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Abstract

In this dissertation, we consider a distributed implementation of the π-calculus,

more precisely, the version of the π-calculus with mixed choice. To this end, we present

the probabilistic asynchronous π-calculus, which is an extension of the asynchronous π-

calculus enhanced with a notion of random choice. We define an operational semantics

which distinguishes between probabilistic choice, made internally by the process, and

nondeterministic choice, made externally by an adversary scheduler. This distinction

will allow us to reason about the probabilistic correctness of algorithms under certain

schedulers. We show that in this language we can solve the electoral problem, which was

proved not possible in the asynchronous π-calculus.

We propose a randomized distributed encoding of the π-calculus, using the proba-

bilistic asynchronous π-calculus, and we show that our solution is correct with probability

1 under any proper adversary with respect to a notion of testing semantics.

Finally, in order to prove that the probabilistic asynchronous π-calculus is a sen-

sible paradigm for the specification of distributed algorithms, we define a distributed

implementation of the synchronization-closed probabilistic asynchronous π-calculus in

the Java language.
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Chapter 1

Introduction

The theory of concurrency provides a formal basis for the specification of concur-

rent systems, and includes formalisms for modelling, expressing properties, validation

and verification of such systems.

The history of the theory of concurrency started more than thirty years ago.

Various models of communicating systems, such as Petri nets [44], CSP [13], ACP [2],

CCS [24, 25], the π-calculus ([27]) have been proposed since then.

Robin Milner’s invention of the Calculus of Communicating Systems (CCS) was a

cornerstone in the history of theory of concurrency. CCS deals with interactive systems

which are not mobile and was designed to help understanding formal tools in concurrency

by using the least number of concepts. The goal of the designer of CCS was to create a

calculus that plays an analogous role for concurrency as the λ-calculus plays for sequential

computing.

The development of mobile computing brought new challenges into the under-

standing of communicating systems. The π-calculus was developed in the late 1980s

with the goal of analyzing the behavior of mobile systems, i.e. systems whose communi-

cation topology can change dynamically. The π-calculus is a calculus of mobile processes

introduced by Robin Milner, Joachim Parrow and David Walker. The π-calculus has its

roots in the process algebra CCS, namely CCS with mobility, introduced by Uffe Eng-

berg and Mogens Nielsen [9]. The capacity of dynamic reconfiguration of the network

of processes gives π-calculus a much greater expressiveness than CCS. The transfer of

a communication link between two processes represents the basic computational step in

the π-calculus.

The asynchronous π-calculus, as proposed by Boudol [5] and, independently, by

Honda and Tokoro [14], is a subset of the π-calculus in which communication is asyn-

chronous in the sense that output processes are not allowed to carry continuations. Asyn-

chronous communication models the situation when the action of sending a message and

the action of receiving it do not have to occur at the same time, whereas synchronous
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communication corresponds to the simultaneous exchange of information between two

partners.

For several years there have been different opinions regarding the expressiveness

of asynchronous communication. The encodings of Honda-Tokoro [14] and Boudol [5] for

the output prefix and of Nestmann-Pierce [32] for the input prefix partially legitimated

the idea that the two communication mechanisms are equivalent. However, the full π-

calculus, and process algebras with synchronous communication in general, have a mixed

choice mechanism, i.e. choice of prefixed processes where the prefixes can be input, out-

put or silent actions, that increases their expressive power. In fact, Palamidessi [36] has

shown that the π-calculus is strictly more expressive than the asynchronous π-calculus,

in the sense that it is not possible to encode the first into the latter in a uniform way

while preserving a reasonable semantics. Uniform essentially means homomorphic with

respect to the parallel and the renaming operators, and reasonable means sensitive to the

capability of achieving success in all possible computations. The additional expressive

power is due exactly to the mixed choice construct, as shown by Nestmann [29].

The motivation for this work comes from the observation that the π-calculus, and

the formalisms that are based on synchronous communication and contain a guarded

choice operator, are difficult to implement in an entirely distributed way with non-

probabilistic methods. The combination of synchronous communication and choice re-

quires in fact solving certain problems of distributed consensus which are known to have

only randomized solutions. On the other hand, the asynchronous π-calculus, as well as

the formalisms based on asynchronous communication, are usually more suitable for a

distributed implementation, but are not as expressive as the synchronous formalisms.

The difference in expressive power is due to the specification of symmetric systems

which need achieving consensus among remote components. In the π-calculus it is easy

to specify solutions to distributed consensus problems, such as the leader election or the

dining philosophers. In an asynchronous formalism on the contrary this is not possible,

unless some form of randomization is introduced [21]. However, a probabilistic solu-

tion is usually much more complicated and difficult to reason about. A distributed and

necessarily probabilistic implementation of the π-calculus will therefore offer a powerful

language for programming the solution of distributed problems which would otherwise

require complicated randomized algorithms. Moreover, the main difficulties of verifica-

tion will be solved at the implementation level. In this way proving the correctness of

a solution will be much easier because it will not require reasoning about probabilistic

behaviors, but only reasoning about the correct use of certain high-level mechanisms.
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We propose the probabilistic asynchronous π-calculus with the aim of provid-

ing a fully distributed implementation of the π-calculus. The implementation of the

π-calculus will be achieved in two phases, by translating the π-calculus into an inter-

mediate formalism, the probabilistic asynchronous π-calculus, and then implementing

the latter. There are various advantages to this approach. First, the complexity of the

implementation is factorized. Second, the main difficulty in proving the correctness of

the implementation, which lies in the probabilistic algorithm, will be confined to the first

phase. Since the intermediate formalism is itself a small calculus, it will be feasible to

develop rigorous semantics and verification methods for it. In this way high level mathe-

matical techniques can be used to prove the correctness of the implementation. Finally,

the intermediate level will provide a formalism for refining specifications. Namely, if

a more efficient solution to a problem is desired, i.e. more efficient than the resulting

probabilistic implementation of a non-probabilistic specification, then one can use the

intermediate calculus for specifying a better probabilistic algorithm, and then prove its

correctness with respect to the original specification.

The probabilistic asynchronous π-calculus is an extension of the asynchronous π-

calculus with a notion of random choice. The operational semantics of the probabilistic

asynchronous π-calculus is based on the probabilistic automata of Segala and Lynch.

The main characteristic of this model is that it distinguishes between probabilistic and

nondeterministic behavior. The first is associated with the random choices of the process,

while the second is related to the arbitrary decisions of an external scheduler. With

respect to other probabilistic process algebras which have been defined in literature (see

for example [54]), this separation is a novelty. One of its advantages is that it allows us

to reason about adverse conditions, i.e. schedulers that try to prevent processes from

achieving their goals. This is fundamental for our goal of implementing the π-calculus,

since we are aiming at an implementation which is correct with respect to adversary

schedulers. Another novelty of our proposal with respect to probabilistic process algebra

is the definition of the parallel operator in a CCS style, as opposed to the SCCS style.

Namely, parallel processes are not forced to proceed simultaneously. Also note that for

general probabilistic automata it is not possible to define the parallel operator ([47]), or

at least, there is no natural definition. In our proposal the parallel operator is defined as

a natural extension of the non-probabilistic case. This can be considered, in our opinion,

another argument for the suitability of our calculus for a distributed implementation.

Based on the probabilistic asynchronous π-calculus, we propose a randomized dis-

tributed encoding of the π-calculus, which requires solving a resource allocation problem
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similar to the one of the generalized dining philosophers. The encoding is robust with

respect to a large class of adversary schedulers: they can make use of all the informa-

tion about the state and history of the system, including the result of the past random

choices of the processes. The only assumption we need is that the scheduler treats the

output action of the asynchronous π-calculus ”properly”, i.e. as a message that should

eventually become available to the reader. Note that the definition of a proper sched-

uler is weaker than the notion of fair scheduler, which requires that any process which

is ready infinitely often will eventually be scheduled for execution. The importance of

considering adversary schedulers is not only theoretical, as argued in [42]: “We allow for

the possibility of an adversary scheduler since we assume that the interaction we describe

[. . .] are only the visible part of an iceberg of complex relations about which we do not

know and that we are not willing to study. We are to assume that the worst may happen,

which is a very sound principle of system design.”. We also regard as a pleasant feature

of our encoding the fact that it does not require the fairness assumption on the scheduler.

Most of the randomized algorithms for coordination of distributed processes do require

fairness, including the one in [42], but the implementations of concurrent programming

languages (for instance Java) usually do not guarantee a fair scheduling policy.

In order to prove the correctness of the encoding we develop an extension of the

notion of testing semantics ([34, 3]) for the probabilistic asynchronous π-calculus. This

semantics is sensitive to divergencies and deadlocks, hence it is “reasonable” in the sense

of [36]. We will show that our encoding is correct in the sense that translated processes

preserve, under any proper adversary, and with probability 1, the may and must condi-

tions with respect to each translated observer. There have been other notions of testing

semantics developed for probabilistic automata or similar systems, see [17, 16, 48], how-

ever, those notions are formalized as orderings among probabilistic processes, and as such

they would not be suitable to formulate the correctness of the encoding, which needs to

be stated as a correspondence between processes of different kind (non-probabilistic and

probabilistic). It is worth noting that we could not use bisimulation, barbed bisimulation,

or coupled simulation either, not even in their weak and asynchronous versions, because

these semantics are on one hand “too concrete” for the kind of translation developed

here, and, on the other hand, they are not sensitive to divergencies.

The interest in considering πpa as target language also lies on the fact that it can

be implemented in a distributed way, i.e. without using centralized control or shared

memory. In fact, like in the asynchronous π-calculus, the output actions are not allowed
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to have a continuation, hence they can be mapped naturally into asynchronous commu-

nication, which is the only form of communication available in a distributed architecture.

We define a uniform implementation of the probabilistic asynchronous π-calculus into

the Java language. The condition of uniformity on the encodings of the π-calculus into

the probabilistic asynchronous π-calculus and of the latter into Java ensure that the

distribution and symmetry are preserved, thus we can argue that our results provide an

approach to the distributed and symmetric implementation of the π-calculus.

Outline of the thesis

The rest of the dissertation is organized as follows. Chapter 2 contains an overview

of the π-calculus and of the asynchronous π-calculus, followed by a sequence of examples

of synchronous and asynchronous communication. Chapter 3 reviews the probabilistic

automata. Chapter 4 presents the probabilistic asynchronous π-calculus (πpa for short)

and shows an example of a distributed problem that can be solved in πpa, namely the

election of a leader in a symmetric network. In Chapter 5 we consider a generalization

of the dining philosophers problem to arbitrary connection topologies, which requires

solving a resource allocation problem similar to the one of encoding the π-calculus with

mixed choice into πpa. In Chapter 6 we show a distributed and randomized encoding

of the π-calculus with mixed choice and we prove the correctness of our encoding with

respect to a probabilistic extension of testing semantics. Chapter 7 contains a distributed

implementation of the probabilistic asynchronous π-calculus into the Java language. In

Chapter 8 we conclude and give possible future directions for the work presented in this

dissertation.
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Chapter 2

The synchronous and the asynchronous π-calculi

We start this chapter by reviewing the definition of the π-calculus with mixed

choice and of the asynchronous π-calculus. We recall both the syntax and the operational

semantics of these calculi and we give a sequence of examples that illustrates mobility

in the π-calculus.

The π-calculus is a theory of mobile systems based on synchronized communi-

cation, in which the exchange of information between two processes is simultaneous.

Synchronous communication is a very effective mechanism but has the disadvantage of

being costly since it requires the partners to synchronize to establish the communication.

Asynchronous communication on the other hand is less costly since the action

of sending a message and the action of receiving it usually happens at different times.

Many mobile systems, especially distributed systems, use forms of asynchronous com-

munication.

The asynchronous π-calculus is a subset of the π-calculus in which the action of

sending a message is a non-blocking operation. The asynchronous π-calculus is one of

the richest paradigms for asynchronous communication in mobile systems that has been

introduced so far. Therefore studying the expressiveness of the asynchronous fragment

of the π-calculus has been of much interest in the recent years.

In the second part of the chapter we review the results regarding the expressive

power of the asynchronous π-calculus compared to the synchronous π-calculus.

2.1 The π-calculus

Many variants of the π-calculus have been proposed. The original version of the

π-calculus is the one given by Milner, Parrow and Walker in [27]. We chose to follow

the variant of the π-calculus given by Davide Sangiorgi in [45]. The main difference with

respect to [27] is the absence of a matching operator, and the replacement of free choice

with a choice of prefixed processes where the prefixes can be input, output or silent

actions. This type of choice is usually called a mixed choice. For this presentation we

found more convenient to use recursion instead of the replication operator. Replication
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is a simple form of recursion and it is well known that the two operators are equivalent

in terms of expressive power ([26], [46]).

Consider a countable set of channel names, x, y, . . ., and a countable set of process

names X, Y, . . .. The set of prefixes, α, β, . . ., and the set of π-calculus processes, P, Q, . . .,

are defined by the following syntax:

Prefixes α ::= x(y) | x̄y | τ

Processes P ::=
∑

i αi.Pi | νxP | P | P | X | recXP

Processes express mobile systems. Channel names can be thought of as names of

communication links and are used by processes to interact. Processes evolve by perform-

ing actions. Prefixes represent the basic actions of processes: x(y) is the input of the

(formal) name y from channel x, x̄y is the output of the name y on channel x, τ stands

for any silent (non-communication) action.

The process
∑

i αi.Pi represents guarded choice and it is usually assumed to be

finite. This process behaves like one or the other of the Pi. We use the abbreviations

0 (inaction) to represent the empty sum, α.P (prefix) to represent sum on one element

only, and α1.P1 + α2.P2 for the binary sum.

The process P1 | P2 consists of P1 and P2 acting in parallel. The components

may act independently or they may synchronize to create a silent action.

The symbol νx is the restriction operator. The process νxP behaves like P except

for two aspects. The first aspect is that the top-level transitions labeled by actions on x

are not allowed, so such actions, performed by components of P , are forced to synchronize

with their matching actions. In other words, the restriction operator allows enforcing

synchronization (and communication) among parallel components of the system. The

second aspect is that the name x is bound by the operator ν, as it is explained below,

so it can be seen as a newly created name, private to P .

Note that communication between components of P along channel x are allowed.

The process recXP represents a process X defined as X
def= P , where P may

contain occurrences of X (recursive definition). We assume that all occurrences of X

in P are prefixed. Recursion is the operator that makes it possible to express infinite

behavior.

We use the following operator precedence for process expressions: prefixing, re-

striction and replication bind more tightly than parallel composition, and prefixing more
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tightly than sum. The parallel composition is left associative, i.e. P0|P1|P2| . . . |Pk

stands for (. . . ((P0|P1)|P2)| . . . |Pk). We use parentheses in all other cases to avoid

ambiguity.

The operators νx and y(x) are x-binders, i.e. in the processes νxP and y(x).P

the occurrences of x in P are considered bounded with scope P . The free names of P ,

i.e. those names which do not occur in the scope of any binder, are denoted by fn(P ).

The alpha-conversion of bounded names formalizes the idea that the names of

bound variables do not matter. More formally, processes P and Q are alpha-convertible

if Q can be obtained from P by a finite number of changes of bound names.

The renaming (or substitution) P [y/x] is defined as the result of replacing all

occurrences of x in P by y, possibly applying alpha-conversion to avoid capture of names

by binders.

The operational semantics is specified via a transition system labeled by actions.

A π-calculus transition P
α−→ Q means that P can evolve into Q, and in doing so

performs the action α.

The actions are given by the following grammar:

Actions µ ::= x(y) | x̄y | x̄(y) | τ

The four kinds of action are explained in the following:

1. x(y) is an input action. The transition P
x(y)−→ Q means that P can receive any

name w on channel x and then evolve into Q[w/y].

2. x̄y is a free output. The transition P
x̄y−→ Q means that P can send the free name

y on channel x

3. x̄(y) is a bound output. The transition P
x̄(y)−→ Q means that P sends a private

name on channel x and (y) is a reference to where this private name occurs. Hence

y is not a free name.

4. τ is the silent action. The transition P
τ−→ Q means that P can evolve into Q,

and in doing so requires no interaction with the environment. This kind of action

arises from processes of the form τ.P or from internal communication.

We have all the actions corresponding to prefixes, plus the bounded output x̄(y).

This is introduced to model scope extrusion, i.e. the result of sending to another process
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a private (ν-bounded) name. The bounded names of an action µ, bn(µ), are defined as

follows: bn(x(y)) = bn(x̄(y)) = {y}; bn(x̄y) = bn(τ) = ∅. Furthermore, we indicate by

n(µ) all the names which occur in µ.

In literature there are two main definitions for the transition system of the π-

calculus, which induce two different semantics: the early and the late bisimulation se-

mantics ([28]). The two differ mainly because of how they mimic the input action. In

an early transition P
xy−→ Q, the action xy records both the name used for receiving,

and the name received. In a late transition P
x(y)−→ Q, z is a placeholder for the name

to be received and not the name itself. In the early bisimulation semantics variables

are instantiated at the time of inferring the input transition. In the late bisimulation

semantics the input actions contain bound objects which become instantiated only when

inferring an internal communication. Here we choose to present the late bisimulation

semantics because it is more refined, hence more challenging for obtaining positive em-

bedding results.

The rules for the late semantics are given in Table 2.1. The symbol ≡ used in Rule

Cong stands for structural congruence, a form of equivalence which identifies “statically”

two processes and which is used to simplify the presentation. We assume this congruence

to satisfy the following:

(i) P ≡ Q if Q can be obtained from P by alpha-renaming, notation P ≡α Q,

(ii) P | 0 ≡ P , P | Q ≡ Q | P , and (P | Q) | R ≡ P | (Q | R),

(iii)
∑

i αi.Pi ≡
∑

i αρ(i).Pρ(i) if ρ is a permutation of indexes,

(iv) recXP ≡ P [recXP/X],

(v) (νxP ) | Q ≡ νx(P | Q) if x 6∈ fn(Q).

2.2 Examples of synchronous communication

Example 2.1. The first example is from [38] and illustrates the interaction between a

server, a client and a printer. The client wishes to use a printer that is controlled by the

server. Initially there is a link a between the server and the printer and a link b between

the server and the client. When the client wants to access the printer, the server sends a

along b. This is represented by b̄a.S. The client receives some link along b and then uses

this link to send data to the printer. This is represented by b(c).c̄d.P . The interaction

described above is illustrated by the following transition:
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Sum
∑

i αi.Pi

αj−→ Pj

Open
P

x̄y−→ P ′

νyP
x̄(y)−→ P ′

x 6= y

Res
P

µ−→ P ′

νyP
µ−→ νyP ′

y 6∈ n(µ)

Par
P

µ−→ P ′

P | Q µ−→ P ′ | Q
bn(µ) ∩ fn(Q) = ∅

Com
P

x̄y−→ P ′ Q
x(z)−→ Q′

P | Q τ−→ P ′ | Q′[y/z]

Close
P

x̄(y)−→ P ′ Q
x(y)−→ Q′

P | Q τ−→ νy(P ′ | Q′)

Cong
P ≡ P ′ P ′ µ−→ Q′ Q′ ≡ Q

P
µ−→ Q

Table 2.1. The late-instantiation transition system of the π-calculus.
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b̄a.S | b(c).c̄d.P
τ−→ S | ād.P

Notice that a represents both the name of the communication link and an object

which is transferred between the server and the client.

The fact that a is a local link between the server and the printer is captured by

(νa)(b̄a.S | R), where R represents the printer. The result of sending the link a along

b to the client is a private link shared by the server, the client and the printer. The

transition in this case is:

(νa)(b̄a.S | R) | b(c).c̄d.P
τ−→ (νa)(S | R | ād.P )

This behavior is called link passing in [27].

Example 2.2. Scope intrusion is one of the basic examples presented in the first paper

on the π-calculus ([27]). In this case there is a link x between P and R. P wishes to pass

this link to Q along a link y that P and Q share. If Q already has a private link named

x that is shared with S, then this link has to be renamed in order to avoid confusion.

For this reason it is said that P intrudes the scope of the private link x between Q and

S. Assuming that P is of form ȳx.P ′ and Q is y(z).Q′, then the previous situation is

represented by the transition

ȳx.P ′ | R | (νx)(y(z).Q′ | S) τ−→ P ′ | R | (νx′)(Q” | S′)
where Q” is Q′{x′/x}{x/z} and S′ is S{x′/x}.

Example 2.3. Another example showed in [27] is scope extrusion. Consider P and Q

of the same form as in the previous example. P has a private link x to R that wishes to

pass along its link y to Q. Q has no link called x. By exporting the private link x to Q,

P extrudes the scope of this link. The following transition describes this situation:

(νx)(ȳx.P ′ | R) | y(z).Q′ τ−→ (νx)(P ′ | R | Q”)

where Q” is Q′{x/z}.

It can be noticed from the previous examples that a communication occurs be-

tween two parallel processes when one sends a name on a particular channel and the

other one is waiting for a name along the same channel. The output operation is block-

ing in the sense that an output guard cannot be executed unless an input action is

simultaneously executed. The following transition is a typical example of synchronous

communication:

(x̄v.S | x(y).R) | τ−→ (S | R{v/y})
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2.3 The asynchronous π-calculus

The asynchronous π-calculus, as proposed by Boudol [5] and, independently, by

Honda and Tokoro [14], is a subset of the π-calculus which contains no explicit operators

for choice and output prefix.

We consider the definition of the asynchronous π-calculus given in [1], which differs

from the original ones ([14, 5]) for the presence of a non-output choice construct, namely

a summation of processes prefixed with τ or input actions. Actually, [1] considers a

binary non-output sum operator instead of a n-ary one, but under the assumption that

the binary sum is commutative and associative, the two definitions coincide. Thanks to

[32], we know that this construct does not increase the expressive power. In [32] it is

shown that the asynchronous π-calculus with input-guarded choice can be encoded into

its choice-free fragment. It is easy to extend the encoding to include also τ prefixes.

The asynchronous π-calculus (πa-calculus for short) is defined by the following

grammar:

Non-output prefixes α ::= x(y) | τ

Processes P ::= x̄y | ∑
i αi.Pi | νxP | P | P | X | recXP

The difference with respect to the π-calculus is that
∑

i αi.Pi is restricted to non-

output prefixes only, and output prefixes are replaced by output-action processes. The

asynchronous communication is captured by preventing output prefixes from being part

of guarded choices. As noted in [46], terms such as x̄y + a(z).Q are excluded. The

reason is that such a process is capable of receiving via a, and if this happens, then the

sending of y via x is rendered void. In other words, there is no correspondence between

a datum that has been sent but not received and the appearance of an output-action

process containing the datum.

The rule for the output-action process is described in Table 2.2, where 0 stands

again for inaction. All the rules for the other operators are the same as those in Table 2.1.

The reason why this calculus is considered a paradigm for asynchronous commu-

nication is that there is no primitive output prefix, hence no primitive notion of contin-

uation after the execution of an output action. While the communication between two

partners in the (synchronous) π-calculus is usually understood as simultaneous, in the

asynchronous π-calculus the action of sending a message and the action of receiving it do
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Out x̄y
x̄y−→ 0

Table 2.2. The output rule for the πa-calculus.

not have to occur at the same time. In other words, a process executing an output action

will not be able to detect when the corresponding input action is actually executed.

Note that the πa-calculus is a proper subset of the π-calculus. The process x̄y, in

fact, could be equivalently replaced by x̄y.0.

2.4 Examples of asynchronous communication

In the asynchronous πcalculus output processes do not carry continuations. A

name z is simply sent along a channel x and can be received by a process x(y).P acting

in parallel. The result of this interaction is P{z/y}. Note that the output action x̄z does

not suspend the sender and that the underlying model of interaction among processes

is the same as in the π-calculus, namely the simultaneous execution of complementary

actions or also known as handshaking. The handshaking between x̄z and x(y).P can be

seen as the moment in which the message is received.

Example 2.4. (Asynchronous communication) An example of a simple reduction in πa

is illustrated by the following transition:

x(v).ȳv | y(z).P | x̄w
τ−→ ȳw | y(z).P τ−→ P

An asynchronous process that nondeterministically chooses to send x̄z or to re-

ceive at x(y).P is written τ.x̄z + x(y).P .

For the next example consider the process P = (νx)(ȳx) | y(z).z̄x. The following

reductions can be applied to P :

P
τ−→ (νx′)(ȳx′ | y(z).z̄x) τ−→ (νx′)x̄′x

An α-conversion was applied to P in order to avoid capture. Also note that the

scope of x′ is extruded.
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The next example shows that some semantic sequentialization of output actions

can be achieved using private names, even if output prefixes are not allowed ([46]).

Consider the following process:

(νyνz)(x̄y|ȳz|z̄a|R), where y, z /∈ fn(R).

The process R can proceed, but the three output processes can proceed only from

left to right, i.e. in the order x̄y, ȳz, z̄a.

2.5 Comparing the expressive power of the synchronous and the asyn-

chronous π-calculus

As we mentioned before, the π-calculus is a very expressive specification language

for concurrent programming, but difficult to implement in a distributed environment.

Certain mechanisms of the π-calculus, in fact, require solving a problem of distributed

consensus. The asynchronous π-calculus, on the other hand, is more suitable for a

distributed implementation. Therefor, it is naturally to ask whether the π-calculus can

be encoded in the asynchronous π-calculus. It is well known that the asynchronous

communication can be simulated with synchronous mechanisms (see for example [15]).

In the following we briefly review some of the variants of the π-calculus and the

encodings and separation results which have been investigated in the literature so far.

A very good summary of the π-calculus hierarchy is shown in [35]. A more exhaustive

overview of the variants of the π-calculus and of their expressive power is presented in

[46].

• the π-calculus with mixed choice is a subset of the full π-calculus where the choice

operator can occur only among prefixed processes. The mixed choice terminology

is used to emphasize the fact that we can have input, output and silent guards

in the same guarded choice. Another characteristic of the π-calculus with mixed

choice is that the match operator is excluded.

• the π-calculus with separate choice is a subset of the π-calculus with mixed choice

where the prefixes in a choice are all of the same kind. More specifically, in a

guarded choice all prefixes which are not τ must be either input or output actions.

• the π-calculus with input choice is a subset of the π-calculus with separate choice

where only input actions can be used in a choice.

• the π-calculus without choice excludes the choice operator, but has output prefixes.
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• the asynchronous π-calculus is the subset of the π-calculus without choice and

without output prefixes.

Honda and Tokoro, and independently Boudol, have shown that the output prefix

can be simulated ([14], [5]) in the asynchronous π-calculus. Boudol used a rendez-vous

mechanism to define an encoding of the output prefix in the asynchronous π-calculus.

In this technique the receiver sends an acknowledgement to the sender when it receives

the message, and the sender waits until it receives the acknowledgement. Honda and

Tokoro proposed a fully compositional encoding in which the receiver is responsible for

synchronizing with the sender.

More recently, Nestmann and Pierce presented the encoding of the π-calculus

with input choice ([32]) into its choice-free fragment. This result was a significant step

in the evolution of the asynchronous π-calculus since the input guarded choice mecha-

nism is often used for programming concurrent systems. Moreover, since the encoding

of Nestmann and Pierce, several authors have included the input choice in the definition

of the asynchronous π-calculus (see for example [1] and [4]). The encoding of the in-

put choice consists in running a mutual exclusion protocol which associates a lock with

the parallel composition of its branches. The processes corresponding to branches con-

currently try to acquire the lock and only the first process that is able to get the lock

wins the competition and proceeds with its continuation. All the other branches abort

their continuations. The encoding is divergence free and is fully abstract with respect to

coupled simulation, which is an equivalence that does not require bisimilarity of internal

branching decisions.

In [36] it has been shown that the π-calculus with mixed choice is strictly more

expressive than the asynchronous π-calculus, in the sense that it is not possible to en-

code the first into the latter in a uniform way while preserving a reasonable semantics.

Uniform means homomorphic with respect to the parallel and the renaming operators,

and reasonable means sensitive to the capability of achieving success in all possible com-

putations. In other words a reasonable semantics distinguishes two processes P and Q

whenever in some computation of P the actions on certain intended channels are dif-

ferent from those in any computation of Q. The homomorphic behavior of the parallel

operator ensures that two parallel processes are translated into two parallel processes,

i.e. [[P |Q]] = [[P ]]|[[Q]]. In this way no coordinator can be added by the translation and

therefore the degree of distribution of the processes is preserved by the encoding. The

renaming preservation ensures that the translation does not depend on channel names
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and therefore it preserves the portability of processes across the nodes of a distributed

network.

The separation result is essentially based on the fact that in the π-calculus we can

define an algorithm for distributed consensus, while this is not possible with the asyn-

chronous π-calculus. A very simple example intuitively shows this fact. Consider two

symmetric processes P and Q, where P = x̄z.P1 + yv.P2 and Q = xp.Q1 + ȳq.Q2. We

can easily enforce communication on x and y due to the use of the mixed choice mech-

anism, namely the parallel composition P |Q becomes one of the asymmetric processes

P1|Q1[z/p] or P2[q/v]|Q2. However, this behavior cannot be simulated in the asyn-

chronous π-calculus. Processes P and Q have to agree on the communication channel (x

or y) by breaking the initial symmetry, but because both P and Q behave confluently

the symmetry of P |Q is preserved under computation and no leader can be elected. The

confluence property for a process P means that if P can make two transitions P
x̄z−→ P1

and P
xv−→ P2, then there exists P ′ such that P1

xv−→ P ′ and P2
x̄z−→ P ′. Figure 2.1

shows the behavior of a confluent process P .

P’

P

P 1 P2

xz xv

xv xz

Fig. 2.1. The confluence property for a process P
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Another remarkable result was proved by Nestmann in [29]. Nestmann has been

shown that the additional expressive power is due exactly to the mixed choice construct

since the π-calculus with separate choices can be encoded in the asynchronous π-calculus.

Nestmann’s encoding of separate choices is an extension of the encoding of input guarded

choice of [32]. The encoding relies on two locks, a local lock that is associated with an

input branch and is always tested first, and a remote lock that corresponds to an output

branch and is tested only if the outcome of testing the local lock is positive. The encoding

also uses an acknowledgement channel for sending messages when both locks were tested

positively. Nestmann’s encoding of separate choice is deadlock and divergence free.

Figure 2.2 summarizes the previous encodings and impossibility result.
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π− calculus with mixed choice

π− calculusAsynchronous

π− calculus with separate choice

π− calculus with input choice π− calculus without choice

Palamidessi 97

(no choice, no output prefix)

Nestmann 97

(no output prefix) (output prefix)

Identity encoding Identity encoding

Honda−Tokoro 91,Boudol 92Nestmann−Pierce 96

Fig. 2.2. The π-calculus hierarchy. The dashed line represents an identity encoding.
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Chapter 3

Probabilistic automata

Probabilistic automata have been proposed in [49, 47]. The characteristic of

this model is that it distinguishes between nondeterminism and probabilistic choice.

The nondeterminism refers to the choices made by an external agent. Schedulers are

examples of such agents. The probabilistic choice is a choice made internally by the

process, and not controlled by the external agent. In this chapter we recall the definitions

of probabilistic automata, executions, adversaries and probabilistic statements. The

presentation follows [49], [47], to which the reader is referred for more details. The main

difference is that we consider only discrete probabilistic spaces, and that the concept of

deadlock is simply a node with no out-transitions.

Probabilistic automata describe systems that can evolve according to some prob-

ability distribution. Flipping a coin is an example of such system.

Definition 3.1. A discrete probabilistic space is a pair (X, pb) where X is a set and pb

is a function pb : X → (0, 1] such that
∑

x∈X pb(x) = 1.

Given a set Y , we define

Prob(Y ) = {(X, pb) | X ⊆ Y and (X, pb) is a discrete probabilistic space}.

Definition 3.2. Given a set of states S and a set of actions A, a probabilistic automa-

ton on S and A is a triple (S, T , s0) where s0 ∈ S (initial state) and T ⊆ S×Prob(A×S).

We call the elements of T transition groups (in [49] they are called steps). The

idea behind this model is that the choice between two different groups is made nonde-

terministically and possibly controlled by an external agent, e.g. a scheduler, while the

transition within the same group is chosen probabilistically and is controlled internally
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(e.g. by a probabilistic choice operator). In [49] each transition may contain a special

symbol δ, representing the situations in which the system deadlocks. We omit the symbol

δ in this presentation, and we represent deadlock as a node with no out-transitions.

If at most one transition group is allowed for each state, the automaton is called

fully probabilistic.

Example 3.1. Figures 3.1 and 3.2 give examples of a probabilistic and a fully proba-

bilistic automaton, respectively. The transition groups of the probabilistic automaton

are labeled by I, II, ..., VI.

s1

s6 s s

I
I II

II
II

III IV V V VI

s4
5

c 1

d 1

b 1/2

a 1/2 b 1

a 1/2 b 1/2 a 1/3 a 1/2

c 1/6

3s2s s

7 8

Fig. 3.1. Example of a probabilistic automaton M .

In [49] it is remarked that this notion of automaton subsumes and extends both

the reactive and generative models of probabilistic processes ([54]). In particular, the

generative model corresponds to the notion of fully probabilistic automaton.

Given a probabilistic automaton M = (S, T , s0), define tree(M) as the tree ob-

tained by unfolding the transition system, i.e. the tree with a root n0 labeled by s0, and

such that, for each node n, if s ∈ S is the label of n, then for each (s, (X, pb)) ∈ T , and
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II II

I II

III

b 1/2 a 1/2 b 1

a 1/2 c 1/4 a 1/4

s6s5 s7

s1

2s 3 s4s

Fig. 3.2. A fully probabilistic automaton

for each (µ, s′) ∈ X, there is a node n′ child of n labeled by s′, and the arc from n to n′

is labeled by µ and pb(µ, s′).
We will denote by nodes(M) the set of nodes in tree(M), and by state(n) the

state labeling a node n.

Example 3.2. Figure 3.3 represents the tree obtained from the probabilistic automaton

M of Figure 3.1.

A trace α in a probabilistic automaton M is any path in tree(M). We are only

interested in finite traces, and we use the notation lnode(α) for the last node of α and

fnode(α) for the first node of α. If α1 is n0
µ0−→
p0

n1 . . .
µk−1−→
pk−1

nk and α2 is nk
µk−→
pk

nk+1 . . .
µl−→
pl

nl, then the trace α1 ∩ α2 = n0
µ0−→
p0

n1 . . .
µk−1−→
pk−1

nk
µk−→
pk

nk+1 . . .
µl−→
pl

nl

represents the concatenation of the traces α1 and α2. We denote by traces(M) the set

of finite traces of M .

We define now the notion of execution of an automaton under a scheduler, by

adapting and simplifying the corresponding notion given in [49]. A scheduler can be

seen as a function which solves the nondeterminism of the automaton by selecting, at

each moment of the computation, a transition group among all the ones allowed in the

present state. Schedulers are sometimes called adversaries, thus conveying the idea of
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I II
I II

II

V V VI

IV

III

a

1/2

b
1/2

a 1/3
1/2

a

1/6

c

c 1 b 1/2 a 1/2 b 1

d 1

s1

s2 s3
s4 s5 s5

s6

s7 s s8

s2

n1

n2 n3
n4 n5 n6

n7

n n9 n10

n11

8 7

Fig. 3.3. The tree obtained from the probabilistic automaton M

an external entity playing “against” the process. A process is robust with respect to

a certain class of adversaries if it gives the intended result for each possible scheduling

imposed by an adversary in the class. Clearly, the reliability of an algorithm depends

on how “smart” the adversaries of this class can be. We will assume that an adversary

can decide the next transition group depending not only on the current state, but also

on the whole history of the computation till that moment, including the random choices

made by the automaton.

Definition 3.3. An adversary for M is a function that takes a finite trace α in M

and returns a transition group among those which are allowed in state(lnode(α)). More

formally, ζ : traces(M) → Prob(A×S) such that ζ(α) = (X, pb) implies (state(lnode(α)),

(X, pb)) ∈ T .

Definition 3.4. The execution tree of an automaton M = (S, T , s0) under an adversary

ζ, denoted by etree(M, ζ), is the tree obtained from tree(M) by pruning all the arcs
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corresponding to transitions which are not in the group selected by ζ. More formally,

etree(M, ζ) is a fully probabilistic automaton (S′, T ′, n0), where S′ ⊆ nodes(M), n0 is

the root of tree(M), and (n, (X ′, pb′)) ∈ T ′ iff X ′ = {(µ, n′) | (µ, state(n′)) ∈ X} and

pb′(µ, n′) = pb(µ, state(n′)), where (X, pb) = ζ(n).

Example 3.3. Figure 3.4 represents the execution tree of the automaton M of Fig-

ure 3.1, under an adversary ζ.

II
II

II

V V

a 1/3
1/2

a

1/6

c

b 1/2 a 1/2

s1

s4 s5 s5

s7 s7

n1

n4 n5 6

n8 n9

n

Fig. 3.4. etree(M, ζ), where M is the probabilistic automaton M of Figure 3.1, and
(the significant part of) ζ is defined by ζ(n1) = II, ζ(n4) = V

An execution fragment ξ is any path (finite or infinite) from the root of etree(M, ζ).

The notation ξ ≤ ξ′ means that ξ is a prefix of ξ′. If ξ is n0
µ0−→
p0

n1
µ1−→
p1

n2
µ2−→
p2

. . ., the

probability of ξ is defined as pb(ξ) =
∏

i pi. If ξ is maximal, then it is called execution.

We denote by exec(M, ζ) the set of all executions in etree(M, ζ)

We define now a probability on certain sets of executions, following a standard con-

struction of Measure Theory. Given an execution fragment ξ, let Cξ = {ξ′ ∈ exec(M, ζ) |
ξ ≤ ξ′} (cone with prefix ξ). Define pb(Cξ) = pb(ξ). Let {Ci}i∈I be a countable set
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of disjoint cones (i.e. I is countable, and ∀i, j. i 6= j ⇒ Ci ∩ Cj = ∅). Then define

pb(
⋃

i∈I Ci) =
∑

i∈I pb(Ci). It is possible to show that pb is well defined, i.e. two

countable sets of disjoint cones with the same union produce the same result for pb. We

can also define the probability of an empty set of executions as 0, and the probability

of the complement of a certain set of executions as the complement with respect to 1 of

the probability of the set. The closure of the cones with respect to the empty set, the

countable union, and the complementation generates what in Measure Theory is known

as a σ-field.

Progress statements

Progress statements have been introduced in [23, 47] in order to study the prop-

erties of probabilistic automata. Progress statements are also called probabilistic state-

ments and are generally used for the analysis of randomized algorithms. A progress

statement is denoted by S
A−→
p

S′, where S and S′ are sets of states, p is a probability,

and A is a class of adversaries. Its meaning is that starting from any state in S, under

any adversary in A, a state in S′ is reached with probability at least p.

Progress statements can be combined to obtain more complex progress statements.

This is a very important property since it allows the decomposition of a complex problem

into simpler problems. The following properties of progress statement, proved in [23, 47],

will be used in this presentation.

Lemma 3.1 (Union). If S1
A−→
p1

S′1 and S2
A−→
p2

S′2, then S1 ∪ S2
A−→
p

S′1 ∪ S′2 with

p = min{p1, p2}.

A very useful property is the concatenation of progress statements. This property

holds for adversaries whose power is not reduced if a prefix of the past history of a trace

is not known.

Definition 3.5. A class of adversaries A for a probabilistic automaton M is finite his-

tory insensitive iff for each adversary ζ of A and each trace α of M there is an adversary

ζ′ of M such that for each trace α′ of M with fstate(α′) = lstate(α), ζ′(α′) = ζ(α∩α′).
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Note that this definition corresponds exactly to the definition of execution closed

adversary schema given in [23].

Lemma 3.2 (Concatenation). Let A be a finite history insensitive class of adver-

saries. If S1
A−→
p1

S2 and S2
A−→
p2

S3, then S1
A−→

p1p2
S3.

The next property shows how progress with probability 1 can be derived from

a progress statement with probability p such that 0 < p < 1. The statement

S1 unless S2 is used, where S1 is a set of states and S2 is either a set of states only or

a set of actions only. The statement is true for a probabilistic automaton M iff, once in

S1, the probabilistic automaton M remains in S1 until the condition expressed by S2 is

satisfied. More formally, for each transition (s, P ) of M , if s ∈ S1 − S2 then for each

(a, s′) ∈ Prob(A× S) either a ∈ S2 or s′ ∈ S1 ∪ S2.

Lemma 3.3 (Progress with probability 1). If S1
F−→
p

S2 with p > 0, and S1 unless S2,

then S1
A−→
1

S2.

Progress statements are used in the context of probabilistic automata to prove

properties of randomized distributed algorithms. This method provides a structured and

formal way to analyze numerous algorithms. To illustrate its efficiency, the method has

been applied in [23, 47] to prove the correctness of the Lehmann and Rabin’s Dinning

Philosophers Algorithm.
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Chapter 4

The probabilistic asynchronous π-calculus

In this chapter, we describe the probabilistic asynchronous π-calculus, an exten-

sion of the asynchronous π-calculus enhanced with a notion of random choice. The model

is based on the probabilistic automata of Segala and Lynch ([49, 47]). An overview of

the probabilistic automata theory is presented in Chapter 3.

We start the chapter with the definition of the probabilistic asynchronous π-

calculus, πpa for short, which is followed by several examples of communication in πpa,

with particular focus on synchronization and interleaving.

Next we show an example of a distributed problem that can be solved with the

probabilistic asynchronous π-calculus, namely the election of a leader in a symmetric

network. This problem cannot be solved with the asynchronous π-calculus as it has been

proved in [36]. We propose an algorithm for the solution of this problem, and we prove

that it is correct, i.e. that the leader will eventually be elected, with probability 1, under

a large class of adversary schedulers. The only assumption is that the scheduler treats

the output action of the asynchronous π-calculus ”properly”, i.e. an output message

eventually becomes available to the input process. Our algorithm is reminiscent of the

algorithm used in [42] for solving the dining philosophers problem, but in our case we do

not need the fairness assumption. Also, the fact that we give the solution in a language

provided with a rigorous operational semantics allows us to give a more formal proof of

correctness.

4.1 Syntax and operational semantics

In this section we introduce the probabilistic asynchronous π-calculus and we give

its operational semantics in terms of probabilistic automata. We define the operational

semantics such that it distinguishes between probabilistic choice, made internally by the

process, and nondeterministic choice, made externally by an adversary scheduler. This

distinction will allow us to reason about the probabilistic correctness of algorithms under

certain schedulers.
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As argued in [11] we propose the probabilistic asynchronous π-calculus as a

paradigm for the specification of distributed algorithms. The probabilistic asynchronous

π-calculus increases the expressive power of the asynchronous π-calculus, which is suit-

able for a distributed implementation but is rather weak for solving distributed problems

([36])

The πpa-calculus is obtained from the asynchronous π-calculus by replacing
∑

i αi.Pi

with the following probabilistic choice operator

∑

i

piαi.Pi

where the pi’s represents positive probabilities, i.e. they satisfy pi ∈ (0, 1] and
∑

i pi = 1,

and the αi’s are input or silent prefixes.

In order to give the formal definition of the probabilistic model for πpa, we find it

convenient to introduce the following notation for representing transition groups: given

a probabilistic automaton (S, T , s0) and s ∈ S, we write

s { µi−→
pi

si | i ∈ I}

iff (s, ({(µi, si) | i ∈ I}, pb)) ∈ T and ∀i ∈ I pi = pb(µi, si), where I is an index set.

When I is not relevant, we will use the simpler notation s { µi−→
pi

si}i. We will also use

the notation s { µi−→
pi

si}i:φ(i), where φ(i) is a logical formula depending on i, for the set

s { µi−→
pi

si | i ∈ I and φ(i)}.
The operational semantics of a πpa process P is defined as a probabilistic au-

tomaton whose states are the processes reachable from P and the T relation is defined

by the rules in Table 4.1. In order to keep the presentation simple, we impose some

restrictions on the syntax of terms (see the caption of Table 4.1). In Appendix A we

give an equivalent definition of the operational semantics without these restrictions.

The Sum rule models the behavior of a choice process. Note that all possible tran-

sitions belong to the same group, meaning that the transition is chosen probabilistically

by the process itself. Res models restriction on channel y: only the actions on channels

different from y can be performed and possibly synchronize with an external process.

The probability is redistributed among these actions. Par represents the interleaving of
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Sum
∑

i piαi.Pi {
αi−→
pi

Pi}i

Out x̄y { x̄y−→
1

0}

Open
P { x̄y−→

1
P ′}

νyP {x̄(y)−→
1

P ′}
x 6= y

Res

P { µi−→
pi

Pi}i
νyP { µi−→

p′
i

νyPi}i:y 6∈fn(µi)

∃i. y 6∈ fn(µi) and

∀i. p′
i
= pi/

∑
j:y 6∈fn(µj)

pj

Par

P { µi−→
pi

Pi}i
P | Q { µi−→

pi
Pi | Q}i

Com

P { x̄y−→
1

P ′} Q { µi−→
pi

Qi}i
P | Q { τ−→

pi
P ′ | Qi[y/zi]}i:µi=x(zi)

∪ { µi−→
pi

P | Qi}i:µi 6=x(zi)

Close

P {x̄(y)−→
1

P ′} Q { µi−→
pi

Qi}i
P | Q { τ−→

pi
νy(P ′ | Qi[y/zi])}i:µi=x(zi)

∪ { µi−→
pi

P | Qi}i:µi 6=x(zi)

Cong

P ≡ P ′ P ′ { µi−→
pi

Q′
i
}i ∀i. Q′

i
≡ Qi

P { µi−→
pi

Qi}i

Table 4.1. The late-instantiation probabilistic transition system of the πpa-calculus. In
Sum we assume that all branches are different, namely, if i 6= j, then either αi 6= αj ,
or Pi 6≡ Pj . Furthermore, in Res and Par we assume that all bounded variables are
distinct from each other, and from the free variables.
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parallel processes. All the transitions of the processes involved are made possible, and

they are kept separated in the original groups. In this way we model the fact that the

selection of the process for the next computation step is determined by a scheduler. In

fact, choosing a group corresponds to choosing a process. Com models communication

by handshaking. The output action synchronizes with all matching input actions of a

partner, with the same probability of the input action. The other possible transitions of

the partner are kept with the original probability as well. Close is analogous to Com,

the only difference is that the name being transmitted is private to the sender. Open

works in combination with Close like in the standard (asynchronous) π-calculus. The

other rules, Out and Cong, should be self-explanatory.

Note that the parallel operator is associative. This property can be easily shown

by case analysis.

Proposition 4.1. For every process P , Q and R, the probabilistic automata of P | (Q |

R) and of (P | Q) | R are isomorphic, in the sense that they differ only for the name of

the states (i.e. the syntactic structure of the processes).

We conclude this section with a discussion about the design choices of πpa.

4.1.1 The rationale behind the design of πpa

In defining the rules of the operational semantics of πpa we felt there was only

one natural choice, with the exception of the rules Com and Close. For them we could

have given a different definition, with respect to which the parallel operator would still

be associative.

The alternative definition we had considered for Com was:

Com′
P { x̄y−→

1
P ′} Q { µi−→

pi
Qi}i

P | Q { τ−→
p′
i

P ′ | Qi}i:µi=x(y)

∃i. µi = x(y) and

∀i. p′
i
= pi/

∑
j:µj=x(y) pj

and similarly for Close.
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The difference between Com and Com′ is that the latter forces the process per-

forming the input action (Q) to perform only those actions that are compatible with the

output action of the partner (P ).

At first Com′ seemed to be a reasonable rule. At a deeper analysis, however, we

discovered that Com′ imposes certain restrictions on the schedulers that, in a distributed

setting, would be rather unnatural. In fact, the natural way of implementing the πa com-

munication in a distributed setting is by representing the input and the output partners

as processes sharing a common channel. When the sender wishes to communicate, it

puts a message in the channel. When the receiver wishes to communicate, it tests the

channel to see if there is a message, and, in the positive case, it retrieves it. In case the

receiver has a choice guarded by input actions on different channels, the scheduler can

influence this choice by activating certain senders instead of others. However, if more

than one sender has been activated, i.e. more than one channel contains data at the

moment in which the receiver is activated, then it will be the receiver which decides

internally which channel to select. Com models exactly this situation. Note that the

scheduler can influence the choices of the receiver by selecting certain outputs to be

premises in Com, and delaying the others by using Par.

With Com′, on the other hand, when an input-guarded choice is executed, the

choice of the channel is determined by the scheduler. Thus Com′ models the assumption

that the scheduler can only activate (at most) one sender before the next activation of a

receiver.

The following example illustrates the difference between Com and Com′.

Example 4.1. Consider the processes P1 = x̄1y, P2 = x̄2z, Q = 1/3 x1(y).Q1 +

2/3 x2(y).Q2, and define R = (νx1)(νx2)(P1 | P2 | Q). Under Com, the transition

groups starting from R are

R { τ−→
1/3

R1,
τ−→

2/3
R2} R { τ−→

1
R1} R { τ−→

1
R2}

where R1 = (νx1)(νx2)(P2 | Q1) and R2 = (νx1)(νx2)(P1 | Q2). The first group

corresponds to the possibility that both x̄1 and x̄2 are available for input when Q is
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scheduled for execution. The other groups correspond to the availability of only x̄1 and

only x̄2 respectively.

Under Com′, on the other hand, the only possible transition groups are

R { τ−→
1

R1} R { τ−→
1

R2}

Note that, in both cases, the only possible transitions are those labeled with τ , because x̄1

and x̄2 are restricted at the top level.

4.2 Examples of synchronization and interleaving in πpa

In this section we will present some examples of processes in πpa, with particular

focus on synchronization and interleaving.

Example 4.2. Consider the processes P = µX (1/2 x(y).0 + 1/2 τ.X), Q = x̄y and

define R = P | Q. The transition groups starting from R are:

R {x(y)−→
1/2

Q ,
τ−→

1/2
R} R { τ−→

1/2
0 ,

τ−→
1/2

R} R { x̄y−→
1

P}

Figure 4.1 illustrates the probabilistic automaton corresponding to R. The above transi-

tion groups are labeled by I, II and III respectively.

Example 4.3. Consider the processes P and Q of example 4.2 and define R = (νx)(P | Q).

In this case the transition groups starting from R are:

R { τ−→
1

R} R { τ−→
1/2

0 ,
τ−→

1/2
R}
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I

II II

IV V V
Q

R

0

P

τ
1/2

x(y)

1/2 τ 1/2 τ 1/2

xy

1/2

x(y)

1/2 τ

xy

1

IIII

1

Fig. 4.1. The probabilistic automaton of Example 4.2

Figure 4.2 illustrates the probabilistic automaton corresponding to this new definition of

R. The above transition groups are labeled by I and II respectively.

Example 4.4. This example shows that the expansion law does not hold in πpa. This

should be no surprise, since the choices associated to the parallel operator and to the

sum, in πpa, have a different nature: the parallel operator gives rise to nondeterministic

choices of the scheduler, while the sum gives rise to probabilistic choices of the process.

Consider the processes R1 = x(z).P | y(z).Q and R2 = p x(z).(P | y(z).Q)+ (1−

p) y(z).(x(z).P | Q). The transition groups starting from R1 are:

R1 {
x(z)−→

1
P | y(z).Q} R1 {

y(z)−→
1

x(z).P | Q}
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I

1

1/2

τ
τ

τ
1/2

II

II

0

R

Fig. 4.2. The probabilistic automaton of Example 4.3

On the other hand, there is only one transition group starting from R2, namely:

R2 {
x(z)−→

p
P | y(z).Q ,

y(z)−→
1−p

x(z).P | Q}

Figure 4.3 illustrates the probabilistic automata corresponding to R1 and R2.

4.3 Solving the electoral problem in πpa

In [36] it has been proved that, in certain networks, it is not possible to solve the

leader election problem by using the asynchronous π-calculus. The problem consists in

ensuring that all processes will reach an agreement (elect a leader) in finite time. One

example of such network is the system consisting of two symmetric nodes P0 and P1
connected by two internal channels x0 and x1 (see Figure 4.4).

In this section we will show that it is possible to solve the leader election problem

for the above network by using the πpa-calculus. Following [36], we will assume that the

processes communicate their decision to the “external word” by using channels o0 and

o1.

The reason why this problem cannot be solved with the asynchronous π-calculus

is that a network with a leader is not symmetric, and the asynchronous π-calculus is not
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1

III

1-p
P | y(z).Q

P | Q

2R

y(z)

I II

1

P | Q

x(z)y(z)

III IV
x(z).P | Q

1 1
x(z) y(z)

R 1

P | y(z).Q

I I

1 1 x(z)y(z)

II
x(z).P | Q

p
x(z)

Fig. 4.3. The probabilistic automata R1 and R2 of Example 4.4

able to force the initial symmetry to break. Suppose for example that P0 would elect

itself as the leader after performing a certain sequence of actions. By symmetry, and

because of lack of synchronous communication, the same actions may be performed by

P1. Therefore P1 would elect itself as leader, which means that no agreement has been

reached.

We propose a solution based on the idea of breaking the symmetry by repeating

again and again certain random choices, until this goal has been achieved. The difficult

point is to ensure that it will be achieved with probability 1 under every proper scheduler.

Our algorithm works as follows. Each process performs an output on its channel

and, in parallel, tries to perform an input on both channels. If it succeeds, then it declares

itself to be the leader. If none of the processes succeeds, it is because both of them

performed exactly one input (thus reciprocally preventing the other from performing the

second input). This might occur because the inputs can be performed only sequentially1.

In this case, the processes have to try again. The algorithm is illustrated in Table 4.2.

In the algorithm, the selection of the first input is controlled by each process

with a probabilistic blind choice, i.e. a choice whose branches are prefixed by a silent

(τ) action. This means that the process commits to the choice of the channel before

knowing whether it is available. It can be proved that this commitment is essential for

1In the πpa-calculi and in most process algebra there is no primitive for simultaneous input
action. Nestmann has proposed in [30] the addition of such construct as a way of enhancing the
expressive power of the asynchronous π-calculus. Clearly, with this addition, the solution to the
electoral problem would be immediate.
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P1

0

P0

x

x1

oo0 1

Fig. 4.4. A symmetric network P = νx0 νx1(P0 | P1). The restriction on x0, x1 is
made in order to enforce synchronization.

ensuring that the leader will be elected with probability 1 under every possible adversary

scheduler. The distribution of the probabilities, on the contrary, is not essential. This

distribution however affects the efficiency (i.e. how soon the synchronization protocol

converges). It can be shown that it is better to split the probability as evenly as possible

(hence 1/2 and 1/2).

After the first input is performed, a process tries to perform the second input.

What we would need at this point is a priority choice, i.e. a construct that selects

the first branch if the prefix is enabled, and selects the second branch otherwise. With

this construct the process would perform the input on the other channel when it is

available, and backtrack to the initial situation otherwise. Since such construct does not

exists in the π-calculi, we use probabilities as a way of approximating it. The symbol ε

represents a small positive number. Thus we do not guarantee that the first branch will

be selected for sure when the prefix is enabled, but we guarantee that it will be selected

with probability close to 1. Of course, the smallest ε is, the more efficient the algorithm

is.

When a process, say P0, succeeds to perform both inputs, then it declares itself

to be the leader. It also notifies this decision to the other process. For the notification

we could use a different channel, or we may use the same channel, provided that we have

a way to communicate that the output on such channel has now a different meaning.

We follow this second approach, and we use boolean values t and f for messages. We

stipulate that t means that the leader has not been decided yet, while f means that it has
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Pi = x̄i〈t〉
| recX ( 1/2 τ.xi(b). if b

then ( (1− ε) xi⊕1(b).(ōi〈i〉 | x̄i〈f〉 | x̄i⊕1〈f〉)
+

ε τ.(x̄i〈t〉 | X))

else ōi〈i⊕ 1〉
+

1/2 τ.xi⊕1(b). if b

then ( (1− ε) xi(b).(ōi〈i〉 | x̄i〈f〉 | x̄i⊕1〈f〉)
+

ε τ.(x̄i⊕1〈t〉 | X))

else ōi〈i⊕ 1〉 )

Table 4.2. A πpa solution for the electoral problem in the symmetric network of Fig-
ure 4.4. Here i ∈ {0, 1} and ⊕ is the sum modulo 2.
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been decided. Notice that the symmetry is broken exactly when one process succeeds in

performing both inputs.

In the algorithm we make use of the if-then-else construct, which is defined by

the structural rules

if t then P else Q ≡ P if f then P else Q ≡ Q

As discussed in [32], these features (booleans and if-then-else) can be translated into the

asynchronous π-calculus, and therefore in πpa.

4.3.1 Correctness of the algorithm

We prove now that the algorithm is correct, namely that the probability that

a leader is eventually elected is 1 under every proper scheduler. First of all, we need

to define the notion of proper scheduler. Clearly, we wish the algorithm to be correct

with respect to a class of adversaries that is as large as possible. Yet, we cannot allow

just any adversary. The problem is related to the output actions: a malicious adversary

that never schedules x̄i〈t〉 or x̄i⊕1〈t〉 in the definition of Pi in Table 4.2 will make it

impossible for processes to get the lock and therefore will force them to loop forever.

In the intended meaning of the asynchronous π-calculus, however, these actions

represent messages rather than processes. The idea is that they are “sent” when they

reach the top-level in a parallel context, and are “received” when the handshaking with

the corresponding input action takes place. Thus it is reasonable to assume that the

scheduler will not delay forever the reception of a message, i.e. if an output action

is in parallel with a process able to execute the corresponding input action, then the

handshaking will eventually take place.

Definition 4.1. An adversary ζ for P is proper if, whenever P evolves into a process

of the form νx1 . . . νxk(P1| . . . |Pn), in which one of the Pi’s is an output action on one

of the channels x1 . . . xk, if ζ selects infinitely often a parallel process ready to execute

the corresponding input action, then Pi will eventually be scheduled for handshaking.
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Namely, Pi will be in the premise of a COM or CLOSE rule. We will denote by P the

class of proper adversaries.

Note that the above definition is weaker than the notion of fair scheduler, which

requires that any process which is ready infinitely often will eventually be scheduled for

execution. Clearly, the fairness assumption would be sufficient for our encoding, however

it is not necessary.

In Table 4.2 we showed a solution to the electoral problem in the symmetric

network of Figure 4.4. We rewrite this solution as shown in Table 4.3, in order to

simplify the notation used for proving the correctness of the algorithm.

We consider the following sets of states, where the states belonging to the same

set are symmetric. Two states s1 and s2 are symmetric if the probabilistic automata

having s1 and s2 as start states are isomorphic, in the sense that they differ only for the

labels of the nodes (namely the states). In the following, we use the notation ν(P ) =

νx1νx2 . . . νxn(P ), where x1, x2 . . . xn are the free variables of P .

I0 = {ν(P0 | P1)}

I1 = {ν(x̄0〈t〉 | A00 | P1), ν(x̄0〈t〉 | A01 | P1),

ν(P0 | x̄1〈t〉 | A10), ν(P0 | x̄1〈t〉 | A11)}

I2 = {ν(B00 | P1), ν(x̄0〈t〉 | B01 | Q1), ν(P0 | B11), ν(Q0 | x̄1〈t〉 | B10)}

I3 = {x̄0〈t〉 | A00 | x̄1〈t〉 | A10, x̄0〈t〉 | A01 | x̄1〈t〉 | A11}

I4 = {x̄0〈t〉 | A01 | x̄1〈t〉 | A10, x̄0〈t〉 | A00 | x̄1〈t〉 | A11}

I1 is the set of states where one of the two processes has committed to a channel.

I2 represents the set of states where one of the two processes has performed its first

input. I3 is the set of states where P0 and P1 have committed to the same channel and

I4 is the set of states where P0 and P1 have committed to different channels.

The proof is formalized in terms of progress statements defined in [47] and re-

viewed in Chapter 3. Recall that a progress statement is denoted by I
A−→
p

I ′, where I

and I ′ are sets of states, p is a probability, and A is a class of adversaries. Its meaning is

that starting from any state in I, under any adversary in A, a state of I ′ is reached with
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Pi = x̄i〈t〉| Qi

Qi = 1/2 τ.Ai0
+

1/2 τ.Ai1
Aij = xj(b).Bij

Bij = if b

then ( (1− ε) xj⊕1(b).Ci

+

ε τ.(x̄j〈t〉 | Qi))

elseDi

Ci = ōi〈i〉 | x̄i〈f〉 | x̄i⊕1〈f〉
Di = ōi〈i⊕ 1〉

Table 4.3. A πpa solution for the electoral problem in the symmetric network of Fig-
ure 4.4. Here i, j ∈ {0, 1} and ⊕ is the sum modulo 2.
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probability at least p. We drop A from the notation of progress statements whenever

the class of adversaries is fixed and is clear from the context.

We first show that I0 ∪ I1 ∪ I2
A−→

(1−ε)/2
S, where S is the set of states from

where the leader is elected with probability 1 and A is a proper class of adversaries.

Proposition 4.2. I0 −→
(1−ε)/2

S.

Proof For the sake of simplicity, we assume that starting from ν(P0 | P1) the sched-

uler chooses the transition group corresponding to the activation of P0, namely { τ−→
1/2

ν(x̄0〈t〉 | A00 | P1), τ−→
1/2

ν(x̄0〈t〉 | A01 | P1)}. Without loss of generality we can consider

the transition to the state ν(x̄0〈t〉 | A00 | P1). At this point there are two possible

transition groups: {x0(b)−→
1

ν(B00 | P1)} and { τ−→
1/2

ν(x̄0〈t〉 | A00 | x̄1〈t〉 | A10), τ−→
1/2

ν(x̄0〈t〉 | A00 | x̄1〈t〉 | A11)}, corresponding to the activation of A00 and P1 respectively.

Let us consider the case corresponding to the first transition group {x0(b)−→
1

ν(B00 | P1)}.
By scheduling B00 in ν(B00 | P1) the leader is elected with probability 1 − ε. On the

other hand, if P1 is scheduled, then P1 commits to the same channel as P0 with prob-

ability 1/2. In this case P1 cannot perform its second input and P0 is elected leader

with probability 1− ε. Therefore, starting from ν(x̄0〈t〉 | A00 | P1) the leader is elected

under these adversaries with probability at least (1− ε)/4. The priority imposed on the

adversary is important here to ensure that a process trying to perform its second input

is not restarted because the adversary did not trigger the corresponding output action.

If, starting from ν(x̄0〈t〉 | A00 | P1), P1 is scheduled, then the processes commit

to the same channel with probability 1/2 and the leader is elected with probability 1− ε

no matter which process is scheduled first. Therefore under these adversaries the leader

is elected with probability at least (1− ε)/4.

Since we considered all possible adversaries in A we can conclude that starting

from ν(x̄0〈t〉0 | A00 | P1) the leader is elected with probability at least (1− ε)/4.

Consider now the other possible transition from ν(P0 | P1), leading to the state

ν(x̄0〈t〉 | A01 | P1). This state gives rise to an isomorphic execution tree. We can

conclude that the probability of reaching a state in S from a state in I0 is at least

(1− ε)/4 + (1− ε)/4 = (1− ε)/2. Hence, I0 −→
(1−ε)/2

S. ¤

Proposition 4.3. I1 −→
(1−ε)/2

S.
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Proof The proof is analogous to the one of Proposition 4.2. ¤

Proposition 4.4. I2 −→
(1−ε)/2

S.

Proof The proof is analogous to the one of Proposition 4.2. ¤

Proposition 4.5. I0 ∪ I1 ∪ I2 −→
(1−ε)/2

S.

Proof By combining the progress statements proved in Proposition 4.2, 4.3 and 4.4

according to Lemma 3.1. ¤

Next, we show that I0 ∪ I1 ∪ I2 unless S. This means that the automaton

corresponding to the process ν(P0 | P1) remains in a state belonging to I0 ∪ I1 ∪ I2
until the leader is elected.

Proposition 4.6. I0 ∪ I1 ∪ I2 unless S.

Proof We have to show that for each transition from a state s ∈ I0 ∪ I1 ∪ I2 − S

the probabilistic automaton corresponding to the process ν(P0 | P1) moves to a state

s′ ∈ I0 ∪ I1 ∪ I2 ∪ S. In other words, once the probabilistic automaton is in a state

in I0 ∪ I1 ∪ I2 it remains in I0 ∪ I1 ∪ I2 until it reaches a state in S.

Let s be a state of the probabilistic automaton such that s ∈ I0 ∪ I1 ∪ I2 − S.

Then s ∈ I0 ∪ I1 ∪ I2 and s /∈ S.

We first analyze the case s ∈ I0. Following a simple analysis of the tree of

the probabilistic automaton corresponding to the process ν(P0 | P1) we find that any

transition from I0 leads to I1, which means that the probabilistic automaton remains in

I0 ∪ I1 ∪ I2.

Next we study the behavior of the probabilistic automata for s ∈ I2. Recall

that I2 corresponds to the states where one process performed its first input and the

other has not been scheduled for execution. If the process that holds one channel, say

P0 is activated next, it will find the second channel available and depending on the

probabilistic choice will go to a state in S or I0. If on the contrary P1 is scheduled and

commits to the same channel as the one that P0 holds, then P1 will be suspended and

P0 will declare itself to be the leader and therefore go to a state in S or backtrack and

go to a state in I1. The last possible transition from I2 corresponds to the activation of
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P1 and leads to a state where P1 committed to the channel that is not held by P0. If P0
is scheduled again, since its second input can be performed, it will go to a state in S or

backtrack and go to a state in I1. In case P1 performs its first input, no process is able

to perform its second input after that because they block each other and by backtracking

they go back to a state in I2.

Therefore any transition from I2 goes to a state in I0 ∪ I1 ∪ I2 ∪ S, which

means that the probabilistic automaton either remains in I0 ∪ I1 ∪ I2 or reaches S.

The last case to consider is s ∈ I1. Following again a simple analysis of the tree

of the probabilistic automaton we find that any transition from I1 leads to a state in

I2 ∪ I3 ∪ I4.

We now consider the reachable states from I3 and I4. Since I3 contains the

states where both processes committed to the same channel, no matter what policy the

scheduler uses next one process is able to perform its second input while the other one is

blocked waiting for its first input. Hence from a state in I3 the next state is either in S

or, if the process backtracks, in I1. In other words the probabilistic automaton remains

in I1 unless it reaches S.

I4 contains processes committed to different channels. By analyzing all states

that can be reached from I4 we find that either a leader is elected or the processes must

backtrack. Therefore any transition from I4 leads the probabilistic automaton to a state

in I1 ∪ I2 or S. ¤

Theorem 4.7. Consider the process ν(P0 | P1) and the algorithm of Table 4.3. The

probability that the leader is eventually elected is 1 under every proper adversary.

Proof By Proposition 4.5 I0 ∪ I1 ∪ I2 −→
(1−ε)/2

S. By Proposition 4.6 the probabilistic

automaton corresponding to the process ν(P0 | P1) satisfies I0 ∪ I1 ∪ I2 Unless S.

Thus, Proposition Lemma 3.3 applies, leading to: I0 ∪ I1 ∪ I2 −→
1

S. ¤

We conclude this section with the observation that, if we modify the blind choice

to be a choice prefixed with the input actions which come immediately afterward, then

the above theorem would not hold anymore. In fact, we can define a scheduler which

selects the processes in alternation, and which suspends a process, and activates the

other, immediately after the first has made a random choice and performed an input.

The latter will be forced (because of the guarded choice) to perform the input on the
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other channel. Then the scheduler will proceed with the first process, which at this point

can only backtrack. Then it will schedule the second process again, which will also be

forced to backtrack, and so on. Since all the choices of the processes are obligated in this

scheme, the scheduler will produce an infinite (unsuccessful) execution with probability

1.
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Chapter 5

The generalized dining philosophers

So far we have defined the probabilistic asynchronous π-calculus and we have

shown how the problem of electing a leader in a symmetric network, which has no solution

in the asynchronous π-calculus, can be solved with the probabilistic asynchronous π-

calculus. We introduced πpa with the goal of providing a distributed implementation

for the π-calculus, since so far only the asynchronous subset of the π-calculus has been

implemented [41]. We are considering a randomized implementation since it has been

shown that the full π-calculus is strictly more expressive than its asynchronous subset,

and there is no hope of implementing the π-calculus with deterministic methods ([36]).

Moreover, in [29] Nestmann has shown that the gap in expressive power, and the difficulty

in the implementation with deterministic methods, is due to the mixed guarded choice

construct of the π-calculus. Such mechanism, however, would be very desirable as it

provides a powerful programming primitive for solving distributed conflicts.

By investigating the translation from π to πpa we found out that it requires solving

a resource allocation problem similar to the one of the generalized dining philosophers,

where the resources of the generalized dining philosophers problem correspond to the

channels of the π-calculus. Hence an algorithm for the generalized dining philosophers

problem could be used for solving the conflicts associated to the competition for channels

arising in presence of guarded-choice commands.

We consider a generalization of the dining philosophers problem to arbitrary con-

nection topologies. We focus on symmetric, fully distributed systems, and we address

the problem of guaranteeing progress and lockout-freedom, even in presence of adver-

sary schedulers, by using randomized algorithms. We first show that the well-known

algorithms of Lehmann and Rabin do not work in the generalized case, and then we

propose an alternative algorithm based on the idea of letting the philosophers assign

a random priority to their adjacent forks. The results showed in this chapter serve to

some extent to prove the correctness of the randomized and distributed encoding of the

π-calculus with mixed choice in Chapter 6. However, the algorithms GDP1 and GDP2

presented in this chapter for solving the generalized dining philosophers problem require
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the fairness assumption. Our goal is to provide an encoding that is robust even in the

presence of unfair schedulers. For this reason, the algorithms GDP1 and GDP2 are for

general interest only. The algorithms are part of the original paper on the generalized

dining philosophers ([12]) and we include them in this chapter in order to give a complete

solution to the generalized dining philosophers problem.

We start the chapter with an overview of the dining philosophers problem.

5.1 The dining philosophers problem

The problem of the dining philosophers, proposed by Dijkstra in [6], is a very

popular example of control problem in distributed systems, and has become a typical

benchmark for testing the expressiveness of concurrent languages and of resource allo-

cation strategies.

The typical dining philosophers sit at a round table in positions alternated with

forks, so that there is a fork between each two philosophers, and a philosopher between

each two forks. Each philosopher can pick up only the forks immediately to his right and

to his left, one at the time, and needs both of them to eat. The aim is to make sure that

if there are hungry philosophers then some of them will eventually eat (progress), or,

more ambitiously, that every hungry philosopher will eventually eat (lockout-freedom).

The solutions to the problem of the dining philosophers depend fundamentally on

the assumptions made on the system. If we do not impose an initial symmetry, or do not

impose that the system be completely distributed, then several solutions are possible.

Some examples are:

• The forks are ordered and each philosopher tries to get first the adjacent fork which

is higher in the ordering.

• The philosophers are colored yellow and blue alternatively. The yellow philosophers

try to get first the fork to their left. The blue ones try to get first the fork to their

right.

• There is a central monitor which controls the assignment of the forks to the philoso-

phers.

• There is a box with n− 1 tickets, where n is the number of the philosophers, and

each philosopher must get a ticket before trying to get the forks.
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In the first two solutions above, the system is not symmetric. In the last two, it

is not fully distributed.

Of course, the problem becomes much more challenging when we impose the

conditions of symmetry and full distribution. More precisely, symmetry means that the

philosophers are indistinguishable, as well as the forks. The philosophers run the same

program, and both the forks and the philosophers are all in the same initial state. Full

distribution means that there are no other processes except the philosophers, there is no

central memory, all philosophers run independently, and the only possible interaction is

via a shared fork.

The conditions of symmetry and full distribution are interesting also for practical

considerations: in several cases it is desirable to consider systems which are made of

copies of the same components, and have no central control or shared memory. In

particular, symmetry offers advantages at the level of reasoning about the system, as it

allows a greater modularity, and at the level of implementation of concurrent languages,

as it allows a compositional compilation. Full distribution is usually convenient as it

avoids the overhead of a centralized control.

Lehmann and Rabin have shown in [42] the remarkable result that there are no

deterministic solutions to the dining philosophers problem, if symmetry and full distri-

butions are imposed, and if no assumption (except fairness) are made on the scheduler.

The only possible solution, in such conditions, are randomized algorithms, that allow to

eventually break the initial symmetry with probability 1. In [42] two such algorithms

are proposed, the first guarantees progress, the second guarantees also lockout-freedom.

There are two proofs of correctness of the Lehmann and Rabin algorithms, one

in [42] and another one, more structured and formal, in [23, 47]. They both depend in

an essential way on the topology. In particular, they depend on the fact that one fork

can only be shared by two philosophers (cfr. Lemma 1 in [42], Lemma 7.13 in [23], and

Lemma 6.3.14 in [47]). Therefore, a question naturally arises: Would the solutions of

Lehmann and Rabin still work in the case of more general connection structures? The

problem is also of practical relevance, since the kind of resource network represented

by the classic formulation is very restricted. In the rest of this chapter we investigate

this question and show that the answer is no: In most situations, both the algorithms

of Lehmann and Rabin fail. We then propose another solution, still randomized but

based on a rather different idea: we let each philosopher try to establish a partial order

on forks, by assigning a random number to his adjacent forks. In other words, we

use randomization for breaking the initial symmetry and achieving a situation in which
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the forks are partially ordered. Finally, we propose a variant of the algorithm which

ensures that no philosopher will starve (lockout-freedom). The algorithms are robust

with respect to every fair scheduler.

5.2 The generalized dining philosophers problem

We now introduce a generalization of the dining philosophers problem. The gen-

eralization consists in relaxing the assumptions about the topology of the system. In the

classic problem the philosophers and the forks are distributed along a ring (table) in al-

ternated positions. On the contrary, we consider arbitrary connection topologies, and in

particular we admit the possibility that a fork is shared by more than two philosophers.

Thus the number of forks and the number of philosophers is not necessarily the same.

The only constraint we impose on the topology is that each philosopher is connected

(has access) to two distinct forks. For the rest, the new formulation coincides with the

classic one.

Definition 5.1. A generalized dining philosopher system consists of n ≥ 1 philosophers

and k ≥ 2 forks. Unlike the classic case, n and k may be different numbers, and a fork

can be shared by an arbitrary (positive) number of philosophers. Like in the classic case,

every philosopher has access to two forks, which he will refer to as left and right. Every

philosopher can think or eat. When a philosopher wants to eat he must pick up the two

forks. He can pick up only one fork at the time. He cannot pick up a fork if his neighbor

is already holding it. He cannot eat forever. After eating the philosopher releases the two

forks and resumes thinking.

Figure 5.1 shows some examples of generalized dining philosopher systems. We

represent a system as an undirected graph where the nodes are the forks (represented by

sticks in Figure 5.1), and the arcs are the philosophers (represented by circles in Figure

5.1). Obviously, the forks accessible to a philosopher are the adjacent nodes. Note that

we adopt the more general definition of graph, which allows the presence of more than

one arc between two nodes (some textbooks use the term multigraph).
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Fig. 5.1. Some examples of generalized dining philosophers. From left to right: 6
philosophers, 3 forks. 12 philosophers, 6 forks. 16 philosophers, 12 forks. 10 philosophers,
9 forks.

The goal is the same as in the classic problem: to program the philosophers so that

hungry philosophers will eventually eat. Following the standard terminology, we will say

that a solution ensures progress (with respect to a set of philosophers) if it guarantees

that, whenever a philosopher of the set is hungry, then a philosopher of the same set (not

necessarily the same philosopher) will eventually eat1. A solution is lockout-free (with

respect to a set of philosophers) if it guarantees that, whenever a philosopher of the set

is hungry, then the same philosopher will eventually eat.

We shall consider only fully distributed and symmetric solutions, namely algo-

rithms where the only processes are the philosophers, the only shared variables are the

forks, all philosophers run identical programs and both the philosophers and the forks

are in the same initial state. We assume that test-and-set operations on the forks are

performed atomically.

A computation consists in an interleaving of actions performed by the philoso-

phers. Such interleaving is controlled by an adversary (or scheduler). We assume that

the adversary has complete information of the past of the computation, and can decide

its next step on the basis of that information. We consider only fair adversaries, namely

adversaries that ensure that each philosopher executes infinitely many actions in each of

the possible computations.

We will consider randomized algorithms, namely algorithms which allow a philoso-

pher to select randomly between two or more alternatives. The outcome of the random

1In [42] this property is called deadlock-freedom.
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choice depends on a probability distribution, and it is not controlled by the adversary.

For this reason, even under the same adversary, different computations may be possible.

This model of computation has been formalized by Lynch and Segala by introducing the

concept of probabilistic automata. An overview of this model was given in Chapter 3.

5.3 Limitations of the algorithms of Lehmann and Rabin

In this section we show that the randomized algorithms of Lehmann and Rabin

presented in [42] do not work anymore in the general case.

We start by recalling the first algorithm of Lehmann and Rabin, LR1 for short.

Each philosopher runs the code written in Table 5.1.

1. think ;

2. fork := random choice(left , right);

3. if isFree(fork) then take(fork) else goto 3;

4. if isFree(other(fork))

then take(other(fork))

else {release(fork); goto 2}
5. eat ;

6. release(fork); release(other(fork));

7. goto 1;

Table 5.1. The algorithm LR1.

Following standard conventions we assume that the action think may not termi-

nate, while all the other ones are supposed to terminate. The test-and-set operations on

the forks, in Steps 3 and 4, are supposed to be executed atomically. Each outcome (left

or right) of the random draw has a positive probability and the sum of the probabilities
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is 1. In the classic algorithm the probability is evenly distributed (1/2 for left and 1/2

for right). However our negative results do not depend on this assumption.

It has been shown in [42] that, for the classic dining philosophers, LR1 ensures

progress with probability 1 under every fair scheduler. A more formal proof of this result

can be found in [23, 47].

In the generalized case this result does not hold anymore. Let us illustrate the

situation with an example. We use the following notation: An empty arrow, associated

with a philosopher and pointing towards a fork, denotes that the philosopher has com-

mitted to that fork (has selected that fork with the random choice instruction) but he

has not taken it yet. A filled arrow denotes that the philosopher is holding the fork,

namely he has taken the fork and has not released it yet. From now on, we will represent

the nodes (forks) as bullets, instead than as sticks.

For the sake of simplicity, for the moment we relax the fairness requirement. We

will discuss later how to make the example valid also in presence of fairness.

Consider the system on the leftmost side of Figure 5.2, and consider State 1

depicted in the figure below. Clearly, this state is reachable from the initial state (where

all philosophers are at the beginning of the program, i.e. thinking) with a non-null

probability.
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Fig. 5.2. A winning scheduling strategy against the algorithm LR1
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The scheduler chooses P4 next. If P4 commits to the free fork, then he will take

it and then try to get the other fork. Since the other fork is taken by P3, P4 has to

release the first fork and draw again. The scheduler keeps selecting P4 until he commits

to the fork taken by P3. When this commitment occurs we are in State 2.

Next the scheduler selects P1 and P1 takes the fork he had committed to. Then

the scheduler keeps scheduling P5 until P5 commits to the fork taken by P1 (like it was

done for P4). This is State 3.

Then the scheduler selects P2, and P2 takes the fork he had committed to. This

situation is represented by State 4.

The scheduler continues with P3. P3 finds his second fork taken by P2 and

therefore releases the fork that he currently controls. P6 is then scheduled, until it

commits to the fork taken by P2. This is State 5.

Finally the scheduler runs P2, and P2 will have to release his fork, since the other

fork is taken by P1. Then P4 is selected, and he takes the fork he had committed to.

Then the scheduler selects P1, which will have to release his fork since the other one is

taken by P4. This is State 6.

Observe now that State 6 is isomorphic to State 1, in the sense that they differ

only for the names of the philosophers. The scheduler can then go back to State 1 and

then repeat these steps forever, thus inducing a computation in which no philosopher

is able to eat. Note that the probability of a computation of this kind is 1/4, which is

the probability of reaching a state isomorphic to State 1 already at the first attempt.

(We are assuming that the probability of picking a particular adjacent fork is evenly

distributed between left and right, i.e. it’s 1/2. If this is not the case then the figure

above will be different from 1/4, but it will still be positive.) It’s easy to see that, by

repeating the attempt to reach State 1 (possibly after some philosopher has eaten), the

scheduler can eventually induce a cycle like the above one with probability 1.

Unfortunately the scheduler considered in this example is unfair. In fact, it keeps

selecting one philosopher (for instance P4) until it commits to a taken fork. If the

philosopher chooses forever the free fork, then the resulting computation is unfair. Al-

though such a computation has probability 0, according to the definition of fairness, the

scheduler is unfair.

However, it is easy to modify the scheduler so to obtain a fair scheduler which

achieves the same result, namely a no-progress computation with non-null probability,

although smaller than 1/4. Consider a variant of the above scheduler which keeps se-

lecting a “stubborn philosopher” for a finite number of times only, but which increases
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this number at every round. By “round” here we mean the computation fragment which

goes from State 1 to State 6, and back to State 1, as described above. Let nk be the

maximum number of times which the scheduler is allowed to select the same philosopher

during the k-th round. Choose nk to be big enough so that the probability that the

scheduler actually succeeds to complete the k-th round is 1− pk with p ≤ 1/2. Consider

an infinite computation made of successive successful rounds. The probability of this

computation is greater than or equal to

1
4

Π∞
k=1(1− pk).

It is easy to prove by induction that for every m ≥ 1,

Πm
k=1(1− pk) ≥ 1− p− p2 + pm+1

holds. Hence we have

Π∞
k=1(1− pk) ≥ 1− p− p2.

Furthermore, by the assumption p ≤ 1/2, we have

1− p− p2 ≥ 1/4.

5.3.1 A general limitation to the first algorithm of Lehmann and Rabin

We have seen that there is at least one example of graph in which LR1 does not

work. One could hope that this example represents a very special situation, and that

under some suitable conditions LR1 could still work in more general cases than just the

standard one. Unfortunately this is not true: It turns out that as soon as we allow one

fork of the ring to be shared by an additional philosopher, LR1 fails.

In the following, we will call ring (or cycle) a graph which has k nodes, say

0, 1, . . . k − 1, and k arcs connecting the pairs (0, 1), (1, 2), . . . , (k − 1, 0).

Theorem 5.1. Consider a graph G containing a ring subgraph H, and such that one of

the nodes of H has at least three incident arcs (i.e. an additional arc in G besides the two
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in H). Then it is possible to define a fair scheduler for LR1 such that the probability of a

computation in which the arcs (philosophers) in H make no progress is strictly positive.

Proof Figure 5.3 represents the subgraph of G consisting of

• the ring H (a hexagon in the figure, but the number of vertices is not important)

with a node f having (at least) three incident arcs,

• the arc P in G but not in H which is incident on f , and

• the node g adjacent to f via P .

It does not matter whether g is a node in H or not.
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Fig. 5.3. A winning scheduling strategy against the algorithm LR1.

Figure 5.3 shows a possible sequence of states induced by a scheduler S. State

1 is reachable from the initial state (where all philosophers are thinking) with a non-

null probability. The scheduler controls the directionality of the arrows by means of the

technique explained in the example in previous section. The state transitions should be



54

rather clear, except maybe for the last one. That transition (between State 5 and State

6) is achieved by the following sequence of actions:

• schedule P and let him eat (this is always possible - the scheduler can always make

g free at the moment P needs it)

• schedule the philosopher adjacent to P which is committed to f , and let him take

f

• keep scheduling P until he commits to f .

State 6 is symmetric to State 1 and we can therefore define an infinite computa-

tion, where no philosopher in H eats, by repeating the actions which bring from State 1

to State 6, and then back to State 1, and so on.

Again, the scheduler S illustrated here is not fair, but we can obtain a fair sched-

uler S′ which approximates S by letting the “level of stubbornness” of S′ increase at

each round, following the technique used in the example above. ¤

5.3.2 The second algorithm of Lehmann and Rabin

In this section we consider the second algorithm of Lehmann and Rabin, presented

in [42] as a lockout-free solution to the classic dining philosophers.

We consider here a slight generalization of the original algorithm suitable for the

a generic topology. Hereafter we will refer to it as LR2. We assume that each fork is

provided with the following data structures:

• A list of incoming requests r, with operations isEmpty, insert, and remove. Initially

the list is empty.

• A “guest book” g, namely a list which keeps track of the philosophers who have

used the fork.

The idea is that when a philosopher gets hungry, he inserts his name id in the request

list of the adjacent forks2. After the philosopher has eaten, he removes his name from

these lists, and signs up the guest books of the forks. Before picking up a fork, a

2We do not need to assume that all philosophers have different ids, but simply that those who
share a fork are distinguished form each other. This assumption does not violate the symmetry
requirement. In fact, the distinction between the adjacent philosophers could be stored in the
fork and used only within the operations on the fork.
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philosopher must check that there are no other incoming requests for that fork, or that

the other philosophers requesting the fork have used it after he did. This condition will

be represented, in the algorithm, by the condition Cond(fork)3.

Table 5.2 shows the code run by each philosopher.

The negative result expressed in Theorem 5.1 does not hold for LR2. In fact, once

P has eaten, he cannot take Fork f before the neighbor has eaten as well. However the

class of graphs in which LR2 does not work is still fairly general:

Theorem 5.2. Consider a graph G containing a ring subgraph H, and such that two of

the nodes in H are connected at least by three different paths (i.e. an additional path P

in G besides the two in H). Then it is possible to define a fair scheduler for LR2 such

that the probability of a computation in which the arcs (philosophers) of H and P make

no progress is strictly positive.

Proof The proof is illustrated in Figure 5.4, which shows the part of G containing the

ring H and the additional path between two nodes of H.

Like before, the computation illustrated in the figure is induced by an unfair

scheduler S, but by following the usual technique we can define a fair scheduler S′ which

approximates S and which achieves the same result. Note that none of the philosophers

in H and in the additional path ever gets to eat, hence the modification of LR2 with

respect to LR1, namely the test Cond(fork), is useless: fork.g remains forever empty. ¤

5.4 A deadlock-free solution

We now propose a symmetric and fully distributed solution to the generalized

dining philosophers and show that it makes progress with probability 1.

Our algorithm works as follows. Each fork has associated a field nr which contains

an integer number ranging in the interval [0,m], with m ≥ k, where k is the total number

of forks in the system. Initially nr is 0 for all the forks. Each philosopher can change the

nr value of a fork when he gets hold of it, and he tries to make sure that the nr values

3In the original algorithm the list of incoming request is replaced by two switches associated
to the two adjacent philosophers, and instead of the guest book there is a simple variable which
indicates which one of the adjacent philosophers has eaten last.
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1. think ;

2. insert(id , left .r); insert(id , right .r);

3. fork := random choice(left , right);

4. if isFree(fork) and Cond(fork)

then take(fork)

else goto 4;

5. if isFree(other(fork))

then take(other(fork))

else {release(fork); goto 3; }
6. eat ;

7. remove(id , left .r); remove(id , right .r);

8. insert(id , left .g); insert(id , right .g);

9. release(fork); release(other(fork));

10. goto 1;

Table 5.2. The algorithm LR2.
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of its adjacent forks become and are maintained different. In order to ensure that this

situation will be eventually achieved, each new nr value is chosen randomly. Note that

this random choice is necessary to break the symmetry, otherwise, in presence of a ring,

a malicious scheduler could induce a situation where one philosopher changes one fork,

then his neighbor changes the other fork to the same value, and so on, for all the forks

in the ring.

Our algorithm is similar to LR1, except that the choice of the first fork is done by

picking the one with the highest nr value (if they are different), instead than randomly.

The other difference is that, as explained before, the philosopher may change the nr

value of a fork when it finds that it is equal to the nr value of the other fork. This

is done by calling random[1,m], which returns a natural number in the interval [1,m],

selected probabilistically. We assume for simplicity that the probability of the outcome

is evenly distributed among the numbers in the interval. The algorithm is illustrated in

Table 5.3. We will refer to it as GDP1.

We prove now that GDP1 makes progress, under every fair scheduler, with prob-

ability 1. The proof is formalized in terms of the progress and unless statements. Recall

that a progress statement is denoted by S
A−→
p

S′, where S and S′ are sets of states,

p is a probability, and A is a class of adversaries. An unless statement is of the form

S unless S′ and means that, if the system is in one of the states of S, then it remains in

S (possibly moving through different states of S) until it reaches a state in S′.
Let us define T to be the set of states in which some philosopher tries to eat (trying

section, steps 2 through 5), and E to be the set of states in which some philosopher is

eating. We prove the correctness of GDP1 by showing that T
F−→
1

E, where F is the

class of all fair adversaries.

Theorem 5.3. T
F−→
1

E.

Proof Let us denote by C1 the set of states in which there is one cycle in the graph

where all adjacent forks have different numbers. C2 is the set of states in which there

are two cycles in the graph where all adjacent forks have different numbers, and so on.

We have the following progress statements:

• T
F−→
p

(T ∩ C1) ∪ E, with p ≥ m!/mk(m− k)!. In fact, one of the trying philoso-

phers, say P1, will find the first fork free and will pick it up. Then, either he

will find also his second fork free, and therefore will eat, or it will find the second

fork taken by another philosopher, say P2. Again, either P2 will eat, or will find
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1. think ;

2. if left .nr > right .nr

then fork := left

else fork := right ;

3. if isFree(fork) then take(fork) else goto 3;

4. if fork .nr = other(fork).nr

then fork := random[1,m];

5. if isFree(other(fork))

then take(other(fork))

else {release(fork); goto 2}
6. eat ;

7. release(fork); release(other(fork));

8. goto 1;

Table 5.3. The algorithm GDP1.
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his second fork taken by another philosopher, say P3, etc. Since the number of

philosophers is finite, we will end up either with one philosopher eating, or with

a ring of forks all picked up as first forks at least once. Since each philosopher

changes the nr value of the first fork if this value is equal to that of the other fork,

the adjacent forks of this ring will get all different values with probability p not

smaller than m!/mk(m− k)! (this is the probability that, if we assign randomly

values in the range [1,m] to the nodes of a complete graph of cardinality k, all the

nodes get a different value). Note that, by the assumption m ≥ k, we have p > 0.

• T ∩ C1
F−→
p

(T ∩ C2) ∪ E. Similar to previous point.

• ...

• T ∩ Ch−1
F−→
p

(T ∩ Ch) ∪ E. Similar to previous point.

• T ∩ Ch
F−→
1

E. When all possible cycles in the graph have adjacent nodes with

different nr values, then the algorithm works like a hierarchical resource allocation

algorithm based on a partial ordering: Let P be the first philosopher who is holding

the first fork, and such that the nr value of the other fork f is the smallest of all

the forks adjacent to f . Then either P or one of his neighbors will eat.

From the above statements, and by using Lemma 3.2, the obvious fact that E
F−→
1

E,

and Lemma 3.1, we derive

T
F−→
ph

E.

On the other hand, it’s clear that, since philosophers keep trying until they eat, we have

also

T unless E.

Therefore, by applying Lemma 3.3, we conclude T
F−→
1

E. ¤
Note that GDP1 does not guarantee that we will reach, with probability 1, a

situation where all adjacent forks will have a different nr. Not even if all philosophers

are in the trying section infinitely often. This is because some philosophers may never

succeed to pick up a fork, for instance because they are always scheduled when their

neighbors are eating.
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5.5 A lockout-free solution

The algorithm GDP1 presented in the previous section is not lockout-free. In fact,

consider two adjacent philosophers, P1 and P2, which share a fork f with a nr value

which is smaller than the value of the other fork g of P1. Then P1 will keep selecting

g as first fork, and the scheduler could keep scheduling the attempt of P1 to pick the

second fork, f , only when f is held by P2.

We now propose a lockout-free variant of GDP1. The idea is to associate to each

fork a list of incoming requests r, and a “guest book” g, like it was done in Section 5.3.2.

The test Cond(fork) is defined in the same way as in Section 5.3.2. The new algorithm,

that we will call GDP2, is shown in Table 5.4.

We now show that GDP2 is lockout-free. In the following, Ti will represent the

set of states in which the philosopher Pi is trying to eat, and Ei the situation in which

the philosopher Pi is eating.

Theorem 5.4. Ti
F−→
1

Ei.

Proof Let us denote by Ci,r is the set of states in which there are r cycles containing the

arc Pi, and where all adjacent forks have different numbers. Furthermore, let us use Wi,s

to represent the set of states in which there are s philosophers connected to Pi which

have already eaten and can’t eat until all their adjacent philosophers (and ultimately

Pi) have eaten as well.

The proof is similar to the one of Theorem 5.3. The invariant in this case is

Ti ∩ Ci,r ∩Wi,s
F−→
p

(Ti ∩ Ci,r+1 ∩Wi,s)

∪
(Ti ∩ Ci,r ∩Wi,s+1) ∪ Ei

where p has the same lower bound as in the proof of Theorem 5.3. Furthermore, if h

is the total number of cycles containing Pi, and m is the total number of philosophers

connected to Pi, we have

Ti ∩ Ci,h ∩Wi,s
F−→
p

(Ti ∩ Ci,h ∩Wi,s+1) ∪ Ei,
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1. think ;

2. insert(id , left .r); insert(id , right .r);

3. if left .nr > right .nr

then fork := left

else fork := right ;

4. if isFree(fork) and Cond(fork) then take(fork) else goto 4;

5. if fork .nr = other(fork).nr

then fork := random[1, m];

6. if isFree(other(fork))

then take(other(fork))

else {release(fork); goto 3}
7. eat ;

8. remove(id , left .r); remove(id , right .r);

9. insert(id , left .g); insert(id , right .g);

10. release(fork); release(other(fork));

11. goto 1;

Table 5.4. The algorithm GDP2.
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Ti ∩ Ci,r ∩Wi,m
F−→
p

(Ti ∩ Ci,r+1 ∩Wi,m) ∪ Ei,

and

Ti ∩ Ci,h ∩Wi,m
F−→
1

Ei.

Hence, by Lemma 3.2 and 3.1 we derive

Ti
F−→

ph+m
Ei.

Since Ti unless Ei, by Lemma 3.3 we conclude. ¤
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State 1 State 2 State 3

State 4 State 5 State 6

State 7 State 8 State 9

Fig. 5.4. A winning scheduling strategy against the algorithms LR1 and LR2.
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Chapter 6

A randomized implementation of

the π-calculus with mixed choice

In this chapter we consider the problem of encoding the pi-calculus with mixed

choice into the asynchronous pi-calculus via a uniform translation while preserving a

reasonable semantics. Since it has been shown that this is not possible with an exact

encoding, we define a randomized approach using the probabilistic asynchronous pi-

calculus, and we show that our solution is correct with probability 1 under any proper

adversary with respect to a notion of testing semantics.

This result establishes the basis for a distributed and symmetric implementation

of mixed choice which, differently from previous proposals in literature, does not rely

on assumptions on the relative speed of processes and is robust to attacks of proper

adversaries.

6.1 An overview of solutions for the binary interaction problem

The distributed implementation of mixed choice, also called the binary interaction

problem, has been widely investigated, as well as the more general multiparty interaction

problem. Most of the proposed solutions are asymmetric, see for instance [20, 39, 50], and

most of them rely on an ordering among the identifiers of the processes (or equivalently

among the nodes of the connection graph). The only symmetric solutions that have been

proposed are, not surprisingly, randomized ([10, 43, 19, 18]). However, these algorithms

assume a computational model that is different from the asynchronous model used in

this work. They rely on assumptions about the relative speed of the processes during the

phase in which the processes attempt to establish communication, by implying a global

time and assuming that the whole computation time is negligible with respect to the

waiting time. Therefore these algorithms work in a partially synchronous model rather

than an asynchronous model. Note that these different models also induce a different

notion of scheduler.
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In the following we briefly recall the algorithm proposed by [10] for CSP-like

binary interactions. The one in [19] is an extension of the same algorithm to the case

of multiparty interaction. Both algorithms are presented in a shared-memory model

where processes communicate by reading from and writing to shared variables. The

algorithm of [43] presents a probabilistic distributed solution for the guard scheduling

problem, which is a special case of the multiparty interaction scheduling problem where

each interaction involves exactly two processes.

We adopt the presentation of [19] which is more rigorous. In the algorithm, each

possible binary interaction is associated to a variable which ranges over 0 and 1. The

variable can be accessed only by the processes interested in the interaction, via a test-

and-set function of the following kind:

TEST&SET(X, op, op′)

which means: read the value of X. If it is 0, then apply op to X. Otherwise, apply

op′. In both cases, return the value of X before the operation. These actions (read and

set) are meant to be executed atomically, i.e. as an indivisible sequence. Originally, all

variables are set to 0.

The code executed by each process interested in interacting is shown in Table 6.1.

The idea is that each process P ready to interact chooses randomly one of the possible

interactions, and tests the corresponding variable X. If X is 0 then P sets it to 1 and

waits for a while. Then P tests X again. If the value has changed (to 0), meaning that

the partner has chosen the same interaction, then the interaction is started. Otherwise,

P resets X to 0 and tries a new interaction, possibly with a different partner. On the

contrary, if at the first test X was 1, then it means that the partner is willing to interact.

In this case P sets X to 0 to signal to the partner its positive response, and starts the

interaction.

The algorithm in Table 6.1 requires a careful choice of the waiting time a process

spends on monitoring the state of its partner. This time, which is called δ, is the

time spent by a process in line 5 of the algorithm in Table 6.1 and represents the time

a process waits before re-accessing the shared variable to determine if the partner is

willing to communicate. In [10] it is assumed that the time to access a shared variable is

negligible compared to δ. This assumption is eliminated in [19], but they require that δ
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1. while trying do {
2. randomly choose an interaction. Let X be the associated variable
3. if TEST&SET(X, inc, dec) = 1
4. then participate to the interaction
5. else { wait for some time;
6. if TEST&SET(X,no op, dec) = 0
7. then participate to the interaction
8. /* else try another interaction */ }
9. }

Table 6.1. The algorithm for binary interaction proposed in [10]. The notations inc,
dec and no op mean, respectively: add 1, subtract 1, and no operation.

is bounded by some constant, i.e. δ is large enough such that a process will not re-access

the shared variable before its partner has a chance to access it too.

Another algorithm for the multiparty interaction scheduling problem is presented

in [18]. We refer here to the algorithm TB (Token-Based) of [18]. The second algorithm

presented in the same paper is not relevant for this work since it is based on shared-

memory.

The algorithm TB uses a mechanism similar to the one in [10, 19] to establish

interactions. Each process Pi is associated with a unique token Ti and a set of possible

interactions Ii. P (X) denotes the set of processes that can execute an interaction X.

A process randomly chooses an interaction X from its set of possible interactions and

informs all other processes in P (X) that its choice by sending a copy of Ti tagged with

X to each process in P (X). When all recipients have acknowledged the receipt of Ti, Pi

waits for some time δ and then checks if it received a copy of Ti tagged with X from each

process in P (X). If this is the case, then Pi changes the tags of the tokens to ”success”

since all processes in P (X) have agreed to execute X. If Pi does not receive tokens

tagged with X from all processes in P (X) before δ expires then Pi sends a message

”request” to each process in P (X) in order to retrieve its tokens. If any returned token

is tagged with ”success” then it means that another process agreed to execute X and

Pi starts executing X. If none of the returned tokens is tagged with ”success” then Pi

must give up on X and attempt another interaction.
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The algorithm TB of [18] is symmetric and distributed. Unlike the algorithm

in [19], the bound for δ is not predefined anymore and this parameter is dynamically

adjusted.

Also the solution proposed in [31] can be considered as belonging to the ran-

domized algorithms category, although the randomization is not used explicitly by the

process, but assumed implicitly in the scheduler. The idea used by Nestmann in [31]

consists in associating a lock l, initially set to true, to each choice, and then launch a

parallel process for each branch. A process P corresponding to an input branch will try

to get both its lock (local lock, l) and the partner’s lock (remote lock, r). When P suc-

ceeds, it tests the locks: if they are both true (meaning that P has won the competition)

then P sets the locks to false so that all the other processes can abort, sends a positive

acknowledgment (true) to the partner, and proceeds with its continuation. The partner

also proceeds when it receives the positive acknowledgment. If the local lock is false then

P aborts. If the remote lock is false then P tells the partner to abort by sending it a

negative acknowledgment (false).

The problem with the algorithm in [31] is that processes might loop forever in

the attempt to get both locks. If the initial situation is symmetric, then it is possible

to define a scheduler (even a fair one) which always selects the processes in the same

order, and never breaks the symmetry. In [31] it is assumed that the scheduler itself has

a random behavior, i.e. it selects at random which process to execute next (and in a way

totally independent from the history of the system). As argued in Chapter 1, we believe

that it is important to consider stronger schedulers.

6.2 Encoding π into πpa

The main difficulty in encoding the π-calculus into the probabilistic asynchronous

π-calculus consists in encoding the choice operator. The other π-calculus operators can

be translated homomorphically. The rest of this section will address the encoding of the

mixed choice construct.

In order to make the algorithm robust with respect to every scheduler (under

an assumption of “proper” behavior), we enhance it with a randomized choice made

internally by the processes involved in the synchronization. The idea is similar to the

one used by Lehmann and Rabin for solving the dining philosophers problem ([42]). The

forks, in this case, are the locks. The idea is to let the process choose randomly the first

lock, and wait on it until it becomes available. When the connection graph (where the
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forks are the nodes and the philosophers are the arcs) is a simple ring, like in the classic

dining philosophers case, this algorithm is deadlock and livelock free with probability 1

under any fair adversary ([42]).

As shown in [37], the problem of the mixed choice however still presents a compli-

cation: the connection graph may be rather complex, and in Chapter 5 we showed that

the classic algorithm of Lehmann and Rabin does not work for general graphs. For in-

stance, it does not work when a node is part of two or more cycles. In order to cope with

this problem, we associate to each choice containing output guards an additional lock

h. The processes corresponding to the input branches will first have to compete for the

lock h of the partner. Thus, at most one output branch for each choice will be involved

at a time in an interaction attempt. This ensures that there will be no connected cycles

in the graph representing the interaction attempts, and we will see that this condition

is sufficient for the correctness of the algorithm.

For the sake of simplicity we assume that the same channel cannot be used as

both input and output guard in the same choice construct.

In the encoding we make use of some syntactic sugar: we assume polyadic com-

munication (i.e. more than one parameter in the communication actions), boolean values

t and f and an if-then-else construct, which is defined by the structural rules

if t then P else Q ≡ P if f then P else Q ≡ Q

As discussed in [33], these features can be translated into πa. The encoding of π into

πpa is defined in Table 6.2. Note that all the operators are translated homomorphically

except for the choice. In the encoding of the choice, l represents the principal lock

(corresponding to a fork in the algorithm of Lehmann and Rabin), h represents the

auxiliary lock (for ensuring that no more than one output branch for each choice will be

involved simultaneously in an interaction attempt). In the encoding of the input prefix,

l represents the local principal lock, and r represents the remote principal lock. The

name a is used to send an acknowledgment to the partner.

Note that in the encoding of the input-prefix the top-level choice, which represents

the arbitrary choice of the first principal lock, is a blind choice (1/2 τ . . . + 1/2 τ . . .).

This means that the process commits to a lock before knowing whether such lock is

available. It can be proved that this commitment is essential for the termination of

the algorithm. The distribution of the probabilities, on the contrary, is not essential
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[[νxP ]] = νx[[P ]]

[[P1 | P2]] = [[P1]] | [[P2]]

[[X]] = X

[[recXP ]] = recX [[P ]]







∑
i αi.Pi

+∑
j τ.Qj

+∑
k βk.Rk





 = νl (l̄t | νh (h̄ | ∏

i[[αi.Pi]]lh) | ∏
j [[τ.Qj ]]l |

∏
k[[βk.Rk]]l)

[[x̄y.P ]]rh = νa (x̄〈r, a, h, y〉 | a(b). if b then [[P ]] else 0)

[[τ.Q]]l = l(b).(l̄f | if b then [[Q]] else 0)

[[x(y).R]]l = recX (x(r, a, h, y).h.recY ( 1/2 τ.l(bL).((1− ε) r(bR).B + ε τ.(l̄bL | Y ))
+
1/2 τ.r(bR).((1− ε) l(bL).B + ε τ.(r̄bR | Y )) ))

where
B = if bL ∧ bR then h̄ | l̄f | r̄f | āt | [[R]]

else if bL then h̄ | l̄t | r̄f | āf | X
else if bR then h̄ | l̄f | r̄t | x̄〈r, a, h, y〉

else h̄ | l̄f | r̄f | āf

Table 6.2. The encoding of π into πpa. In the translation of the mixed choice, the
αi’s represent output actions, and the βk’s represent input actions. ε stands for a real
number in [0, 1).
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for termination. However, this distribution affects the efficiency, i.e. how soon the

synchronization protocol will converge. It can be proved that in this choice it is better

to split the probability as evenly as possible, hence 1/2 and 1/2.

Once the process has obtained the first principal lock, the idea is that it should try

to get the second one. If it succeeds, then it should test the locks and proceeds accordingly

to the results of the tests as explained at the beginning of this section. Otherwise, it

should release both locks and go back to the beginning of the inner loop, where it will

make another random draw for selecting the first lock. This conditional behavior would

need a priority choice to be expressed, namely a choice in which the first branch would

always be selected whenever the corresponding guard is enabled. Such construct does not

exist in the (asynchronous) π-calculus, and its introduction would make the semantics

rather complicated (although it would be easy to implement it in a language like Java).

To overcome the problem, we use a probabilistic choice ((1−ε) . . .+ε . . .) to approximate

a priority choice. Of course, the smaller ε is, the tighter the approximation is.

6.3 Correctness of the encoding

In order to assess the correctness of the translation of π into πpa, we consider

a probabilistic extension of the notion of testing semantics proposed in [34, 3]. This

extension has the advantage of being probabilistically “reasonable”, i.e. sensitive to

deadlocks and livelocks with non-null probability. Furthermore, in testing semantics all

communications are internalized (except the one used by the observer to declare success),

and this spares us from the problem, discussed in [31], which arises with semantics

like bisimulation, barbed bisimulation, and coupled simulation, even in their weak and

asynchronous versions. The kind of encoding that we use for choice cannot be correct

with respect to these semantics, due to their sensitiveness to the output capabilities.

In fact, in the original process the output guards which are not chosen disappear after

the choice is made. In the translation, however, a choice is mapped into the parallel

composition of the branches, hence an output guard which is not able to interact with

a partner will remain present even after some other branch wins the competition, thus

causing the presence of a residual output barb. However these barbs are “garbage” by

definition, not able to synchronize with any other process at this point (at least, not

according to the synchronization protocol of the translated process), so they should not

be counted. This sensitivity to the synchronization capabilities is exactly what testing

semantics features, differently from bisimulation semantics.
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6.3.1 Testing semantics

Let us recall the key concepts of the testing semantics for the π-calculus. An

observer O is a π-calculus process able to perform a special action ω, denoting success.

Usually ω is seen as an output action, but it does not really matter. We assume this

action to be different from all those performed by tested processes. Given a π-calculus

process P and an observer O, an interaction between P and O is a maximal (finite or

infinite) sequence of τ transitions starting from P | O:

P | O = Q0
τ−→ Q1

τ−→ Q2
τ−→ . . .

Maximal means that the sequence is either infinite, or the last state is not able to make

any further τ transition.

We say that P may O iff there exists an interaction such that Qi
ω−→ for some i.

We say that P must O iff for every interaction there exists i such that Qi
ω−→. Finally,

P is testing equivalent to Q, notation P ' Q, if for every observer O, P may O iff Q

may O, and P must O iff Q must O.

In order to state the correctness of the embedding, we need to extend the notion

of testing to the πpa-calculus. We propose the following extension, which, we believe,

captures the spirit of testing semantics.

6.3.2 Testing semantics for the πpa-calculus

The natural extension to πpa of the concept of interaction between a process P

and an observer O is an execution starting from P | O, under some adversary ζ, and

consisting only of arcs labeled by τ . An interaction is successful if it passes trough a

state in which an ω step can be performed.

Our intended notion of must testing is that the probability that an interaction is

successful is 1. To this end, we need to define pb(ξ is successful | ξ is an interaction), the

probability of successful executions relatively to those executions which are interactions.

This notion can be formalized in two different, but equivalent ways:

• Define an interaction as a branch of the execution tree of P | O under some

ζ, with the property that all arcs of the branch are labeled by τ . Then define

pb(ξ is successful | ξ is an interaction) as the relative probability that a branch be

successful, given that it is an interaction.
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• Restrict the execution tree to contain only arcs labeled by τ and by ω. This can be

done by closing the initial process P | O with respect to all the free names except

ω. Then define pb(ξ is successful | ξ is an interaction) as the probability of the

successful branches of this tree.

The first solution is more elegant, but it is formally more complicated since it involves

defining the concept of relative probability in an execution tree. Hence we follow the

second approach.

In the sequel we denote by νP the process νx1νx2 . . . νxnP , where νx1, νx2, . . . , νxn

are all the free names occurring in P . With a slight abuse of notation, we denote the

execution tree of the automaton generated by P under the adversary ζ as etree(P, ζ),

and the set of its branches (executions) as exec(P, ζ).

Let P be a πpa process and let O be a πpa observer. An interaction ξ between P

and O is an element of exec(ν(P |O), ζ). Given an interaction ξ of the form:

ν(P | O) = Q0
τ−→
p0

Q1
τ−→
p1

Q2
τ−→
p2

. . . ,

we say that ξ is successful if there exist i and p such that Qi
ω−→
p

. We denote by

sexec(ν(P |O), ζ) the set {ξ ∈ exec(ν(P |O), ζ) | ξ is successful}. For i < j, we say that

the node (labeled by) Qj is a descendant of Qi, and the step Qj
τ−→
pj

Qj is subsequent

to Qi.

The following property is fundamental for defining our notion of testing for πpa:

Proposition 6.1. Given an adversary ζ, the set sexec(ν(P |O), ζ) can be obtained as a

countable union of disjoint cones.

Proof For every ξ ∈ sexec(ν(P |O), ζ), let ξ′ ≤ ξ be the prefix which ends at the first i

such that Qi
ω−→
p

. We have that C = {Cξ′ | ξ ∈ sexec(ν(P |O), ζ)} is a set of disjoint cones

(see Section 3 for the definition of cone) and ∪C∈CC = sexec(ν(P |O), ζ). Countability

follows from the fact that etree(ν(P |O), ζ) is finitely branching. ¤
As a consequence of this proposition, the probability of sexec(ν(P |O), ζ) is well

defined (cfr. Chapter 3).
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Definition 6.1. Let A be a class of adversaries. Let P, Q be πpa processes and O be a

πpa observer.

(i) P mayA O iff there exists an adversary ζ ∈ A s.t. pb(sexec(ν(P |O), ζ)) > 0.

(ii) P mustA O iff for all adversaries ζ ∈ A, pb(sexec(ν(P |O), ζ)) = 1.

(iii) P 'A Q iff for every O, P mayA O iff Q mayA O, and P mustA O iff

Q mustA O.

Note that, although P mustA O implies P mayA O (for A 6= ∅), must-

equivalence does not imply may-equivalence. Hence it makes sense to require both in

the definition of 'A.

6.3.3 Dining philosophers without the fairness assumption

First of all, we need to make precise what class of adversaries our algorithm can

cope with. Clearly, we wish this class to be as large as possible. Yet, we cannot allow

just any adversary. The problem is related to the output actions: a malicious adversary

that never schedules l̄bL or r̄bR in the definition of [[x(y).P ]]l will make it impossible

for the process to get the lock and therefore will force it to loop forever. Therefore we

consider the class of proper adversaries for the encoding of π in πpa.

Note that the definition of proper scheduler in Section 4.3.1 is weaker than the

notion of fair scheduler, which requires that any process which is ready infinitely often

will eventually be scheduled for execution. Clearly, the fairness assumption would be

sufficient for our encoding, however it is not necessary. This may seem surprising, since

the solution to the dining philosophers proposed in [42] requires fairness. However, a

careful analysis of the algorithm in [42] reveals that the fairness assumption is used only

because a philosopher who has committed to a fork enters a busy waiting loop, and it

remains in the loop until the fork becomes available. An unfair scheduler, hence, could

keep scheduling always the same philosopher in a busy waiting loop, thus generating a

livelock. If the busy wait is replaced by a suspension command (obliging the scheduler

to select another process) then the fairness assumption is not necessary. We prove this

result in the following.
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Table 6.3 shows a πpa-calculus implementation of the first algorithm in [42] where

we replace the busy wait loop on the first fork with a suspend command (i.e. suspend

until the fork becomes available) and remove the state in which a philosopher thinks.

The reason for dropping the thinking state is that it can be replaced by the state in

which a philosopher is hungry. Note that in the original dining philosophers algorithm a

philosopher who is thinking can only advance to a state in which he is hungry. Therefore

we can use the state in which a philosopher is hungry also to represent the thinking

state.

Philosophers are represented by the processes Pi, where i ∈ {0, 1, . . . , n} and n

is the number of philosophers. We use the channels Ri (i ∈ {0, 1, . . . , n}) to denote the

resources (forks) and we assume that process Pi⊕1 is on the right of process Pi and that

resource Ri⊕1 is between processes Pi and Pi⊕1. We use the symbol ⊕ to denote the

sum modulo n.

First, let us introduce some notations that will be used to prove that the algorithm

is Table 6.3 is deadlock and livelock free with respect to any scheduler. We use W , S,

EF and ES to denote process states. A process is in state W when it is waiting for its

first fork. A process is in state S if it is holding only the first fork. State EF represents a

process that finished eating and it is still holding the two forks, while state ES indicates

that a process that ate but is still holding one fork.

We sometime say that a process P is in state W (resp. S) on fork f to denote

the situation in which P chose f as its first fork and is waiting for f (resp. holding f).

We use the definition given in [47] for the set G of good states. Namely, a process

is in a good state if it is waiting on or is holding the first fork f (i.e. it is in W or S on

f), and its second fork f ′ is not controlled by the neighbor (i.e. the neighbor is not in

state W or S on f ′). Figure 6.1 illustrates a process in a good state. The states of G

play an important role in the proof since this is a place where the symmetry is broken.

Given the above definition of G, we introduce the notation Gn to denote that the

set of states in which the number of processes in a good state is at least n.

Two processes P and Q form a pair of adjacent processes if the following conditions

are satisfied:

• P and Q are neighbors

• P is situated on the left side of Q at the round table

• P is committed to or holding its left fork fP as first fork, i.e. P is in state W or

S on fP
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Pi = R̄i〈bi〉

| recX ( 1/2τ.Ri(bi).( (1− ε)Ri⊕1(bi⊕1).S
+
ετ.(R̄i〈bi〉 | X))

+
1/2τ.Ri⊕1(bi⊕1).( (1− ε)Ri(bi).S

+
ετ.(R̄i⊕1〈bi⊕1〉 | X)) )

where
S = 1/2τ.R̄i〈bi〉.R̄i⊕1〈bi⊕1〉

+
1/2τ.R̄i⊕1〈bi⊕1〉.R̄i〈bi〉

Table 6.3. A πpa solution for the dining philosophers problem. Here i ∈ {0, 1, . . . , n}
where n is the number of philosophers and ⊕ is the sum modulo n.
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P Q
f’

f

Fig. 6.1. A process P in a good state.

• Q is committed to or is holding its right fork fQ as first fork, i.e. Q is in state W

or S on fQ

Adjacent processes also represent a significant element in the proof. Note that

fork fPQ situated in between the adjacent processes P and Q is not controlled by any

process and that the first of two processes who will try to acquire fPQ as second fork

will succeed and eat.

Figure 6.2 illustrates a pair of adjacent processes.

We introduce the notation An to denote the set of states in which the number of

processes which form adjacent pairs is at least n.

Another important observation is that a process can either have both forks con-

trolled or held by the neighbors or at least one of its forks is free. Let BC denote the

state in which a process that has both forks controlled or held by the neighbors.

In order to prove the correctness of the πpa solution to the dining philosophers

problem we will use the following lemmata. We use the notation Eat to denote the set

of states in which at least one process is eating.

Lemma 6.1. Let n be the number of philosophers. If n is even, then An = Gn −→
1

Eat.

Proof Since we do not have busy waiting, and not all processes can be suspended,

some process will eventually try to get the second fork. Since the process will find the

second fork free, it will also eat. ¤
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P Q

f
PQ

f
P f

Q

Fig. 6.2. A pair of adjacent processes.

Lemma 6.2. Let n be the number of philosophers. If n is odd, then Gn−1 −→
1/2

Eat ∪

Gn−1.

Proof If one of the processes in a good state checks for the second fork then it

eats. If the process that is not in a good state checks for the second fork, then it either

eats, or it finds the fork unavailable. In the second case the process goes back to the state

in which randomly chooses the first fork. If the process proceeds, then it will commit

to the unavailable fork with probability 1/2, and therefore suspend. At this point, only

one of the good processes can move. ¤
Note that if the number of philosophers is odd then the maximum number of

adjacent pairs is n− 1 and the maximum number of processes in a good state is n− 1.

Furthermore we have that Gk−1 implies Ak−1.

Lemma 6.3. Each process in state BC, if it is scheduled at least two times and if it does

not eat in the interval in between, will reach a state different from BC with probability

1/4.

Proof Consider the scenario in Figure 6.3, where P is a process in state BC, fQ

is the fork shared with the left neighbor process Q and fR is the fork shared with the

right neighbor process R. If P flips when it has both forks controlled or held by the

neighbors, and if P does not eat before flipping again, then the second fork must have

been held by the neighbor. Assume without loss of generality that the second fork fQ is
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Fig. 6.3. A process P in state BC.

held by Q. When P flips again (for the second time), fQ can be in one of the following

situations:

If fQ is not held anymore by Q then, with probability at least 1/2, P is not in

BC anymore. This is because if Q has made a random draw before P was scheduled for

its second random draw, then Q has committed to the other fork with probability 1/2.

Therefore fQ is not controlled by Q and P is in BC with probability 1/2. If P makes

the second random draw before Q, then P is already in BC since fQ is free.

If fQ is still held when P makes the second random draw, then with probability

1/2 P will commit to fQ. Since fQ is not available P will suspend. If P makes a third

random draw, then P must have taken fQ and then released it because it has not found

the second fork fR available. Therefore fQ must be released before P ’s third random

draw. If Q makes a random draw before P , then Q will commit to the other fork with

probability 1/2. Hence P moves to a state different from BC with probability 1/2, which

combined with the previous case gives the probability 1/4. If P makes the third random

draw before Q, then P is already in BC since fQ must be free. ¤
We are now ready to show the main result of this section.

Theorem 6.2. Consider the algorithm in Table 6.3 and assume that the scheduler can-

not select a suspended process. Then the algorithm is deadlock-free and livelock-free with

respect to any scheduler.
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Proof We will show that, from any state, a state in which at least one process is

eating is reached with probability 1 under every scheduler. Note that we reason from a

global point of view rather than individual, i.e. we consider the state of all processes at

the same time.

We first show the following progress statement, which states that from a generic

state, with probability 1/2 ∗ 1/4k, the system reaches a states in which a process eats or

either the number of processes or the number of adjacent pairs increases by 1:

Gn ∩ Am −→
1/2∗1/4k

Eat ∪ (Gn+1 ∩ Am) ∪ (Gn ∩ Am+1) (6.1)

Consider a generic state in Gn∩Am. First, observe that in every computation the

flipping action is repeated infinitely often since there is no busy waiting. Second, if k is

the number of philosophers, then between two consecutive random draws performed by

processes that are not in BC at the moment of the random draw, if no process has been

eating, there can be at most 2 ∗ k random draws performed by processes in BC. This

is because the calculation in Lemma 6.3 can be repeated up to k times, and according

to Lemma 6.3 each process in BC that has not eaten, reaches a state different from BC

after two random draws with probability 1/4. This gives the 1/4k component of the

probability in the above progress statement.

Next, consider a process P that is not in BC. Let f be the fork shared with the

left neighbor Q and f ′ be the fork shared with the right neighbor R. Since P is not in

BC, then at least one of the forks f , f ′ is free. Assume, without loss of generality, that

f is the free fork (note that f ′ could be free or controlled by R).

Q and R are in one of the following cases when P makes a random draw: both Q

and R are not in a good state, one of Q and R is in a good state and the other one is

not in a good state or both Q and R are in a good state.

The case in which both Q and R are not in a good state can be further divided

in two subcases:

- if R controls f ′, then, when P makes a random draw, it will commit to f ′ with

probability 1/2. Since P is now in a good state, the total number of processes in a good

state increased by 1 (note that the state of Q and R has not changed).

- if R does not control f ′ then both f and f ′ are available when P makes the

random draw. Hence the size of the set of processes in a good state increases by 1,

because P is now in a good state, and the other processes did not change state.
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If Q is in a good state but R is not in a good state, then with probability 1/2

P commits to f ′ and becomes a process in a good state. Since Q and R maintain their

state, the number of good processes increases by 1. Also note that P and Q now form

an adjacent pair and the number of adjacent pairs increases by 1.

If Q is not in a good state but R is in a good state, then we have the following

subcases:

- if R controls f ′ then with probability 1/2 P commits to f ′ and becomes a process

in a good state. Both Q and R maintain their state and the number of good processes

increases by 1.

- if R does not control f ′ then with probability 1/2 P commits to f and becomes

a process in a good state. R is still in a good state because f ′ is not controlled by P and

Q’s state remains the same. Hence the number of good processes increases by 1.

The last case that we need to consider is when both Q and R are in a good state.

Again we will divide this case in two subcases:

- if R controls f ′ then with probability 1/2 P commits to f ′ and becomes a process

in a good state. Both Q and R maintain their state and the number of good processes

increases by 1.

- if R does not control f ′ and R is in a good state, then f ′ must be R’s second fork.

When P makes a random draw it will commit to f ′ with probability 1/2 and becomes a

process in a good state. However, R is not in a good state anymore because its second

fork f ′ is now controlled by P . The number of processes in a good state remains constant

in this case. On the other hand, Q is still in a good state, P is now in a good state and

the fork f shared with P is free. Therefore P and Q form an pair of adjacent processes

and the number of adjacent pairs increases by 1.

We have showed that whenever a process that is not in BC makes a random draw,

with probability 1/2, either the set of processes in a good state or the number of adjacent

pairs increases by 1. We also know that each process in BC that is scheduled at least

two times and does not eat in the meanwhile, will reach a state different from BC with

probability 1/4. Since this process can be repeated up to k times we get the probability

1/2 ∗ 1/4k for the progress statement (6.1).

Since there are k processes, in the worst case scenario the number of good pro-

cesses and the number of adjacent pairs need to increase by 1 for k times. Therefore

when k is even the system reaches a states in which all processes are in a good state (or

all pairs are adjacent) with probability (1/2 ∗ 1/4k)k. If k is odd a state in which k − 1

processes are in a good state is reached with the same probability.
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By composing the progress statement (6.1) with Lemma 6.2 or Lemma 6.1 we have

that from any generic state we can reach Eat with positive probability ((1/2 ∗ 1/4k)k

and 1/2 ∗ (1/2 ∗ 1/4k)k respectively. Furthermore, if Eat is not reached then we remain,

of course, in a generic state. Hence we can apply Lemma 3.3 (Progress with probability

1) to prove that Eat is reached with probability 1. ¤

Note that this result was also proved independently in [8]. The correctness of

the algorithm in [8] is proved by using a method that has been introduced by the same

authors in [7] to show the convergence of randomized distributed algorithms with respect

to deterministic and memoryless schedulers and arbitrary schedulers.

6.3.4 Correctness of the encoding with respect to testing semantics

It is important to note that πpa (like most process algebra) has a suspension

mechanism associated with the communication actions: if a process can proceed only

by performing a handshaking, then the process will suspend until the partner is ready.

Furthermore the semantics of πpa ensures that a scheduler is obliged to select processes

which are not suspended. Note that in [[x(y).P ]]l (Table 6.2) the acquisition of h (aux-

iliary lock) and of the first lock are done by input prefixes (with no alternatives) and

therefore they will suspend if the locks are unavailable. It is easy to implement such

suspension mechanism in a language like Java by using the wait() and notify() prim-

itives.

Another important ingredient of the correctness proof is that at any point of

the execution of [[P ]] in the graph representing the interaction attempts all cycles are

disconnected (i.e. they are not connected to each other by any path). This is fundamental

because we showed in Chapter 5 that the algorithm of [42] is not livelock-free if the

connection graph (where the forks are the nodes and the philosophers are the arcs)

contains two different non-disjoint cycles, not even under the fairness hypothesis.

Lemma 6.4. Let P be a π-calculus process. Let ζ be any adversary, and let ξ be an

execution of [[P ]] with respect to ζ. For any point of ξ, consider the graph which has as

nodes the principal locks l, and such that there is an arc between l and l′ iff there is a

process (corresponding to an input branch) for which both input actions on l and l′ are
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enabled at some point of the computation. Then all cycles in the graph are disconnected

(i.e. for any pair of different cycles there are no paths connecting one node of the first

to one node of the second).

Proof We show that the scheduler cannot create a situation where two cycles are

connected by a path. We consider all possible configurations in which a node belongs

to more than one cycle, and we show that none of these configurations can occur. Note

that the graph described in this lemma evolves dynamically because a process may die

(thus eliminating the corresponding arc) and because a lock may get communicated to

a new process (thus creating a new arc).

We use the following notation: a directed edge from l to l′ denotes that l is the

local principal lock, l′ is the remote principal lock and the process corresponding to the

arc between l and l′ was able to acquire the auxiliary lock h of the partner. Note that we

have a directed graph in which the indegree of every node is at most 1, i.e. the number

of arcs coming in to the node from other nodes is at most 1.

Figure 6.4 illustrates the three generic configurations in which a node is part of

at least two cycles (more complex configurations can be reduced to these three cases).

Configuration 3Configuration 2Configuration 1

Fig. 6.4. Multiple cycles configurations
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Each of the configurations in Figure 6.4 contains at least two different non-disjoint

cycles. However, none of these configurations is valid. This is because they all have at

least one node with the indegree greater than 1, which means that the auxiliary lock

h corresponding to a choice containing output guards was acquired by more than one

process. According to the encoding in Table 6.2 this is not possible.

Note that it is possible to create non-disjoint cycles different from the ones in

Figure 6.4 if the direction of the arcs is reversed, but the resulting configurations are

also not valid. ¤

We are now ready to state our main result. We begin by showing that, under

proper schedulers, the translated processes reflect the may behavior of the original pro-

cesses, provided that the observer are also translated (Theorem 6.3). To this end, we use

the following two lemmata. In the sequel, given a πpa process P , we denote by P̃ the πa

process obtained from P by removing all the probabilities from the choice constructs.

Lemma 6.5. For every πpa process P and observer O

P mayP O iff P̃ may Õ

Proof

only if) Assume pb(sexec(ν(P |O), ζ)) > 0 for some proper scheduler ζ. Then there

exists an execution ξ of ν(P | O) under ζ such that ξ is successful, i.e. ξ is of the

form

ν(P | O) = Q0
τ−→
p0

Q1
τ−→
p1

Q2
τ−→
p2

. . .

and Qi
ω−→
p

for some i and p. By eliminating the probabilities from ξ, we obtain a

successful interaction of P̃ | Õ, namely:

P̃ | Õ = Q̃0
τ−→ Q̃1

τ−→ Q̃2
τ−→ . . .

and Q̃i
ω−→.
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if) Assume P̃ may Õ. Then there exists an interaction

P̃ | Õ = Q̃0
τ−→ Q̃1

τ−→ Q̃2
τ−→ . . .

such that, for some i, Q̃i
ω−→. Therefore, for suitable probabilities p0, p1, p2, . . . we

have an execution fragment ξ′ of the form

ν(P | O) = Q0
τ−→
p0

Q1
τ−→
p1

Q2
τ−→
p2

. . . Qi

such that, for some p, Qi
ω−→
p

. Furthermore, since ξ′ is finite, we can define a proper

scheduler ζ such that ξ′ is an execution fragment of ν(P | O) under ζ, from which

we derive that Cξ′ ⊆ sexec(ν(P |O), ζ). Hence we have pb(sexec(ν(P |O), ζ)) ≥
pb(ξ′) = p0p1p2 . . . pi > 0. ¤

Next lemma proves that the may testing is preserved by the translation. From

now on, we will assume that ω is the name of the channel on which the action denoting

success is performed, i.e. we ignore the number of parameters. In other words, ω is

not affected by the translation. This assumption allows us to use the same notion of

success for the original and the translated process, thus simplifying the formulation of

the correspondence. In the sequel, we use the symbol =⇒ to represent the reflexive and

transitive closure of τ−→.

Lemma 6.6. For every π process P and observer O

P may O iff [̃[P ]] may [̃[O]]

Proof

only if) This part trivially follows from the observation that for every π processes Q and

Q′, if Q
τ−→ Q′, then [̃[Q]] =⇒ [̃[Q′]], i.e. there are πa processes R0, R1, R2, . . . , Rn

such that

[̃[Q]] = R0
τ−→ R1

τ−→ R2
τ−→ . . . Rn = [̃[Q′]]
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The additional steps are necessary for performing the synchronization protocol.

The processes R1, R2, . . . represent the intermediate states during the execution of

the protocol.

if) This part follows from the observation that for every π processes Q, if [̃[Q]] =⇒ R,

then there exists a π process Q′ such that R =⇒ [̃[Q′]]. Furthermore, if R
ω−→,

then [[Q′]] ω−→. Note that R may not correspond to the translation of any π

process because there may be synchronization protocols which have been started

but not yet completed in R. By completing them we obtain a process which is a

translation of a π process, namely [[Q′]]. The capability of R of performing an ω

step is preserved in [[Q′]] because by definition ω is not an internal action of the

translation. ¤

Theorem 6.3 (Correctness of the encoding with respect to may testing). For

every π process P and observer O

P may O iff [[P ]] mayP [[O]]

Proof From Lemma 6.6 we have that P may O iff [̃[P ]] may [̃[O]]. From Lemma 6.5 we

have that [̃[P ]] may [̃[O]] iff [[P ]] mayP [[O]]. ¤

We now prove the correctness of the embedding also with respect to must testing

(Theorem 6.4). This part more difficult, because the must version of Lemma 6.6 does not

hold, due to the possibility of infinite loops generated by the synchronization protocol.

We need to show that such loops have probability 0.

Theorem 6.4 (Correctness of the encoding with respect to must testing). For

every π process P , and every observer O

P must O iff [[P ]] mustP [[O]]

Proof
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only if) Assume P must O. We have to show that [[P ]] mustP [[O]]. Since [[P ]] | [[O]] =

[[P | O]], we need to show that for all adversaries ζ ∈ P,

pb({ξ ∈ exec(M[[P |O]], ζ) | succ(ξ)}) = 1. Given an interaction of P | O, we can

mimic the same steps up to the point in which a synchronization involving some

choice processes occurs. Suppose that P1, . . . , Pn are the processes involved in

the synchronization. For each pair Pi, Pj which can synchronize, we know that

the interaction (in the original π process) will be successful. The risk is that

[[P1]], . . . , [[Pn]] will loop forever in the synchronization protocol. This will happen

only if none of the processes [[P1]], . . . , [[Pn]] will ever be able to acquire both the

local and the remote lock. However, we can show that this situation has only

probability 0. In fact, after the actions of the form x(r, a, y) (see Table 6.2) have

been executed (synchronized with their corresponding output actions), we are in

the situation in which several parallel processes compete, pairwise, on the same

locks. Consider the graph described in Lemma 6.4. By previous proposition, we

know that each connected component contains at most one cycle. The proof then

proceeds, for each connected component, like in Theorem 6.2.

if) Assume by contradiction that there exists an interaction between P and O of the

form

P | O = Q0
τ−→ Q1

τ−→ Q2
τ−→ . . .

such that, for all i, Qi 6
ω−→. We can then construct an interaction between [[P ]] and

[[O]] of the form

[[P | O]] = [[Q0]] =⇒ [[Q1]] =⇒ [[Q2]] =⇒ . . .

and for all i, [[Qi]] 6
ω−→. This contradicts the hypothesis that [[P ]] mustP [[O]].

¤

The above results refer to a notion of correctness which is specifically formulated

for testing semantics, so we should justify their generality and strength. A more standard

notion of correctness, used in several works about translations (like for instance [32]) is

the following: two translated processes are required to be semantically distinguished

whenever the original processes are. The following corollary, which is an immediate
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consequence of the above theorem, states correctness in the standard process algebra

sense.

Corollary 6.1. For every π-calculus processes P and Q, if [[P ]] 'P [[Q]] then P ' Q.

Proof Assume [[P ]] 'P [[Q]]. Then, for every πpa observer O, [[P ]] may O iff

[[Q]] may O, and [[P ]] must O iff [[Q]] must O. In particular, this holds for O = [[O′]],
for any π process O′.

From Theorem 6.3 and Theorem 6.4 we deduce that, for every O′, P may O′ iff

Q may O′, and P must O′ iff Q must O′. ¤

Note that the viceversa (full abstraction) does not hold: This is due to the fact

that, if we allow arbitrary observers in πpa, then we can distinguish [[P ]] and [[Q]] by

using observers which interact directly with their actions, i.e. without following the

synchronization protocol enforced by the algorithm.
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Chapter 7

A distributed implementation of πpa in Java

In this chapter, we present an experimental implementation of the synchronization-

closed πpa-calculus, namely the subset of πpa consisting of processes in which all occur-

rences of communication actions x(y) and x̄y are under the scope of a restriction operator

νx. In other words this means that all communication actions are forced to synchronize.

The implementation is compositional with respect to all the operators, and distributed,

i.e. homomorphic with respect to the parallel operator. The implementation uses Java

as the target language.

We restrict the implementation to the synchronization-closed πpa-calculus because

the full calculus is much more abstract than Java. For example in the πpa-calculus there

are computations that are virtual and cannot be expressed in a compositional way.

The purpose of this implementation is to prove that πpa is a sensible paradigm

for the specification of distributed algorithms, since it can be implemented without loss

of expressivity. We can then argue that our encoding fills the gap between the expres-

siveness of the π-calculus and its distributed implementation.

7.1 General architecture

In the following we describe the high level architecture of the implementation.

Implementation details can be found in section 7.2 and Appendix B.

The πpa channels are implemented as Java threads. Each πpa channel manages

two lists: availMessages and waitingProcesses. The availMessages list is used by πpa

processes to send messages, namely a process executing an output action puts the datum

that it wants to send in the availMessages list of the corresponding channel. For example,

a process x̄y will insert the Java encoding of the πpa process y in the availMessages

list of the πpa channel x. The waitingProcesses list contains requests generated by

processes executing guarded choices. A probabilistic choice process inserts a request,

which consists in a channel c that is private to the probabilistic choice process, in the

waitingProcesses list of each input channel in the probabilistic choice and then waits for
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a notification to make a choice. The channel c is used as a buffer where all πpa channels

corresponding to the branches of the choice are inserted once they become available for

synchronization. A πpa channel processes the request only if it can participate in the

handshaking, i.e. the availMessages list is not empty, in which case removes the first

element in availMessages, places itself in the availChannels list of channel c and notifies

the probabilistic choice that issued the request. When notified, the probabilistic choice

process selects with normalized probability one of the πpa channels in c and enables its

corresponding branch.

The thread corresponding to a πpa channel is suspended if no requests or data

are available. Hence the thread is waken up by a probabilistic choice process or by an

output process. Note that c’s type is different from the πpa channels.

Channel c also contains a time stamp t which is used to disable the requests of

branches belonging to probabilistic choice processes that already made a choice, but still

have requests in the waitingProcesses list. Whenever a choice is made the time stamp

of the channel c corresponding to the probabilistic choice process is increased, such that

only requests having the value of the time stamp equal to this value are valid. The

invalid requests are removed from channels’ lists when detected.

If a probabilistic choice contains both input guarded and τ -guarded processes,

then it first tries to take a local decision. If a τ -guarded branch is selected then its

continuation is enabled. No other steps are necessary in this case since a τ -guard is in

fact a blind choice. Otherwise a request is inserted in the waitingProcesses list of each

input channel in the probabilistic choice and the algorithm proceeds as described in the

beginning of this section.

7.2 Implementation detail

As mentioned before, πpa channels are implemented as threads, namely as objects

of the PiChannel class. Note that the methods that implement the output and the input

actions of πpa processes are both synchronized, because the placement and removal of a

datum must be done atomically. The channels that are private to probabilistic choice

processes are implemented as objects of the Channel class.

In order to generate the Java implementation of the πpa processes, we chose to use

an Extensible Markup Language (XML) representation of the πpa processes. XML is an

universal format that is widely used to represent structured data and documents. XML

was developed by the W3C consortium. The advantage of using XML for representing
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πpa processes is that is platform-independent, easy to parse, and comes with a standard

set of functions calls for manipulating XML files from a programming language.

All XML files representing πpa processes are validated against a Document Type

Definition (DTD) called ProbPiProcess.dtd. The purpose of a Document Type Defini-

tion is to define the legal building blocks of an XML file and ensure that XML documents

are well-formed. A DTD in an XML document provides a list of the elements, attributes,

comments, notes, and entities contained in the document. It also indicates their rela-

tionship to one another within the document. In other words, a DTD is the grammar

of an XML document. The rules defined by the ProbPiProcess.dtd file correspond to

the grammar of πpa-calculus. In this way only XML documents representing valid πpa

processes are allowed.

The XML representation of πpa processes is parsed using a Document Object

Model (DOM) parser. The XML DOM is a programming interface for XML documents

which defines the way an XML document can be accessed and manipulated from a pro-

gramming language. With the XML DOM, a programmer can create an XML document,

navigate its structure, and add, modify, or delete its elements. The DOM parser is used

to load an XML document into the memory and to retrieve and manipulate the informa-

tion in the XML document. The DOM represents a tree view of the XML document. The

documentElement is the top-level of the tree. This element has one or many childNodes

that represent the branches of the tree. A Node Interface is used to access the indi-

vidual elements in the XML node tree. The W3C site http://www.w3.org provides a

comprehensive reference of the XML DOM.

For example, a process executing an output action x̄y is represented by the fol-

lowing XML element:

<Send>
<Channel>x</Channel>
<Channel>y</Channel>

</Send>

The DOM parser creates a node for this XML element in the node tree represent-

ing the XML document, and two childNodes, one for each channel.

Figure 7.1 shows the XML node tree that is created for the following XML ele-

ments representing the process νx(x̄y):

<Restriction>
<Channel>x</Channel>
<Send>
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<Channel>x</Channel>
<Channel>y</Channel>

</Send>
</Restriction>

Restriction

Channel

x y

Channel Send

Channelx

Fig. 7.1. An XML node tree

In order to generate the Java implementation of a πpa process we process each

node in the XML node tree representing the process and generate Java source code based

on the type of the node.

The code for the Java implementation of πpa is not included here for obvious

space reasons, but it is available on the Web from the following URL:

http://www.cse.psu.edu/~herescu/Implementation/

In the event that this URL should become unavailable, we recommend to search

the Internet for the new location, using the key words ”Mihaela Herescu”.

An outline of the encoding [(·)] that is used to implement the πpa-calculus is

presented in the following.
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Probabilistic choice

[(
n∑

i=1
pixi(y).Pi )] =

{ while (availChannels.size() == 0) {
try {

wait();
} catch (InterruptedException e) {}

}
timeStamp++;
Random gen = new Random();
float pb = 1 - gen.nextFloat();
float l = 0;
PiChannel theChannel = (PiChannel)availChannels.get(0);
float r = (float)(theChannel.prob);
float normFactor = 0;
for (int i=0; i < availChannels.size(); i++) {

normFactor += ((PiChannel)availChannels.get(i)).prob;
}
if ((l/normFactor) < pb && pb < (r/normFactor)) {

availChannels.remove(theChannel);
return theChannel;

}
for (int i=1; i < availChannels.size(); i++) {

theChannel = (PiChannel)availChannels.get(i);
l = r;
r += theChannel.prob;
if ((l/normFactor) < pb && pb < (r/normFactor)) {

boolean rem = availChannels.remove(theChannel);
return theChannel;

}
}

}

The encoding of the probabilistic choice is executed within a synchronized method.

The thread corresponding to the probabilistic choice process suspends when no input

guards can be enabled.
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Output action

[( x̄y )] = { x.send(y); }

Restriction

[( νxP )] = { PiChannel x = new PiChannel(); [(P )] }

Parallel

If our language is provided with a parallel operator, then we can just have a

homomorphic mapping:

[(P1 | P2 )] = [(P1 )] | [(P2 )]

In Java, however, there is no parallel operator. In order to mimic it, a possibility is to

define a new class for each process we wish to compose in parallel, and then create and

start an object of that class. We use inner classes to define the parallel processes:

class processP1 extends Thread {

public void run() {

[(P1 )]

}

}

class processP2 extends Thread {

public void run() {

[(P2 )]

}

}

[( P1 | P2 )] = { new processP1().start(); new processP2().start(); }
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Recursion

Remember that the process rec
X

P represents a process X defined as X
def= P ,

where P may contain occurrences of X. For each such process, we define the following

class as an inner class:

class P extends Thread {

public void run() {

[(P )]

}

}

Then define:

[( rec
X

P )] = { new P().start(); }

[( X )] = { new P().start(); }

7.3 Related work

The implementation of different variants of the asynchronous π-calculus has been

investigated in the literature since it could provide a very attractive intermediate lan-

guage for compilers of concurrent languages.

Pict [40] is a strongly-typed concurrent programming language based on the π-

calculus. The core language of Pict is an asynchronous, choice-free fragment of the

π-calculus enriched with records and pattern matching. The compilation of Pict to

C is based on the abstract machine specification defined by David Turner in [51]. The

abstract machine is designed for implementation on a uniprocessor system and concurrent

execution is simulated by interleaving the execution of processes. Each channel has a

channel queue containing readers, writers or replicated readers processes suspended on

that channel. Items in a channel queue are ordered since the process at the head of a

channel queue is always waken up when a communication becomes possible. A run queue

stores those processes which are currently runnable. The process at the head of the run

queue is always executed first. In case there are other processes in the run queue when

the process that is currently executing terminates, the next process in the run queue is

executed. This procedure is repeated as long as the run queue is not empty. In order to
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ensure that all runnable processes will eventually be executed, newly created processes

are placed on the end on the run queue. Thus fairness is achieved by using FIFO channel

queues and a round-robin policy for process scheduling. All channels which have been

created are stored in a heap. For every channel, the heap stores all processes that are

waiting to communicate on that channel. The parallel composition is encoded using C’s

sequential operator.

Nomadic Pict [55] is a concurrent programming language based the Nomadic

π-calculus. The Nomadic π-calculus is an extension of the choice-free asynchronous π-

calculus which provides support for distributed programming. The Nomadic π-calculus

formally represents the notion of process mobility and system failure in a distributed

network. Nomadic Pict is an extension of Pict enhanced with a notion of locations,

agents, migration, distribution, and failures. See [52], [53] for more information about

Nomadic π-calculi and Nomadic PICT.

[22] introduces a virtual machine specification and its implementation for a variant

of the π-calculus - the TyCO calculus. TyCO is based on the asynchronous π-calculus,

featuring built-in objects which interact by sending messages to shared communication

channels. The semantics used for the design of the virtual machine is based on Turner’s

work on the π-calculus, but introduces support for objects, uses recursion rather than

replication and explicitly defines the concurrency unit as the thread. The virtual machine

is implemented as a byte-code emulator. [22] proposes an orthogonal extension of the

TyCO calculus to provide support for distributed computations and code mobility.
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Chapter 8

Conclusions and Future work

In this dissertation, we presented a probabilistic extension of the asynchronous

π-calculus based on the model of probabilistic automata. We have argued that our

calculus is more powerful than the asynchronous π-calculus by showing an example of a

distributed problem that cannot be solved with the asynchronous π-calculus but can be

solved with the probabilistic asynchronous π-calculus, namely the election of a leader in

a symmetric network. We showed that the algorithm we proposed is correct, i.e. that

the leader will eventually be elected, with probability 1, under every proper scheduler.

The probabilistic asynchronous π-calculus was then used as an intermediate lan-

guage for a fully distributed implementation of the π-calculus. To this end, we proposed

a uniform, compositional encoding of the π-calculus into the probabilistic asynchronous

π-calculus and we showed its correctness with respect to a π
pa

extension of a notion of

testing semantics.

Finally, in order to prove that the probabilistic asynchronous π-calculus is a sen-

sible paradigm for the specification of distributed algorithms, we defined a distributed

implementation of π
pa

in the Java language.

8.1 Future work

There are several possible future direction for the work presented in this disser-

tation.

One possible direction for this work is the study of formal tools for verification

of properties of programs written in the probabilistic asynchronous π-calculus. One

natural approach is to extend the Hennessy-Milner logic to the probabilistic automata

model, possibly following the lines of Segala and Lynch in [49]. Another direction is the

development of a proof system for properties expressed in this logic, namely a system

which will allow inferences of the satisfiability relation between a π
pa

process and a

certain property.
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For the generalized dining philosophers problem we have focused on the existence

of a solution, and we have not address any efficiency issue. Clearly, efficiency is an

important attribute for an algorithm. The evaluation of the complexity of our algorithms,

and possibly the study of more efficient variants, are open topics for future research.

Another open problem that seems worth exploring is the symmetric and fully distributed

solution in the even more general case of hypergraphs-like connection structures, in which

a philosopher may need more than two forks to eat.

The implementation of π
pa

uses Java as the target language. This choice was

convenient because of the concurrency primitives provided by Java, but a more efficient

distributed implementation in a low-level language would be interesting to investigate.

The current implementation of π
pa

in Java could be enhanced with several fea-

tures. The encoding generator is currently command line driven. A graphical user inter-

face would be a nice feature to add. Also, the XML representation of the π
pa

processes

could be enhanced by using an XSL stylesheet for formatting the XML documents into

a HTML interface. Finally, it would be useful to have more examples of π
pa

processes

that can be used with the encoding generator tool.
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Appendix A

Transition system for the πpa-calculus

Table A.1 presents an equivalent transition system for the π
pa

-calculus where no

assumptions on the bound variables are made. Note that the side condition on the rule

Sum is necessary for treating cases like 1/2 x(y).0+1/2 x(y).0. This condition could be

eliminated by assuming that the transition groups are multiset instead than sets.
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Table A.1. Alternative formulation of the probabilistic transition system for the π
pa

-
calculus.
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Appendix B

An example of generating a Java implementation

for a πpa process

The π
pa

process used in this example is P = (νx1)(νx2)(P1 | P2 | Q), where

P1 = x̄1y, P2 = x̄2z, Q = 1/3x1(v1).0 + 2/3x2(v2).R, R = w̄q.

The XML representation of these π
pa

processes is found in the file ProbPiProcess.xml.

After running the encoding generator on the XML document, a Java class called

ProbPiProcess.java is created. This class contains the Java implementation of

the π
pa

process P .

The following sequence of commands are executed to generate and run the Java

implementation of process P . If the EncodingGenerator is run without any command

line arguments, then a message showing the usage is output. Note that several XML

files can processed in the same command.

C:\JavaEncoding>javac encoding\java\*.java

C:\JavaEncoding>java encoding.java.EncodingGenerator

Usage:EncodingGenerator -outputDir <outputDirectory> -inputFiles
<inputFilename 1> <inputFilename2> ... <inputFilenameN>

where:

<outputDirectory> is the relative path from the current
directory where the Java encoding files will be generated

the arguments <inputFilename> are the names of the xml files
containing the probabilistic pi processes for which the Java
encoding will be generated

C:\JavaEncoding>java encoding.java.EncodingGenerator -outputDir
encoding\samples \output -inputFiles
encoding\samples\ProbPiProcess.xml

C:\JavaEncoding>javac encoding\samples\output\ProbPiProcess.java



107

C:\JavaEncoding>java encoding.samples.output.ProbPiProcess

Sent value y on pi channel x1

Sent value z on pi channel x2

Probabilistic choice process added request to pi channel x1

Pi channel x1 processed request

Message y removed from available messages of pi channel x1

Probabilistic choice process added request to pi channel x2

Pi channel x2 processed request

Message z removed from available messages of pi channel x2

Probabilistic choice: selected channel x2 with probability 0.67

Invalid timestamp value detected. Resending consumed message: Sent
value y on pi channel x1

Sent value q on pi channel w

Note that process P contains a probabilistic choice. Therefore, if we run the

ProbPiProcess class several times, then different behaviors are obtained. The other

possible outcome for the probabilistic choice in P is shown in the following:

C:\JavaEncoding>java encoding.samples.output.ProbPiProcess

Sent value y on pi channel x1

Sent value z on pi channel x2

Probabilistic choice process added request to pi channel x1

Pi channel x1 processed request

Message y removed from available messages of pi channel x1

Probabilistic choice process added request to pi channel x2

Pi channel x2 processed request
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Message z removed from available messages of pi channel x2

Probabilistic choice: selected channel x1 with probability 0.33

Invalid timestamp value detected. Resending consumed message: Sent
value z on pi channel x2

Note that the encoding generator uses the Java API for XML Processing (JAXP)

and the Crimson implementation of the Java XML parser. JAXP is available to download

from http://java.sun.com/xml/download.html.

Crimson can be found at http://xml.apache.org/crimson/. The following files

have to be added to the classpath in order to compile and run the above classes: crim-

son.jar and jaxp-api.jar.
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