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ABSTRACT

Though teleoperated robots have become common for more
extreme tasks such as bomb diffusion, search-and-rescue,
and space exploration, they are not commonly used in
human-populated environments for more ordinary tasks
such as house cleaning or cooking. This presents near-term
opportunities for teleoperated robots in the home. How-
ever, a teleoperator’s remote presence in a consumer’s home
presents serious security and privacy risks, and the concerns
of end-users about these risks may hinder the adoption of
such in-home robots. In this paper, we define and explore
the privacy-utility tradeoff for remotely teleoperated robots:
as we reduce the quantity or fidelity of visual information
received by the teleoperator to preserve the end-user’s pri-
vacy, we must balance this against the teleoperator’s need
for sufficient information to successfully carry out tasks. We
explore this tradeoff with two surveys that provide a frame-
work for understanding the privacy attitudes of end-users,
and with a user study that empirically examines the effect
of different filters of visual information on the ability of a
teleoperator to carry out a task. Our findings include that
respondents do desire privacy protective measures from tele-
operators, that respondents prefer certain visual filters from
a privacy perspective, and that, for the studied task, we can
identify a filter that balances privacy with utility. We make
recommendations for in-home teleoperation based on these
findings.
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1. INTRODUCTION
While full autonomy in unstructured environments re-

mains highly challenging for robots, many complex tasks
can be performed reliably with human supervision or direct
human control of robots. Indeed, there are already commer-
cially available systems for remote teleoperation, such as the
iRobot Packbot.1 Though teleoperated robots have become
common in extreme environments, they are not commonly
used in human-populated environments for more ordinary
tasks. Thus ordinary tasks such as house cleaning or cook-
ing present unexploited opportunities for robot teleopera-
tion, which can allow remote operators to work anywhere at
any time, shifting night jobs to day time zones and avoiding
transportation costs for workers, or improving productivity
through partial automation.

Unfortunately, the introduction of teleoperated robots
into human-populated environments presents serious pri-
vacy, security, and safety risks. These risks present a hurdle
to making in-home teleoperated robots attractive to more
people. In this paper, we focus primarily on privacy risks:
a worker operating a robot remotely in a customer’s home
can learn significant information about that customer (e.g.,
their financial information, personal habits, medical condi-
tions, and political or religious views). Such concerns may
be greater for a teleoperator than a physical worker in the
home due to the anonymity and de-personalization created
by the physical distance. Furthermore, digital recordings of
people’s homes are inherently vulnerable to being intention-
ally or accidentally revealed to a public audience.

To reduce such privacy concerns, one might suggest that
the information (e.g., video) provided to remote teleoper-
ators should be limited. However, providing teleoperators
with too little information may interfere with their proper
execution of tasks, raising concerns not only about their ef-
fectiveness but also about potential physical harm caused
by poor task execution (e.g., breaking items in the home).
Thus, we are faced with a tradeoff.

In this paper, we define and explore this privacy-utility
tradeoff for remotely teleoperated robots. Different tasks
require different types of information, and likewise, differ-
ent users have different privacy preferences. As a result, it
is not obvious a priori how to strike a balance. To begin
characterizing this complex tradeoff, we contribute:

• a framework for specifying privacy issues in a teleop-
erated robot scenario, based on a survey that reveals
people’s privacy attitudes in this context;

• a sample set of 2D and 3D filtering techniques for vi-
1www.irobot.com/us/learn/defense/packbot.aspx



sual information provided to teleoperators;

• empirical results from a second survey revealing peo-
ple’s preferences towards these filtering techniques ap-
plied in different contexts; and

• a user study that investigates a teleoperator’s ability
to perform a specific task with different privacy filters.

We report on both qualitative and quantitative results
from our studies. From these results, we distill recommen-
dations for understanding and balancing the privacy-utility
tradeoff. For example, we observe that end-users may not
anticipate all of their privacy concerns without sufficient
context in which to consider them; that certain visual fil-
ters do indeed meet end-users’ privacy preferences; that a
small loss in utility can result in a large privacy gain; and
furthermore that the performance hit of a high-privacy filter
decreases as the teleoperator gains experience. Our empiri-
cal results and characterization of the privacy-utility tradeoff
lay the groundwork for enabling in-home teleoperated robots
to become socially acceptable and useful.

2. RELATED WORK
Remote teleoperation. Remote teleoperation has become
a subject of interest both commercially and in the research
community [9]. Most existing teleoperated systems target
extreme conditions, such as bomb diffusion or search and res-
cue [2]. More recently, however, researchers have started to
look into teleoperation in human-populated environments,
such as homes or offices [16, 17]. We target such everyday,
human-populated environments in this work as well.

Privacy in robotics. Privacy has increasingly become a
topic in robotics. For example, Feil-Seifer et al. [10] consider
privacy for socially assistive robotics, and Kahn et al. [14]
consider bystander privacy around humanoid robots. Oth-
ers have discovered that anthropomorphic robots naturally
deliver privacy notice [6] reducing the privacy-enhancing be-
haviors of older adults compared to a camera [5]. Telepres-
ence systems [23] naturally mitigate some privacy concerns
by displaying the person controlling the robot; neverthe-
less, privacy is a major concerns for older adults consider-
ing a telepresence robot in their home [3, 4]. Drones have
also recently raised significant privacy concerns [7]. Willow
Garage’s Heaphy project2 involving robots teleoperated by
Mechanical Turk workers was shut due in part to privacy
concerns. In this work, we study how to better balance pri-
vacy and utility for teleoperated robots to make them more
acceptable to end-users and ultimately more useful.

Other related work in privacy. Beyond robots, many
researchers have studied privacy issues with video surveil-
lance and wearable cameras. Solutions generally involve
explicit opt-outs of various kinds for bystanders and ob-
jects [11, 18–21], and/or more automatic video filtering tech-
niques [12, 13, 22, 24]. These previous approaches assume
that sensitive objects can be explicitly detected via com-
puter vision techniques or rely on expensive instrumenta-
tion of the world. However, this assumption conflicts with
a major motivation behind teleoperation: namely, that hu-
man teleoperators can identify and manipulate objects that
are not currently recognizable by computer vision. In this
work, we thus develop generic filters that are widely ap-
plicable to a large class of unknown objects. Nevertheless,
2The Heaphy project: http://youtu.be/0aqghgoeCWk

more targeted computer vision and/or explicit opt-outs can
supplement our blanket approach.

3. HOME PRIVACY FRAMEWORK
Our motivating scenario involves remotely teleoperated

robots in the home that can carry out ordinary tasks such
as cleaning, organizing, and cooking. The workers teleoper-
ating the robot may be located anywhere, but we envision
that they are vetted by the service company, that their per-
formance may be rated by end-users, and that their actions
through the teleoperation interface may be audited.

Although such robots can provide great benefits to both
end-users and to workers, their success hinges on the will-
ingness of end-users to allow such robots into their home.
End-users are likely to have privacy concerns about allow-
ing unknown workers to view their home through the robot’s
sensory feed. We thus begin by considering the privacy con-
cerns of end-users in their homes.

3.1 Privacy concerns
To characterize in-home privacy concerns, we developed a

set of dimensions that may affect a person’s level of concern,
based in part on relevant privacy literature (e.g., [13, 24]).
We generated the following (overlapping) dimensions for the
evaluation of privacy concerns:

1. Locations: Different in-home locations—such as the
bedroom, bathroom, living room, or kitchen—may
present inherently different levels of privacy concern.
For example, the bedroom may be more likely to con-
tain private or sensitive objects than the living room.

2. Objects: Different in-home objects may be more sensi-
tive than others, and this sensitivity may vary among
users. For example, keys may be sensitive, because
photos of keys can be used to replicate them.3

3. Information: Finally, we can classify privacy con-
cerns according to the higher-level information re-
vealed through objects and/or locations. Potentially
sensitive information may include financial informa-
tion, medical information, information about a per-
son’s identity, personal habits, political or religious
views, etc.

The relative concern of end-users along each dimension
and the variability of concern between different end-users
will inform the design of privacy filters or other approaches
for limiting the information provided to teleoperators.

3.2 Survey design
To better understand people’s concerns in the teleoper-

ated robot scenario, and to empirically validate the above
framework for evaluating privacy concerns in particular, we
conducted a web-based user survey using Google Forms.4

The first page of the survey described the in-home teleop-
erated robot scenario alongside an image of a UBR-1 robot5

for context. The second and third pages each asked a general
free-response question of the form: “In this scenario, what
are some X you would be concerned about?”, where X was

3https://keysduplicated.com/
4Google Forms is a free service for creating web-based sur-
veys. http://www.google.com/forms/about/
5UBR-1 is a state-of-the-art mobile manipulator with a cir-
cular omni-directional base and one 7-DoF arm.
http://unboundedrobotics.com/ubr-1/



replaced with “things” and “privacy-related issues” respec-
tively. This ordering was chosen to find out if privacy would
come up naturally as a concern, before the survey revealed
that its main focus was privacy.

Each of the next four pages consisted of 5-point Likert-
scale questions that asked about objects, rooms, information
types, and threat types respectively (see the previous section
for our rationale). For example, in the case of objects (e.g.,
keys, pants, pills), the questions were of the form: “If this
object was present in the robot’s environment, I would be
...” with 1 indicating “Not at all concerned about privacy”
and 5 indicating “Extremely concerned about privacy”.

The last page consisted of demographic questions and gen-
eral privacy-related questions to allow us to categorize re-
spondents by their level of privacy concern according to the
Westin Privacy Index [15].

3.3 Findings
Demographics. Our survey respondents were 25 male and
25 female volunteers recruited via email at the University of
Washington. Ages ranged from 18 to 71 years old (mean =
28.4, standard deviation = 10.3). An analysis of our Westin
Privacy Index questions (coded as described in [15]) revealed
21 of 50 respondents as Privacy Fundamentalists, 25 as Pri-
vacy Pragmatists, and 4 as Privacy Unconcerned. Compared
to historical Westin Index data [15], our respondents may
therefore be slightly, but not dramatically, skewed towards
privacy concerned.

Finding 1: Privacy and harm are major concerns.
The first question of the survey asked in free-response (qual-
itative) form about general concerns with the teleoperated
robot scenario. Though this question explicitly did not yet
mention privacy, many respondents voiced privacy-related
concerns. Specifically, two authors independently coded 10
concerns commonly mentioned by respondents, and then at-
tempted to reach consensus wherever there was disagree-
ment (Table 1). Respondents’ most common concerns were
privacy (22 of 50), harm to people or property (18 of 50),
and “other” (things that did not fit into any other category,
e.g. size, expense) (13 of 50). As an additional check, we
noted that 17 of respondents specifically used the words“pri-
vacy” or “private” in their response. In total, 26 of 50 of
respondents mentioned concerns about either privacy issues
or leakage of sensitive information, suggesting that sensi-
tive visual information collected by a robot is a major issue
to address for teleoperated robots in the home. We observe
that privacy concerns may be in tension with concerns about
physical harm: for a well-intentioned teleoperator, this is
precisely the privacy-utility tradeoff.

Finding 2: Privacy concerns vary by context and
are greatest for tangible harms. Next, we consider a
quantitative measure: Likert scale ratings of respondents’
level of privacy concern for different objects (Fig. 1a), types
of information (Fig. 1b), and locations (Fig. 1c). Wilcoxon
signed rank tests were used for computing significance. We
find that respondents are more concerned about some con-
texts than others. For example, they are significantly more
concerned about privacy in the bedroom or the bathroom
than in the living room or the kitchen; they are more con-
cerned about bank statements than about jewelry, and more
concerned about jewelry than about deodorants; and they
are more concerned about financial and personal identifica-

Concern % answers (N , κ)
Privacy 44% (22, 0.92)
Harm to people or property 36% (18, 0.91)
Other (e.g., size, expense) 28% (14, 1.00)
Home security (break-in, theft) 26% (13, 1.00)
Inability to perform tasks well 24% (13, 0.89)
Leakage of sensitive information
(e.g., financial, identity)

14% (7, 1.00)

Operator actions (nonspecific) 13% (6.5, 0.91)
Pets 12% (6, 1.00)
Who is liable for damage / harm 10% (5, 1.00)
Hackers 10% (5, 1.00)

Table 1: Percentage of 50 survey respondents mentioning each
concern, given the prompt: “In the described scenario with a
teleoperated robot in the home, what are some things you would
be concerned about?” Percentages are averaged from two authors’
codings of free responses. Average raw count and inter-coder
agreement, as measured by Cohen’s κ, are shown in parentheses.

tion information than about personal habits or gender in-
formation. In general, respondents were more concerned
about information that they could imagine concretely caus-
ing them harm (e.g., financial or home security harm) than
less tangible privacy violations (e.g., learning their gender
for targeted advertising). These impressions were borne
out in respondents’ ratings of their concern about specific
threats (Fig. 1d): in general, respondents were concerned
about data thefts and embarrassing information getting out
onto the web, but not about targeted advertising.

Finding 3: Respondents may not always anticipate
threats. We hypothesize that respondents did not always
imagine the full context and/or anticipate the resulting
threats when rating their privacy sensitivities. For exam-
ple, in free response answers, respondents expressed con-
cern about embarrassing information getting out on the web,
but may not have considered this threat when rating their
(lower) sensitivity towards information about their personal
habits or messiness. As another example, one respondent
(female, age 29) said explicitly: Before these questions came
up, I honestly have not considered things like credit cards
or mail or other things being a privacy concern. But after
going through the survey, I see how the Robot could “steal”
your identity (or someone could hack into the Robot and
steal your identity or personal information). We return to
this observation when we discuss the results of our second
survey (Section 4.3), where we find even stronger evidence
that respondents’ stated privacy preferences may vary by
the degree of context provided.

4. PRIVACY FILTERING FRAMEWORK
Our first survey provides a clearer understanding of the

types of information that a privacy filter ought to remove.
Next, we set out to determine candidate filters and evaluate
them in terms of their effectiveness in enhancing privacy.
Though robots may have many sensors that capture different
types of information, we focus on sensors that capture visual
information, as these are most intuitive for a human viewer.

Mapping the findings of our survey to filter designs is not
straightforward. The human eye performs highly complex
transformations on visual information in an image, in or-
der to extract meaningful information from it. It is im-
practical to reverse engineer these transformations so as to
create filters such as a “political information filter” or an
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Figure 1: Survey #1 results about in-home privacy sensitivity towards (a) objects, (b) information types and (c) rooms; (d) concern
about specific threats, where 1 on the scale corresponds to “Not at all concerned about privacy” and 5 corresponds to “Extremely
concerned about privacy.” We indicate p values where differences are significant.

“illegal activity filter.” Instead, filters operate a much lower
level where they manipulate properties such as edges and
color. Nonetheless, our findings indicate that filters that re-
move text, would have high impact in improving privacy, as
information rated as highly sensitive is primarily revealed
through text (e.g., bank statement, credit card, pregnancy
test). Focusing on this observation, we explore four filters.

4.1 Image filters
Blur (Fig. 2a). The simplest approach for removing fine
details like text from an image is to apply a Gaussian blur
filter. Gaussian blur removes image features smaller than a
certain scale, controlled by the width parameter σ. Larger
values of σ remove larger text but reduce the utility of the
image for executing tasks. We found that σ = 5px was
approximately the minimum size that made most of the text
in our image set illegible, so we used this value.

Edge (Fig. 2b). The distribution of color and intensity in
an image reveals information about the identity of objects,
the type of material a surface is made of, the 3D shape of
surfaces, and cleanliness. In order to hide color and intensity,
we used the Canny edge detection algorithm [8] to remove
all information except the edges between visually similar
regions. Canny edges are often present along the outlines of
objects, which may improve utility for manipulation tasks.

Superpixel (Fig. 2c). Blur not only removes fine details
like text but also distorts objects boundaries. To mitigate
the latter effect, we used the SLIC superpixel algorithm [1]
to cluster pixels that are close in 2D space and color space,
and then replaced each cluster with its average value. This
process acts like a non-linear filter that removes fine details
while preserving the boundaries of objects.

Color-skewed superpixel (Fig. 2d). Superpixels have
the disadvantage that they preserve color regions, which
may allow familiar objects and brands associated with par-
ticular colors to be identified. To conceal color information,
we rotated hue by 180◦. This helps hide identifying colors
while preserving shading useful for perceiving 3D shape.

4.2 Survey design
We designed a second user survey to better understand

how these filters interact with end-user privacy preferences,
again aiming for both qualitative and quantitative results.
We presented respondents with the same in-home teleoper-

(a) (b) (c) (d)

Figure 2: The effect of four filters on sample images from survey
#2: (a) blur, (b) edge, (c) superpixel, (d) color-skewed superpixel.

ated robot scenario as in the first survey (Section 3.2). We
then showed respondents images or short videos of nine in-
home objects, displayed in a real context but with minimal
additional clutter (e.g., keys on a table, pants on the floor).
Based on the results of our first survey, we selected three
high-sensitivity objects (credit card, photograph, pregnancy
test), three medium-sensitivity objects (pills, keys, under-
wear), and three low-sensitivity objects (unmade bed, hair
dye, pants). For each object, we asked respondents to rate:

1. their level of privacy concern related to the object’s
unmodified image or video (5-point Likert scale), and

2. their level of privacy concern related to the object’s
image modified with four different filters (Fig. 2) de-
scribed in Sec. 4.1 (5-point Likert scale for each filter,
with free response explanation).

Additionally, we asked about respondents’ level of comfort
with human workers versus teleoperators, with known tele-
operators, and with being around the robot. We also asked
respondents’ specifically about whether they would be will-
ing to give more information to the teleoperator in exchange
for performance. Finally, we asked demographic and Westin
Privacy Index [15] questions.

4.3 Findings
Demographics. The respondents to the second survey
were 25 male, 21 female, and 1 other or unknown gender vol-
unteers recruited via email at our institution. Ages ranged
from 18 to 57 years old (mean = 26.9, standard deviation
= 8.7). As in the first survey, we categorized respondents
by Westin Privacy Index [15], finding 22 of 47 Privacy Fun-
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Figure 3: Survey #2 results about privacy sensitivity towards
objects modified by various filters, where 1 on the scale corre-
sponds to “Not at all concerned about privacy” and 5 corresponds
to “Extremely concerned about privacy.”

damentalists, 22 Privacy Pragmatists, and 3 Privacy Un-
concerned. Again, our respondents are thus skewed slightly
towards being more privacy-sensitive than historical Westin
Index respondents [15].

Finding 1: The superpixel filters were preferred for
preserving privacy. Figure 3 shows respondents’ reported
privacy sensitivity for objects whose images or videos were
modified by each filter, as well as the original image or
video. This is a quantitative measure using a Likert scale.
The Wilcoxon signed rank test was used to test significance.
Lower bars on the graph represent greater comfort with a
remote teleoperator viewing the image or video. Among the
four tested filters (blur, edge, superpixel, and color-skewed
superpixel), we find that respondents were more comfort-
able with images or video modified with a superpixel filter.
For example, one respondent observed that the superpixel
filters “let the robot know it is a credit card, but nothing
else.” Specifically, for all objects, the color-skewed super-
pixel filter preserved privacy better than every filter other
than superpixel in a statistically significant way (p < 0.05).

Finding 2: Context affects responses about privacy
sensitivity. In our first survey (Section 3.3) we found
that respondents sometimes gave seemingly inconsistent re-
sponses about their privacy sensitivity. Our second survey
strengthens this observation: when shown an in-content im-
age or video of some objects in the second survey, respon-
dents were statistically more concerned about privacy than
when the same objects were only mentioned verbally in the
first survey. Specifically, between objects in the first survey
and unfiltered objects in the second survey, increases in pri-
vacy concern are significant for the credit card (p=0.006),
pants (p = 0.020), and messy room (p=0.019). We used
the Kruskal-Wallis test as our test of significance. See Fig-
ure 3. Thus, again we find that the context in which respon-
dents are asked about their privacy sensitivity affects their
responses, suggesting that our results are a lower bound: we
would expect respondents to have been even more sensitive
about objects in their own, real homes. We return to this
lesson when we make recommendations in Section 6.

Finding 3: Respondents desire a tradeoff based on
context. We asked respondents directly about the privacy-
utility tradeoff, i.e., whether they would be “willing to
show clearer images to teleoperators to improve their per-
formance.” We coded their free-text answers (two coders;
Cohen’s κ for inter-coder agreement was 0.82) and report
average percentages across both coders. We find that a plu-
rality of respondents (59% of 47) would be willing to show
clearer images in some cases, as long as certain objects or
rooms remain obscured, or other conditions (e.g., asking per-
mission) are met. For example, one respondent (male, age
22) wrote: Some things I wouldn’t want them to see at all
(pregnancy test), some it doesn’t matter the clarity (clothes).
By contrast, only 19% of respondents answered with an un-
conditional “yes” and 16% answered with an unconditional
“no” (with 6% unsure). These responses underscore the need
for a solution that trades off privacy with utility, where the
tradeoff may vary depending on the specific context.

5. PRIVACY-UTILITY TRADEOFF
So far we have focused on privacy, considering only the

end-user’s perspective. We now turn to the perspective of
the teleoperator, who needs as much information as possible
to perform a task. We hypothesize that for a given task, not
all sensory information is relevant, and that some methods
of filtering the video input received from the robot’s sur-
roundings will not affect the teleoperator’s performance on
that task. To balance the privacy-utility tradeoff, we would
ideally like to find a filter that is acceptable for an end-user’s
privacy and that minimally impacts the teleoperator’s per-
formance. Following up on our first two surveys, we con-
ducted a user study with the goal of identifying at least one
such filter. We describe this user study next.

5.1 Platform
Our user study involved the PR2 research robot. PR2 is a

wheeled robot with two arms (7 degrees of freedom) and par-
allel grippers that can manipulate everyday objects. For the
teleoperation of the PR2 we used an open source graphical
system developed by Leeper et al. called Interactive Manip-
ulation (IM) [16]. IM allows users to click on parts of the
robot to manipulate them. To manipulate objects the user
clicks on the end-effector of the a 3D rendering of the robot
on their screen, which reveals a 6-dimensional control with
3 arrows for translation in each direction and 3 wheels for
rotation around each direction. The user right clicks on the
gripper and selects open or close to grasp or place items.

IM allows users to customize the sensors that are overlaid
in the 3D world of the robot or displayed in a separate panel
on the same window. Our study involved a typical config-
uration with a point cloud obtained from the Kinect sensor
rendered in the 3D view side-by-side with a camera image
view from the robot’s pan-tilt head [16].

5.2 Filters
The second survey revealed that the color-skewed super-

pixel filter (Sec. 4.1) was superior in preserving privacy.
Therefore we are interested in knowing how it ranks in
terms of utility. For comparison we wanted to design two
additional settings that would be in either extreme of the
privacy-utility spectrum. In addition to the 2D image fil-
tering, the IM interface required designing filters for the 3D
point cloud as well. The three views we designed are ex-



(c)(b)(a)

Figure 4: Three teleoperator views designed for the user study: (a) clean, (b) obscured, and (c) box views.

plained in the following (Fig. 4). We assumed a scenario in
which the robot manipulates objects on a table.

Clean view. On one extreme, we provide an unfiltered im-
age and point cloud that contains all available information.

Obscured view. The second view contains the 2D im-
age filtered with the color-skewed superpixel method. As a
companion 3D filter for this view we removed all points from
the point cloud that do not correspond to objects on a table
and removed color information from the rest of the points.
In addition, using the distance channel RBGD image from
the Kinect sensor, we blacked out all pixels in the 2D image
that approached the sensor more than a certain distance.

Box view. On the other extreme, we wanted to push pri-
vacy as far as possible, leaving minimal task information. To
that end, we fit a bounding box to all detected clusters on
the table and only displayed these bounding boxes, leaving
the point cloud completely out. For the 2D view we provided
a rendering of these boxes as seen from the camera.

5.3 User study design
Our user study has two aims. The first is to compare the

three filters and assess their ranking on the privacy-utility
spectrum. The second is to better understand the risks asso-
ciated with an active adversarial who does not just observe
the information captured by the robot, but also can control
the robot to gather further information. To investigate these
issues, our study included two tasks.

Functional task. The first task aimed to measure the util-
ity of the filtered views for teleoperation. Participants had
four minutes to use the PR2 to pick up three objects on a
table and place them into a box also on the table. The ob-
jects were arranged to the left of the box and were pointed
out to participants on the teleoperation views. To reflect
common challenges in teleoperation and robot perception,
one of the objects was selected to have an irregular shape
(e.g., a brush with a handle) and another was selected to be
semi-transparent (e.g., a water bottle). After the functional
task, participants were asked to respond to a privacy quiz
asking questions about which objects were present. Specifi-
cally, participants were asked to identify whether the robot’s
environment contained a men’s product, political literature,
medication, clothing, etc., and to indicate their certainty in
their answer. They were also asked to identify individual
objects and transcribe any text that they might have seen.

Adversarial task. In the second task, the goal was to use
the robot to gather as much information as possible in order
to complete the privacy quiz. Participants did not have to
place objects into the box in this task.

5.3.1 Protocol

For convenience, the robot was located in the same room

as the participant, and remote teleoperation was simulated
by hiding the robot behind a barrier. To mask sounds of the
robot in operation, participants wore noise-isolating head-
phones playing background noise. The overall structure of
the experiment was as follows:

1. Introduction. Participants gave informed consent
and were seated at a computer workstation. Exper-
imenter explained the goal of the study as the devel-
opment of privacy-preserving interfaces.

2. Tutorial. Experimenter provided a step-by-step ex-
planation of the teleoperation interface used to control
the robots. Participant demonstrated understanding
by successfully using each interface element.

3. Practice task. Participant teleoperated the robot to
pick up an object, moved the arm to its fullest extent
in the horizontal and vertical directions, and placed
the object back down. Participants familiarized them-
selves with the privacy quiz.

4. Experiment.

(a) Flight 1 functional task, followed by privacy quiz.

(b) Flight 1 adversarial task, followed by privacy quiz.

Similarly for Flights 2 and 3.

5. Questionnaire. Participant answered questions
about the difficulty of the functional and adversarial
tasks under each view, as well as questions about level
of privacy concern under each view, demographic ques-
tions, the Westin index questions.

The flight numbers correspond to three sets of objects that
were presented in the same order to all participants, with
each flight displayed under a different view (clean, obscured,
or box). The views were presented in a different order for
each participant. Over the 18 participants, each of the 6
possible orderings was repeated 3 times.

5.4 Findings
Finding 1: Sacrificing a little utility can significantly
improve privacy. In terms of utility, the obscured view
was about as good as the clean view, but it provided much
better privacy. In particular, teleoperators rated the ob-
scured view just −0.67 Likert points lower than the clean
view on ease-of-use (Figure 5b), but rated it +2.06 Likert
points better in terms of privacy for the adversarial task
(−0.63 and +2.62 standard deviations respectively). See
Figure 5d. One user (male, age 25) summed up the trade-
off this way: I could tell the general shape of the objects,
and could tell what some of them were (box, book etc.), but I
couldn’t get any details. We see the same trend for objective
measures: the obscured and clean views did not exhibit a
significant difference in the average number of objects suc-
cessfully placed into the box (paired t-test: p = 0.72, see
Figure 6), while adversarial teleoperators using the obscured
view were significantly worse at answering questions about
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Figure 5: Summary of user study results: objective and subjective measures of task utility (left) and privacy (right).
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Figure 6: The number of objects successfully placed into the box
in 4 minutes, broken down by flight and filter. Sect. 5.4 discusses
the stronger learning effect for the box view.

the objects in the scene than those using the clean view
(paired t-test: p < 0.001).

Finding 2: Practice can mitigate lower-utility views.
We observed that practice greatly improved teleoperator
performance on the subjectively difficult-to-use box view,
and moderately improved performance on the other views
(Figure 6). While this learning effect may have been due in
part to additional information about the object set gleaned
by teleoperators over the course of the study, this finding
nevertheless suggests that the performance hit of a filter is
not fixed but may in fact diminish or disappear over time.

Finding 3: Active information gathering reduces pri-
vacy, but filters can limit this effect. During the adver-
sarial task, teleoperators used a variety of strategies to glean
information from the scene. For example, they pushed ob-
jects around to get a better view of labels and text, brought
objects closer to the camera to try to overcome the effects of
image filters, and even tested object rigidity to help deter-
mine which objects were made of fabric. In the clean view,
adversaries scored twice as high on the privacy quiz (paired
t-test: p < 0.0001) and rated the difficulty of the quiz signif-
icantly lower (Wilcoxon signed-rank test: p < 0.001). How-
ever, in the obscured and box views, the gains of adversaries
were not significant, suggesting that these views were some-
what resilient to active threats.

6. DISCUSSION
Finally, we step back to discuss limitations of our work,

make recommendations, and outline avenues for future work.

Limitations. Our work has several limitations. First, our
user study evaluated only a single, specific task (placing ob-

jects in a box). Though we were able to identify a visual
filter that balanced privacy and utility in an acceptable way
for this task, this choice of filter does not necessarily gen-
eralize to other tasks. Second, several aspects of our user
study limited our ability to draw conclusions from the data,
including a strong learning effect among participants and
the lack of fine granularity data about what participants
did at what time. For example, we did not study the degree
to which different filters led to inadvertent physical harm,
i.e., the disruption of the scene. Third, we have not studied
the perspective of human bystander near the robot; know-
ing that their image is filtered may not be sufficient to make
bystanders comfortable around the robot, and further in-
vestigation of bystander attitudes are needed. Finally, our
survey and study populations were limited in demographic
diversity (e.g., it did not include a large older adult or dis-
abled population, who might be early adopters of the studied
technology). Nevertheless, our work presents an important
first step in understanding and managing the privacy-utility
tradeoff for remotely teleoperated robots.

Recommendations and future work. Based on our find-
ings in two surveys and a user study, we make the following
recommendations for the design of services for in-home tele-
operated robots and beyond:

• Users express different privacy preferences as details
and context emerge. Thus, privacy preferences should
be elicited from users with as much context as possible.
For example, a user could be shown images of their
own home (as in [24]), rather than an abstract list of
objects, when making preference decisions.

• Users were most comfortable with our two superpixel
filters. We recommend future empirical study of these
and similar filters for different teleoperation tasks.

• Users recognize that the optimal point on the privacy-
utility spectrum may vary by task, by object, and by
user. Future work should explore how to balance this
tradeoff dynamically as these contexts change. For ex-
ample, the filter parameters or even the choice of filter
could change in real time. To aid this process, users
could explicitly mark sensitive objects [19, 20].

• We were surprised how much a filter’s performance hit
diminishes with practice. Thus, low-utility filters may
ultimately prove more valuable than expected.

• While this paper has studied visual filters not specific
to particular context, there are other possible tech-
niques for balancing privacy and utility that must be



studied. For example, in-home robots may be re-
stricted from certain rooms rather than certain ob-
jects. As computer vision and robotic autonomy im-
prove, this tradeoff can perhaps also be balanced by
reducing the involvement of the teleoperator.

• Privacy filters have robotic applications beyond just
teleoperation. Autonomous robots could similarly
store information in a filtered form in order to be less
vulnerable to unintended security breaches.

7. CONCLUSION
This paper has defined and explored the privacy-utility

tradeoff for remotely teleoperated robots in the home. Al-
though such robots present tremendous near-term oppor-
tunities, their success depends on the willingness of end-
users to allow them into their home. We conducted two
surveys to characterize qualitatively and quantitatively the
privacy concerns and preferences of end-users, finding that
respondents are concerned both about privacy and physical
harm from teleoperated robots. We observed that respon-
dents were not always able to anticipate all threats, and
thus recommend that end-users be asked about their pri-
vacy preferences with as much context as possible. We also
found that privacy concerns vary by specific context, but
that most respondents were comfortable with the level of
privacy provided by one of our visual filters (color-skewed
superpixel). Finally, in a user study in which participants
manipulated a robot, we found that an intermediate filter
provided a good privacy-utility balance for the studied task:
participants were able to carry out the task with reasonable
accuracy and only moderate difficulty, but they were not
able to answer privacy-invasive questions. We also found
that the performance hit of a privacy-preserving filter di-
minishes with practice. Though the optimal point in the
privacy-utility spectrum varies by task, by context, and by
end-user, our findings suggest how these properties can be
traded off in acceptable ways. Our characterization of in-
home privacy concerns and our empirical exploration of the
privacy-utility tradeoff thus lays a foundation for future de-
signs of remotely teleoperated robots in the home.
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marks for evaluating socially assistive robotics. Interaction
Studies 8, 3 (2007), 423–439.

[11] Halderman, J. A., Waters, B., and Felten, E. W. Pri-
vacy Management for Portable Recording Devices. In Work-
shop on Privacy in Electronic Society (2004).

[12] Jana, S., Molnar, D., Moshchuk, A., Dunn, A., Livshits,
B., Wang, H. J., and Ofek, E. Enabling Fine-Grained Per-
missions for Augmented Reality Applications with Recogniz-
ers. In USENIX Security Symposium (2013).

[13] Jana, S., Narayanan, A., and Shmatikov, V. A Scanner
Darkly: Protecting User Privacy from Perceptual Applica-
tions. In IEEE Symposium on Security and Privacy (2013).

[14] Kahn Jr, P. H., Ishiguro, H., Friedman, B., Kanda, T.,
Freier, N. G., Severson, R. L., and Miller, J. What is
a human?: Toward psychological benchmarks in the field of
human–robot interaction. Interaction Studies 8, 3 (2007),
363–390.

[15] Kumaraguru, P., and Cranor, L. F. Privacy Indexes: A
Survey of Westin’s Studies. Tech. Rep. CMU-ISRI-5-138,
Carnegie Mellon University, 2005.

[16] Leeper, A. E., Hsiao, K., Ciocarlie, M., Takayama,
L., and Gossow, D. Strategies for human-in-the-loop
robotic grasping. In ACM/IEEE International Conference
on Human-Robot Interaction (2012), ACM, pp. 1–8.
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