 10,342 motifs (version 34.0, April 2002), **BLOSUM** matrices have been developed and deposited in PRINTS, making it the most comprehensive fully manually annotated protein family database available. Nevertheless, overall the database is still small relative to the number of protein families that exist, largely because the detailed documentation of entries is extremely time-consuming. However, the extent of manually crafted annotations sets it apart from the growing number of automatically derived resources, for which there is little or no biological P-/E-values documentation and/or result validation, and in which family groupings may change between database releases. SEARCH TOOLS There are two main tools available for **BLAST** server searching PRINTS: a BLAST server, which allows similarity searches against sequences matched in the current version of the database,¹⁶ and the FingerPRINTScan suite,¹⁷ which allows sequence searches against fingerprints **Fingerprint search** contained in the current release. This is an important distinction, as the different search tools offer fundamentally different

Modular/mosaic proteins I here are two main tools available for searching PRINTS: a BLAST server, which allows similarity searches against *sequences* matched in the current version of the database,¹⁶ and the FingerPRINTScan suite,¹⁷ which allows sequence searches against *fingerprints* contained in the current release. This is an important distinction, as the different search tools offer fundamentally different perspectives on sequence similarity: BLAST identifies generic similarities between sequences within a family and cannot recognise individual family traits, while fingerprints pinpoint the subtle (often structural or functional) differences that differentiate closely related family members. FingerPRINTScan thus affords greater specificity than the BLAST implementation and highlights the danger of relying on top BLAST hits to provide reliable functional annotation. 16

By contrast with the scanning method used to create fingerprints, which is highly selective, the algorithm designed to scan query sequences against PRINTS is more permissive, effectively allowing the user to cast a wider net and thereby maximise the number of potential matches. A sliding-window approach is once again used, but individual motifs are converted to Gribskov-type profiles,¹⁸ without the inclusion of gaps, and residue scores are calculated with reference to the BLOSUM series of matrices.¹⁹ As each motif is scanned across the query sequence, probability (P)-values are derived for each match; the algorithm then seeks the best combined set of matches that occur in the correct order with appropriate distances between them (true motif intervals are stored in PRINTS, from which the algorithm calculates maximum and minimum values). The overall significance of the result is expressed as the product of the P-values of each of the individual motifs, which is also expressed as an expect (E)value.

A sample output is shown in Figure 5, which illustrates the result of searching PRINTS with the query sequence ACM1_HUMAN using default parameters. The output is returned on three levels: first, the program's 'best guess' at the correct fingerprint; next, a table of the 10 top-scoring fingerprints; and finally, the top 10 hits listed in greater detail, including the constituent motifs. Where multiple fingerprints are matched above the default E-value cut-off (0.0001), each of the results is reported in the 'best guess' table. This allows diagnosis both of family hierarchies, from superfamily down to subfamily, and also of modular and mosaic proteins, where multiple domains occur in the same sequence. In this example, the 'best guess' reveals a three-tiered diagnosis, indicating the sequence to be (i) a member of the rhodopsin-like GPCR superfamily; (ii) a member of the muscarinic receptor

Scan of sequence: ACM1_HUMAN MUSCARINIC ACETYLCHOLINE RECEPTOR M1.									
	Highest Fing	scoring	, finge	rprints	tor ACM E-valu	и1_НU 1е	MAN GRAPHScan		
M		M1R (rela	tions)	1	.476279e-	-70	Graphic		
M	USCARIN	ICR (relat	ions)_	3	3.752386e-	-61	<u>Graphic</u>		
GE	CRRHOD	<u>DPSN (rela</u>	ations)	6	344420e-	-44	<u>Graphic</u>		
	Ten to	n scorin	o finoe	rnrints f	for ACM	11 HUN	/AN		
Fingerprint	No. of Motifs	SumId	AveId	PfScore	Pvalue	– Evalue	GRAPHS	can	
MUSCRINICM1R	6 of 6	5.9e+02	98	5892	5.7e-76	1.5e-70	IIIIII	<u>Graphic</u>	
MUSCARINICR	9 of 9	691.59	76.84	4890	1.5е-бб	3.8e-61	IIIIIIII	Graphic	
GPCRRHODOPSN	7 of 7	215.25	30.75	2335	2.5e-49	6.3e-44	iIIiiII	<u>Graphic</u>	
5HT6RECEPTR	4 of 13	128.52	32.13	1061	1.2e-09	0.00031	.iiI.I	. <u>Graphic</u>	
NRPEPTIDEYR	4 of 5	116.23	29.06	809	1.2e-08	0.0031	iIi.i	<u>Graphic</u>	
ADRENERGICR	3 of 4	134.27	44.76	563	1.4e-06	0.36	.III	<u>Graphic</u>	
OCTOPAMINER	2 of 7	70.48	35.24	620	3.7e-06	0.95	.II	<u>Graphic</u>	
ICENUCLEATN	2 of 6	63.42	31.71	548	9.6e-06	2.5	I.I.	<u>Graphic</u>	
MCRFAMILY	2 of 7	72.32	36.16	447	9.9e-06	2.5	Ii	Graphic	
GPR60RPHANR	2 of 7	72.22	36.11	455	3.6e-05	9.4	I.I	<u>Graphic</u>	

Figure 5: Hierarchical diagnosis returned from searching PRINTS with the human muscarinic acetylcholine M₁ receptor, ACM1_HUMAN. Three fingerprints have been matched, indicating the sequence to be a member of the rhodopsin-like GPCR superfamily (GPCRRHODOPSN), belonging to the muscarinic receptor family (MUSCARINICR), being specifically an M₁ receptor subtype (MUSCRINICMIR). The *E*values in the centre of the table provide the measure of confidence in the result – here, all matches are statistically significant (ie above the threshold value of 10⁻⁴)

Protein clan

Relational database

Midnight zone

Parent-child

relationships

family; and specifically (iii) an M₁ receptor subtype.

PRINTS' RELATIONAL COUSIN, PRINTS-S

With the continued growth of the database, maintenance of the PRINTS flat-file was becoming increasingly inefficient and error-prone. An important development was therefore to migrate the resource to the PostgreSQL relational database management system (DBMS). The 'streamlined' version, termed PRINTS-S,²⁰ reduces redundancy, maintains consistency and facilitates routine maintenance. It also permits more complex queries of the underlying data, and allows the support of new display and flat-file formats. PRINTS-S is accessible for interactive use via the Web. The interface allows both strict keyword searching and more powerful queries using a combination of regular expressions and logical operators.

A valuable attribute of PRINTS-S is the ability to model relationships explicitly by defining parent-child and sibling relations within, and *implied* by, the PRINTS family hierarchy (see Figure 6).²¹ This means, for example, that members of a clan (a group of families for which there are indications of an evolutionary relationship, but between which there is no statistically significant sequence similarity) can nevertheless be linked. Thus it is possible to transcend relationships evident at the sequence level and gain structural insights from a realm beyond the theoretical limits of conventional sequence analysis tools (this is the so-called 'midnight zone', the region of identity where sequence comparisons fail completely to detect structural similarities²²).

As an illustration, consider the relationships encoded in the database for the rhodopsin-like GPCRs shown in Figure 6(a). The FingerPRINTScan suite has been modified to exploit these relationships in such a way that when we search the database with a query sequence, all child/sibling/parent/ grandparent relations between matched fingerprints are revealed. Take, for

© HENRY STEWART PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS. VOL 3. NO 3. 252-263. SEPTEMBER 2002

PHODOPSIN family	linke.								
RHODOPSIN family	inks:			Highest scoring finger	prints for (OPSD_SHEE	Р		
Identifier	Accession	Views		Fingerprint	E-'	ralue 🛛 🖓	RAPHSea	ın	
7TM	PR90007	[Fingerprint] [Relations]		RHODOPSIN (relations)	1.9548	147e-64	<u>Graphic</u>		
GPCRCLAN	PR90006	[Fingerprint] [Relations]		GPCRRHODOPSN (relations)	6.7912	86e-44	<u>Graphic</u>		
GPCRRHODOPSN	PR00237	[Fingerprint] [Relations]		OPSIN (relations)	1.1383	95e-19	<u>Graphic</u>		
OPSIN	PR00238	[Fingerprint] [Relations]							
RPERETINALR	PR00667	[Fingerprint] [Relations]		Ten top scoring finger	orints for	opsd_sh	EEP		
PINOPSIN	PR00666	[Fingerprint] [Relations]		Ancestry		Fingerprint	No. of	GRA	PHScan
OPSINLTRLEYE	PR00578	[Fingerprint] [Relations]	7TM>GPC	RCLAN>GPCRRHODOPSN>OFSIN	RHCDOPSIN	RHODOPSIN	6 of 6	:)IIC	Graphic
OPSINRH3RH4	PR00577	[Fingerprint] [Relations]	7TM>GPC	RCLAN>GPCRRHODOPSN		GFCRRHODOPSI	1 7 of 7	il iii.]	Graphic
OPSINRH1RH2	PR00576	[Fingerprint] [Relations]	<u>7TM>GPC</u>	RCLAN>GPCRRHODOPSN>OFSIN		OPSIN	3 of 3	:1I	Graphic
OPSINREDGRN	PR00575	[Fingerprint] [Relations]	<u>7TM</u> > <u>GPC</u>	<u>RCLAN</u> > <u>GPCRRHODOPSN</u> > <u>NRPEPII</u>	<u>DEVR</u>	NRPEPTIDEYR	4 of 5	i) i. i	<u>Graphic</u>
OPSINBLUE	PR00574	[Fingerprint] [Relations]	NANEUSMP	CRI		NANEUSMPORT	2 of 8	I.i	<u>Graphic</u>
PEROPSIN	PR01244	[Fingerprint] [Relations]	<u>7TM</u> > <u>GPC</u>	RCLAN>GPCRRHODOPSN>GLYCEO	RMCNER	GLYCHORMONE	R 2 of 8	l.,	<u>Graphic</u>
RHODOPSNTAIL	PR00239	[Fingerprint] [Relations]	<u>7TM>GPC</u>	RCLAN>GPCRRHODOPSN>OFSIN	> <u>OPSINBLUE</u>	OPSINBLUE	3 of 6	I.i.i	<u>Graphic</u>
			TMFROTEIN	<u>\$R3</u>		TMPRCTEINSRO	2 2 of 7	.ii	Graphic
			<u>7TM</u> > <u>GPC</u>	RCLAN>GPCRRHODOPSN>OFSIN	> <u>PEROPSIN</u>	PEROPSIN	2 of 11	I.[<u>Graphic</u>
			<u>7TM</u> > <u>GPC</u>	RCLAN>GPCRRHODOPSN>OFSIN	> <u>OPSINRE3RH</u>	OPSINRHERE4	2 of 7	I.i.	<u>Graphic</u>
	а				b				

Figure 6: (a) The rhodopsin family hierarchy depicted by PRINTS-S. The hierarchy is colourcoded via the Web interface. Although not obvious here, RHODOPSNTAIL is a child; RPERETINALR, PINOPSIN, OPSINLTRLEYE, OPSINRH3RH4, OPSINRH1RH2, OPSINREDGRN, OPSINBLUE and PEROPSIN are siblings; OPSIN is the parent; and GPCRRHODOPSIN, GPCRCLAN and 7TM are grandparents and great-grandparents. (b) Result of searching PRINTS-S with the sequence of ovine rhodopsin using FingerPRINTScan. The table shows the top 10 matches (significant matches are highlighted), and traces the relationships between each matched fingerprint from its position in the familial hierarchy back to its most distant ancestor. Here, each rhodopsin-like GPCR match can be traced back through its parent superfamily, through the ancestral GPCR clan, ultimately to a presumed '7TM' architectural predecessor

	example, the result of searching with the sequence of ovine rhodopsin, shown in Figure 6(b). RHODOPSIN, GPCRRHODOPSN and OPSIN are the only fingerprint matches with significant <i>E</i> -values highlighted in the table. For	internal relational structure, allowing a hierarchical representation of connections between database entries, including those outside the realm of sequence similarity searches. ²¹
	each of these matches, the relationships	RELATED DATABASE
	between them are traced back through	DEVELOPMENTS
	the family hierarchy to the most remote	A particular strength of PRINTS is that
Local alignment	putative ancestor. Thus, we see that	its motifs are stored in the form of un-
	RHODOPSIN is a child of the OPSIN	gapped, local alignments. An important
	family, which is a child of	consequence of storing the motifs in this
	GPCRRHODOPSN (the rhodopsin-like	'raw' form is that, unlike with regular
	GPCR superfamily), whose parent is the	expressions or other abstractions, no
	GPCR clan (which includes the secretin-	sequence information is lost. Different
	like receptors, metabotropic receptors,	scoring methods may thus be superposed
	etc.), which is derived from a putative	onto the motifs, conferring different
Architectural ancestor	'7TM' architectural ancestor. Such an	scoring potentials, and hence different
	'ancestral perspective' is only possible	perspectives, on the same data. Thus, a
.	because PRINTS-S models the biological	Blocks-format version of the resource that
Blocks	associations between families within an	exploits Blocks scoring methods is

Downloaded from https://academic.oup.com/bib/article/3/3/252/239711 by guest on 21 August 2022

260

	available at the Fred Hutchinson Cancer	search nicely illustrates the difference
	Research Center. ²³ In addition, the	between the various motif- and domain-
	eMOTIF database at Stanford overlays a	based approaches: in the example shown,
	permissive regular expression approach	it is evident how small is the region
	over PRINTS' multiply-aligned motifs,	encoded by the regular expression; by
	offering different levels of stringency from	contrast, both the profile and HMM span
	which to infer the significance of	almost the complete sequence; similarly,
	matches. ²⁴ Because the Blocks and	the fingerprints are drawn from conserved
eMOTIF	eMOTIF databases are derived	regions spanning virtually the full
	automatically, their entries are not	sequence, but this method alone exploits
	annotated, but links are made to the	groups of motifs that differentiate
	corresponding PRINTS files.	between regions of sequence that
	Another landmark in the evolution of	characterise the superfamily and those that
	PRINTS builds on a decision made in	characterise the family and subfamily,
Eurotional insight	1991 to integrate it with PROSITE, ²⁵ in	thereby offering important structural and
Functional insight	order to create a unified protein family	functional insights.
	resource. This project has now been	A more recent development is a pilot
	realised on a much larger scale, initially in	project to provide an automatic
	the form of an international consortium	supplement to PRINTS, termed
prePRINTS	including Profiles, ²⁵ Pfam ²⁶ and	prePRINTS. This exploits an automatic
	ProDom; ²⁷ more recently, a number of	pipeline for sequence alignment, motif
	other partners have entered the	detection, iterative database searching and
	collaboration. This initiative, known as	annotation. Interactive versions of parts of
InterPro	InterPro, ¹⁴ which primarily exploits the	the pipeline are also being developed: (i)
	detailed family annotations provided by	to allow users to create their own
	PROSITE and PRINTS, aims both to	fingerprints for use in conjunction with
	reduce duplication of effort in the	FingerPRINTScan; and (ii) to generate
	laborious, bottle-necking process of	annotation for groups of user-specified
	annotation, and to facilitate	sequences – this is PRECIS (Protein
	communication between disparate	Reports Engineered from Concise
	resources. A particular strength of	Information in SWISS-PROT). ²⁸
	InterPro is the ability to compare results	prePRINTS and its associated tools will
	of simultaneous searches across all	ultimately help to increase the family
Web search	database partners, as shown in Figure 7.	coverage of PRINTS and so improve its
	The graphical result returned by the	effectiveness as a sequence analysis tool.

SWISS-PROT IPR00027 ACM1_HUMANPR00027	6 PS00237	G_PROTEIN_RECEPTOR	sf
P11229 IPR00027	<u>6 PR00237</u>	GPCRRHODOPSN	sf
IPR00029 IPR00292	5 PR00243		f st

Figure 7: Graphical result from an InterPro search illustrating the difference between the various motif- and domain-based approaches: the regex encodes a single short motif (line 1), whereas the profile (line 2) and hidden Markov model (line 4) span almost the complete sequence. By contrast, fingerprints (lines 3, 5, 6) encode groups of motifs that differentiate regions of sequence that characterise the superfamily (sf) and those that typify the family (f) and receptor subtype (st). It is evident from this result that while PROSITE and Pfam furnish only superfamily diagnoses, PRINTS provides a more fine-grained result, thereby offering important structural and functional insights not apparent from the other methods.

AVAILABILITY For local installation, PRINTS flat-files

may be retrieved directly from the anonymous-ftp servers at the University of Manchester,²⁹ HGMP-RC,³⁰ EBI,³¹ EMBL³² and NCBI.³³ The database may be searched or queried via the Web -Table 1 summarises the locations of some of the PRINTS search tools and related resources.

CONCLUSION

Pattern databases provide powerful tools for analysing uncharacterised sequence data, in particular by placing individual sequences in a family context for a more

informed assessment of function than is possible with conventional pairwise searches. While there is some overlap between them, the contents of the family databases differ. It is therefore good practice to search all available repositories, to ensure that one's analysis is as comprehensive as possible and that it takes advantage of a variety of search methods. Where there is consensus, diagnoses can be made with greater confidence.

Unfortunately, creating and annotating family discriminators is time-consuming, so the databases have not kept pace with the deluge of sequence data, and PRINTS is no exception. Nevertheless, it is an evolving resource and the new developments help to increase its utility as a tool for sequence analysis. In addition, PRINTS-S sheds light on evolutionary relationships between families that were formerly hidden in PRINTS. Together, PRINTS and PRINTS-S are thus complementary tools that facilitate genome annotation, and add greater depth to sequence analyses by offering both unique hierarchical diagnoses and new ancestral perspectives on protein family relationships.

Genome annotation

Acknowledgments

I am grateful to the Royal Society for a University Research Fellowship and to the seq group.

Table 1: Accessing PRINTS and its related search tools and resources

PRINTS	http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/
Current contents	http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ printscontents.html
Keyword search	http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ QuizPRINTS.html
FingerPRINTScan	http://www.bioinf.man.ac.uk/dbbrowser/fingerPRINTSca
FingerPRINTScanfam	http://www.bioinf.man.ac.uk/cgi-bin/dbbrowser/
PRINTS BLAST	http://www.bioinf.man.ac.uk/cgi-bin/dbbrowser/PRINTS/ printsBLAST.cgi
PRINTS-S	http://www.bioinf.man.ac.uk/dbbrowser/sprint/
Blocks-format-PRINTS eMOTIF InterPro	http://www.blocks.fhcrc.org/blocks/blocks_search.html http://motif.stanford.edu/emotif/ http://www.ebi.ac.uk/interpro/scan.html/
PRECIS	http://www.bioinf.man.ac.uk/dbbrowser/prePKINTS/ http://www.bioinf.man.ac.uk/cgi-bin/dbbrowser/precis/ precis.cgi

References

- Altschul, S. F., Madden, T. L., Schaffer, A. A. et al. (1997), 'Gapped BLAST and PSI-BLAST: a new generation of protein database search programs', *Nucleic Acids Res.*, Vol. 25(17), pp. 3389–3402.
- Pearson, W. R. (1998), 'Empirical statistical estimates for sequence similarity searches', *J. Mol. Biol.*, Vol. 276(1), pp. 71–84.
- Hofmann, K. (1998), 'Protein classification and functional assignment', in 'Trends Guide to Bioinformatics', Elsevier Science, pp. 18–21.
- Attwood, T. K. (1997), 'Exploring the language of bioinformatics', in Stanbury, H. Ed., 'Oxford Dictionary of Biochemistry and Molecular Biology', Oxford University Press, Oxford, UK, pp. 715–723.
- 5 . Attwood, T. K. (2000), 'The role of pattern databases in sequence analysis', *Briefings in Bioinformatics*, Vol. 1, pp. 45–59.
- URL: http://www.bioinf.man.ac.uk/ dbbrowser/PRINTS/
- Attwood, T. K. and Findlay, J. B. C. (1994), 'Fingerprinting G protein-coupled receptors', *Protein Eng.*, Vol. 7(3), pp. 195–203.
- Attwood, T. K. (2001), 'A compendium of specific motifs for diagnosing GPCR subtypes', *Trends Pharmacol.Sci.*, Vol. 22(4), pp. 162–165.
- Attwood, T. K., Croning, M. D. R. and Gaulton, A. (2001), 'Deriving structural and functional insights from a ligand-based hierarchical classification of G protein-coupled receptors', *Protein Eng.*, Vol. 15(1), pp. 7–12.
- Bairoch, A. and Apweiler, R. (1999), 'The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 2000', Nucleic Acids Res., Vol. 28(1), pp. 45–48.
- Parry-Smith, D. J. and Attwood, T. K. (1992), 'ADSP – A new package for computational sequence analysis', *CABIOS*, Vol. 8(5), pp. 451–459.
- Attwood, T. K. and Beck, M. E. (1994), 'PRINTS – a protein motif fingerprint database', *Protein Eng.*, Vol. 7(7), pp. 841–848.
- Attwood, T. K., Avison, H., Beck, M. E. et al. (1997), 'The PRINTS database of protein fingerprints: A novel information resource for computational molecular biology', J. Chem. Inf. Comp. Sci., Vol. 37, pp. 417–424.
- Apweiler, R. Attwood, T. K., Bairoch, A. et al. (2001), 'The InterPro database, an integrated documentation resource for protein families, domains and functional sites', *Nucleic* Acids Res., Vol. 29(1), pp. 37–40.
- Bernstein, F. C., Koetzle, T. F., Williams, G. J. B. *et al.* (1997), 'The protein data bank: A computer based archival file for

© HENRY STEWART PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS. VOL 3. NO 3. 252-263. SEPTEMBER 2002

n/

macromolecular structures', J. Mol. Biol., Vol. 112, pp. 535–542.

- Wright, W. and Attwood, T. K. (1999), 'BLAST PRINTS – alternative perspectives on sequence similarity', *Bioinformatics*, Vol. 15(6), pp. 523–524.
- Scordis, P., Flower, D. R. and Attwood, T. K. (1999), 'FingerPRINTScan: intelligent searching of the PRINTS motif database', *Bioinformatics*, Vol. 15(10), pp. 799–806.
- Gribskov, M., McLachlan, A. D. and Eisenberg, D. (1987), 'Profile analysis: detection of distantly related proteins', *Proc. Natl Acad. Sci. USA*, Vol. 84(13), pp. 4355– 4358.
- Henikoff, J. G. and Henikoff, S. (1992), 'Amino acid substitution matrices from protein blocks', *Proc. Natl Acad. Sci. USA*, Vol. 89, pp. 10915–10919.
- Attwood, T. K., Croning, M. D. R., Flower, D. R. et al. (2000), 'PRINTS-S: the database formerly known as PRINTS', *Nucleic Acids Res.*, Vol. 28(1), pp. 225–227.
- Attwood, T. K., Blythe, M. J., Flower, D. R. et al. (2002), 'PRINTS and PRINTS-S shed light on protein ancestry', *Nucleic Acids Res.*, Vol. 30(1), pp. 239–241.
- 22. Rost, B. (1999), 'Marrying structure and genomics', *Structure*, Vol. 6, pp. 259–263.
- 23. Henikoff, J., Greene, E. A., Pietrokovski, S. and Henikoff, S. (2000), 'Increased coverage of

protein families with the Blocks Database servers', Nucleic Acids Res., Vol. 28(1), pp. 228–230.

- 24. Huang, J. Y. and Brutlag, D. (2001), 'The EMOTIF database', *Nucleic Acids Res.*, Vol. 29(1), pp. 202–204.
- Falquet, L., Pagni, M., Bucher, P. et al. (2002), 'The PROSITE database, its status in 2002', *Nucleic Acids Res.*, Vol. 30(1), pp. 235–238.
- Bateman, A., Birney, E., Durbin, R. *et al.* (1999), 'Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins', *Nucleic Acids Res., Vol.* 27(1), pp. 260–262.
- Gouzy, J., Corpet, F. and Kahn, D. (1999) Recent improvements of the ProDom database of protein domain families', *Nucleic Acids Res.*, Vol. 27(1), pp. 263–267.
- Reich, J. R., Mitchell, A., Goble, C. A. and Attwood, T. K. (2001), 'PRECIS: Protein Reports Engineered from Concise Information in SWISS-PROT', *IEEE Intelligent Systems*, Vol. 16(6), pp. 42–51.
- 29. URL: ftp://ftp.bioinf.man.ac.uk/pub/prints
- 30. URL: ftp://ftp.hgmp.mrc.ac.uk/pub/ database/prints
- 31. URL: ftp://ftp.ebi.ac.uk/pub/databases
- 32. URL: ftp://ftp.embl-heidelberg.de
- 33. URL: ftp://ncbi.nlm.nih.gov