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Abstract

This paper aims at unifying and clarifying the recent advances in the
analysis of the fractional and generalized fractional Partial Differential
Equations of Caputo and Riemann-Liouville type arising essentially from
the probabilistic point of view. This point of view leads to the path inte-
gral representation for the solutions of these equations, which is seen to be
stable with respect to the initial data and key parameters and is directly
amenable to numeric calculations (Monte-Carlo simulation). In many cases
these solutions can be compactly presented via the wide class of operator-
valued analytic functions of the Mittag-Leffler type, which are proved to be
expressed as the Laplace transforms of the exit times of monotone Markov
processes.
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1. Introduction

The simplest Cauchy problem for the linear equation of Caputo or
Caputo-Dzherbashyan type

Dβ
a+⋆f(x) = −λf(x), f(a) = Y,

with β > 0 is known to have the unique solution

f(x) = Eβ(−λxβ)Y,

where Eβ is the Mittag-Leffler function. Lots of research in the modern
theory of fractional PDEs is devoted to various extensions of this equation,
when λ is replaced by an unbounded operator in some Banach space (for

instance, a diffusion operator) and Dβ
a+⋆ by various versions of generalized

derivatives including mixtures of fractional derivatives.
Generalized fractional calculus was initially developed by extending

fractional integrals to the integral operators with more general integral
kernels and then defining the fractional derivatives as the compositions of
these integrals with usual derivatives.

Our alternative approach was suggested in [41] and was motivated by
probabilistic interpretation of fractional derivatives. It starts with the def-
inition of the one-sided generalized fractional derivatives as the generators
of monotone Markov or sub-Markov processes. The generalized fractional
integrals is then defined as the corresponding right inverse operators. The
objective of this paper is to overview the development of the probabilistic
approach and to explain in detail how the most fundamental examples of
generalized fractional operators and related fractional equations fit to the
general probabilistic framework. To make the text accessible to the readers
with a mild background in probability we stress everywhere when possible
the analytic counterparts of the formulas and their interpretations.

The paper is organised as follows. In Section 2 we show how our gener-
alized mixed fractional operators can be equivalently introduced from the
three points of views, bringing together the languages and methods of prob-
ability theory, operator semigroups and generalized functions (and related
pseudo-differential equations) and giving the meaning to the generalized
fractional integrals in terms of Dynkin’s martingale, potential operators
and fundamental solutions, respectively.

In Section 3 we recall the main generalized fractional operators dis-
cussed in the literature and derive their probabilistic representations as the
generators or potential operators of appropriate Markov processes or semi-
groups. For completeness, we explain briefly how the introduction of these
operators can be motivated via two analytic approaches: interpolation from
integer-valued iterations and the dressing by the operators of multiplication
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and the change of variables. Thus we show how various different operators
scattered through the literature arise in a unified way from simple general
ideas.

Section 4 deals with the simplest linear fractional PDEs. Once the
generalized fractional derivatives are expressed as the generators of certain
Markov processes, probability theory provides a universal tool for obtain-
ing solutions to various boundary-value processes via the so-called Dynkin
martingale. This approach leads directly to the uniqueness of the solutions
and their integral representations, but often fails to provide the existence of
(sufficiently regular) solutions. However, in the case of monotone Markov
processes that correspond to the equations with one-sided fractional deriva-
tives the existence problem can be settled in a unified way leading to the
introduction of the new class of generalized operator-valued Mittag-Leffler
type functions. These functions, as their classical counterpart, can be repre-
sented as the Laplace transforms of positive measures, expressed in terms
of the transition probabilities of the corresponding stochastic processes,
or, in analytic language, the Green functions of the Cauchy problems for
the corresponding generalized mixed-fractional derivative operators. These
measures turn out to be the distributions of the exit times of the underlying
processes. This representation implies both the well-posedness and natu-
ral regularity properties of the solutions in various classes of classical and
generalized solutions. It is also well suited for numeric schemes, because of
its explicit integral form.

Section 5 we touch upon more general classes of fractional linear prob-
lems including two-sided problems and the equations with higher order and
partial fractional derivatives.

Section 6 is devoted to additional bibliographic comments and devel-
opments.

The following notations for function spaces will be used:
For a closed or open subset S of Rd, B(S) and C(S) are the Banach

spaces of bounded measurable and continuous functions on S respectively,
equipped with the sup-norm, C∞(S) is the closed subspace of C(S) con-
sisting of functions vanishing at infinity, Cuc(S) is the closed subspace of
C(S) consisting of uniformly continuous functions.

Ck(S) is a Banach space of k times continuously differentiable functions
with bounded derivatives on S with the norm being the sum of the sup
norms of the function itself and all its partial derivatives up to and including
order k. For a closed S the derivatives on the boundary are understood as
the limits of the derivatives defined in their interiors.
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Apart from these standard notations, we introduce some more specific
ones. For a subset A ⊂ S let

Ckill A(S)={f ∈C(S) : f |A=0}, CconstA(S)={f ∈C(S) : f |A is a constant}.
Moreover, for A ⊂ S we shall consider the space C(A) to be the subset of
B(S) obtained by setting the values of the functions to zero outside A.

By 1A we shall denote the indicator function of a set A. Specifically,
1≥a is the indicator of the half-line {y ≥ a}.

The letters E and P will be used to denote the expectation and prob-
ability with respect to various Markov processes.

2. Generalized fractional operators and Markov processes

2.1. Preliminaries: Standard fractional derivatives. Let Iaf be the
integration operator defined on the set of continuous curves f ∈ C([a, b])
as Iaf(x) =

∫ x
a f(t) dt. Integration by parts yields

I2af(x) =

∫ x

a
(Iaf)(y) dy =

∫ x

a
(x− y)f(y) dy.

Similarly by induction one gets the following formula for the iterated Rie-
mann integral

Ina f(x) =
1

(n− 1)!

∫ x

a
(x− t)n−1f(t)dt, n = 1, 2, 3, ... . (2.1)

This formula motivates the definition of the (left) fractional or Riemann-
Liouville (RL) integral of order β > 0:

Iβa f(x) = Iβa+f(x) =
1

Γ(β)

∫ x

a
(x− t)β−1f(t)dt. (2.2)

Noting that the derivation is the inverse operation to usual integration,
the definition (2.2) of the fractional integral suggests two notions of frac-
tional derivative, the so-called RL (left) derivatives of order β ∈ (n, n+1),
n a nonnegative integer (where x > a):

Dβ
a+f(x) =

dn+1

dxn+1
In+1−β
a+ f(x) =

1

Γ(n+ 1− β)

dn+1

dxn+1

∫ x

a
(x− t)n−βf(t)dt,

(2.3)
and the (left) Caputo-Dzherbashyan (CD) derivatives of order β ∈ (n, n+1):

Dβ
a+∗f(x)=In+1−β

a

dn+1

dxn+1
f(x)=

1

Γ(n+1−β)

∫ x

a
(x− t)n−β

[

dn+1

dtn+1
f

]

(t)dt.

(2.4)

Remark 2.1. The CD derivative was initially introduced by Liouville
(see [23]) and actively studied by Dzherbashyan, see e.g. [14], and by
Caputo (see [65]). For more details on the history and basics of classical
(standard) Fractional Calculus (FC) we recommend the book [70].
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In this paper we shall be mostly concerned with the case β ∈ (0, 1) and
its extensions, and occasionally look at the derivatives of higher order as
the compositions of the derivatives of order β ∈ (0, 1). For β ∈ (0, 1) the
definitions of the RL and CD derivatives turn to

Dβ
a+f(x) =

d

dx
I1−β
a+ f(x) =

1

Γ(1− β)

d

dx

∫ x

a
(x− t)−βf(t)dt, x > a, (2.5)

and respectively

Dβ
a+⋆f(x) = I1−β

a

[

d

dx
f

]

(x) =
1

Γ(1− β)

∫ x

a
(x− t)−β

[

d

dt
f

]

(t)dt, x > a.

(2.6)
As is seen by direct calculations (see e.g. Appendix in [41]), for smooth

enough f ,

Dβ
a+f(x) =

1

Γ(−β)

∫ x−a

0

f(x− z)− f(x)

z1+β
dz +

f(x)

Γ(1− β)(x− a)β
, (2.7)

Dβ
a+⋆f(x) =

1

Γ(−β)

∫ x−a

0

f(x− z)− f(x)

z1+β
dz +

f(x)− f(a)

Γ(1− β)(x− a)β
, (2.8)

implying

Dβ
a+⋆f(x) = Dβ

a+[f − f(a)](x) = Dβ
a+f(x)−

f(a)

Γ(1− β)|x− a|β . (2.9)

In particular, it follows that for smooth bounded integrable functions,
the RL and CD derivatives coincide for a = −∞, and one defines the
fractional derivative in generator form as their common value:

dβ

dxβ
f(x) = Dβ

+f(x) = Dβ
−∞+f(x) = Dβ

−∞+⋆f(x)

=
1

Γ(−β)

∫ ∞

0

f(x− z)− f(x)

z1+β
dz. (2.10)

Another useful rewriting of (2.7) and (2.8) (used in Section 3) is ob-
tained by the change of the variable of integration:

Dβ
a+f(x) =

1

Γ(−β)

∫ x

a

f(y)− f(x)

(x− y)1+β
dz +

f(x)

Γ(1− β)(x− a)β
, (2.11)

Dβ
a+⋆f(x) =

1

Γ(−β)

∫ x

a

f(y)− f(x)

(x− y)1+β
dz +

f(x)− f(a)

Γ(1− β)(x− a)β
. (2.12)

When β ∈ (0, 1) and x < a, the corresponding right derivatives can be
introduced by the formulas

Dβ
a−f(x) =

1

Γ(−β)

∫ a−x

0

f(x+ z)− f(x)

z1+β
dz +

f(x)

Γ(1− β)(a− x)β
, (2.13)
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Dβ
a−⋆f(x) =

1

Γ(−β)

∫ a−x

0

f(x+ z)− f(x)

z1+β
dz +

f(x)− f(a)

Γ(1− β)(a− x)β
, (2.14)

implying

Dβ
a−⋆f(x) = Dβ

a−[f − f(a)](x) = Dβ
a−f(x)−

f(a)

Γ(1− β)(a − x)β
. (2.15)

The right RL and CD derivatives coincide for a = ∞, and one defines
the fractional derivative in generator form as their common value:

dβ

d(−x)β
f(x) = Dβ

−f(x) = Dβ
∞−f(x) = Dβ

∞−⋆f(x)

=
1

Γ(−β)

∫ ∞

0

f(x+ z)− f(x)

z1+β
dz. (2.16)

2.2. Generalized fractional differential operators. The fractional de-
rivative dβf/dxβ, β ∈ (0, 1), from (2.10) was suggested as a substitute to
the usual derivative df/dx, which can model some kind of memory by tak-
ing into account the past values of f . An obvious extension widely used in
the literature (see e.g. [18], [62], [81], [26] and references therein) represent
various mixtures of such derivatives, both discrete and continuous,

N
∑

j=1

aj
dβjf

dxβj
,

∫ 1

0

dβf

dxβ
µ(dβ). (2.17)

To take this idea further, one can observe that dβf/dxβ represents a
weighted sum of the increments of f , f(x − y) − f(x), from various past
values of f to the ’present value’ at x. From this point of view, the natural
class of generalized mixed fractional derivative represent the causal integral
operators

D
(ν)
+ = −L′

ν , L′
νf(x) =

∫ ∞

0
(f(x− y)− f(x))ν(dy), (2.18)

with some positive measure ν on {y : y > 0} satisfying the one-sided Lévy
condition:

∫ ∞

0
min(1, y)ν(dy) < ∞, (2.19)

which is just the condition ensuring that Lν is well-defined at least on
the set of bounded infinitely smooth functions on {y : y ≥ 0}. The sign
− is introduced to comply with the standard notation of the fractional
derivatives, so that, for instance,

dβ

dxβ
f(x) = Dβ

−∞+ = D
(ν)
+

with ν(y) = −1/[Γ(−β)y1+β ] (note that Γ(−β) < 0).
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The dual operators to Lν are given by the anticipating integral opera-
tors (weighted sums of the increments from the ’present’ to any point ’in
future’):

D
(ν)
− = −Lν , Lνf(x) =

∫ ∞

0
(f(x+ y)− f(x))ν(dy). (2.20)

As one of the most studied examples ofD
(ν)
+ , let us mention the so-called

tempered fractional derivatives given by the measure

ν(dy) = Ce−λyy−1−β (2.21)

with constants C, λ > 0 (see [6] and [58]). Section 3.4 yields another point
of view on this derivative.

Looking at (2.10) with ’probabilistic eyes’ one recognises in the oper-
ators −dβf/dxβ, β ∈ (0, 1) the generators of stable Lévy subordinators
with the inverted direction (see e.g. [58], Ch.3 and [40], Ch.1 and 8), the
operators −dβf/d(−x)β representing the generators of these subordinatots
with the standard direction. Thus the probabilistic point of view suggests
to take as fully mixed extensions of these operators the general Lévy sub-
ordinators, which leads again to the same operators (2.18) and (2.20), the
condition (2.19) being the well known condition of the theory of Lévy pro-
cesses defining the one-sided Lévy measures.

Remark 2.2. Standard Lévy subordinators are defined as increasing
processes, and thus operators (2.18) (which are more natural for fractional
derivatives) are marked by primes.

One can weight differently the points in past or future depending on the
present position, and one can also add a local part to complete the picture,
leading to the operators

D
(ν,γ)
+ = −Ll

ν,γ , Ll
ν,γf(x) =

∫ ∞

0
(f(x− y)− f(x))ν(x, dy)− γ(x)

df

dx
,

(2.22)
with a non-negative b(x) and transition kernel ν(x, .),

∫

min(1, y)ν(x, dy) <
∞, which capture in full the idea of ’weighting the past’ and which can
be called the one-sided, namely left or causal, weighted mixed fractional
derivatives of order at most one. Symmetrically, one can define the right
or anticipating weighted mixed fractional derivatives of order at most one
as

D
(ν,γ)
− = −Lr

ν,γ , Lr
ν,γf(x) =

∫ ∞

0
(f(x+ y)− f(x))ν(x, dy) + γ(x)

df

dx
.

(2.23)
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Remark 2.3. Notice that Ll and Lr are dual only if ν and b do not
depend on x.

From the probabilistic point of view the extension to (2.22) and (2.23)
represents the transition from time homogeneous monotonic processes to
arbitrary decreasing or increasing Feller processes; operators (2.22) and
(2.23) are known to represent the general form of the generators of such
processes (Courrège theorem, see e.g. [40]).

To link with the theory of pseudo-differential operators, it is worth not-

ing that the operators D
(ν)
+ and D

(ν)
− are ΨDOs with the symbols −ψν(−p)

and −ψν(p), where

ψν(p) =

∫ ∞

0
(eipy − 1)ν(dy)

is the symbol of the operator Lν .

If ν is finite, the operators D
(ν)
+ are bounded, which is not the case for

usual derivatives. Thus the proper extensions of the derivatives represent

only the operator D
(ν)
+ arising from infinite measures ν satisfying (2.19).

The operators arising from finite ν can be better described as the mixtures
of finite differences approximating the derivatives.

The operatorsD
(ν)
± represent the extensions of the fractional derivatives

Dβ
−∞+ and Dβ

∞− in generator form. Looking for the corresponding exten-

sions of the operators Dβ
a± and Dβ

a±∗ with a finite a we note that, by (2.8)

and (2.14), Dβ
a+∗ (resp. Dβ

a−∗) is obtained from Dβ
−∞+ (resp. Dβ

∞−) by the
restriction of its action to the space Cconst (−∞,a](R) (resp. Cconst [a,∞)(R).
Therefore, the analogs of the CD derivatives should be defined as

D
(ν)
a+∗f(x) = −

∫ x−a

0
(f(x− y)− f(x))ν(dy)−

∫ ∞

x−a
(f(a)− f(x))ν(dy),

D
(ν)
a−∗f(x) = −

∫ a−x

0
(f(x+ y)− f(x))ν(dy)−

∫ ∞

x−a
(f(a)− f(x))ν(dy).

(2.24)

By (2.9) and(2.13), the operators Dβ
a+ or Dβ

a−, the analogs of the
Riemann-Liouville derivatives, are obtained by further restricting the ac-

tions of Dβ
+ and Dβ

− to the spaces Ckill (−∞,a](R) and Ckill [a,∞)(R):

D
(ν)
a+f(x) = −

∫ x−a

0
(f(x− y)− f(x))ν(dy) +

∫ ∞

x−a
f(x)ν(dy),

D
(ν)
a−f(x) = −

∫ a−x

0
(f(x+ y)− f(x))ν(dy) +

∫ ∞

x−a
f(x))ν(dy).

(2.25)
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Similarly, the derivatives with a finite a based on the general one-sided
operators (2.23) are obtained by the same reduction of these operators,
that is, say for the left derivatives, they are given by

D
(ν,γ)
a+∗ f(x)=−

∫ x−a

0
(f(x− y)− f(x))ν(x, dy)

− (f(a)− f(x))

∫ ∞

x−a
ν(x, dy) + γ(x)

df

dx
,

D
(ν,γ)
a+ f(x)=−

∫ x−a

0
(f(x− y)−f(x))ν(x, dy)+f(x)

∫ ∞

x−a
ν(x, dy)+γ(x)

df

dx
.

(2.26)
From the probabilistic point of view it is then seen that the operators

(2.8) are the generators of the modifications of the stable subordinators
obtained by forbidding them (interrupting on an attempt) to cross the
boundary x = a with an a ∈ R, that is, all jumps aimed to jump over
the chosen barrier-point a are forced to land exactly at a. On the other
hand, the operators (2.7) are the generators of the modifications of the
stable subordinators obtained by killing them on an attempt to cross the
boundary x = a. Applying the same procedure to operators (2.23) and
(2.22) lead to the operators (2.24) and (2.26), which represent thus the
generators of Markov processes interrupted or killed on an attempt to cross
the boundary point a.

Finally one can further extend these mixed derivatives by including
additional killing mechanisms or by mixing killing and stopping (say, by
working with the linear combinations of of CD and RL derivatives). Such
extension leads to the following mixed derivative operators:

D
(ν,γ,S,R)
a+ f(x) = −

∫ x−a

0
(f(x− y)− f(x))ν(x, dy)

− (f(a)− f(x))S(a, x) + f(x)K(a, x) + γ(x)
df

dx
, (2.27)

where S(a, x) and K(a, x) are the rates of stopping and killing respectively.
Some formulas simplifies (this is especially relevant for the extensions to
manifolds) if one counts jumps by their finite points (rather than relative
to x) leading to the following modified version of (2.27):

D
(ν,γ,S,R)
a+ f(x) = −

∫ x

a
(f(s)− f(x))ν̃(x, ds)

− (f(a)− f(x))S(a, x) + f(x)K(a, x) + γ(x)
df

dx
. (2.28)
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Remark 2.4. One can show that these operators −D
(ν,γ,S,R)
a+ repre-

sent the most general generators (under some mild technical condition) of
decreasing sub-Markov Feller processes on [a,∞).

2.3. Generalized fractional integrals: shift invariant case. Let us
see what should be the proper analog of the fractional integral exploit-
ing approaches from probability, semigroup theory and the generalized
functions/ΨDEs theory. Let us consider first the case of operators (2.24)
arising from the Lévy subordinators. We shall talk about the left deriva-
tives for definiteness.

The operator dβ/dxβ ◦ Iβ−∞ acts as the identical operator on functions
with a compact support. Hence, in the language of the semigroups of oper-

ators, the operator Iβ−∞ is the potential operator of the strongly continuous

semigroup of linear operators in C∞(R) generated by −dβ/dxβ , that is the
limit of the resolvent operator Rλ = (λ+dβ/dxβ)−1, as λ → 0. Notice that

Iβa is just the reduction of Iβ−∞ to the space Ckill (−∞,a](R). As is worth not-

ing Iβ−∞ is an unbounded operator in C∞(R), but is bounded when reduced
to Ckill (−∞,a]((−∞, b]) for any b > a. Thus we can define the generalized
fractional integral Iνa as the potential operator of the semigroup generated
by L′

ν reduced to the space Ckill (−∞,a](R).
On the other hand, the usual fractional integral (2.2) solves the bound-

ary value problem Dβg = f with g(x) = 0 for x ≤ a. Recall that for
a Feller process Xt(x) and a function f from the domain of its generator

L the process f(Xt(x)) −
∫ t
0 Lf(Xs(x)) ds is a martingale, called Dynkin’s

martingale (see e.g. [40]). Applying to this martingale Doob’s optional
sampling theorem shows that

f(x) = Ef(Xτ (x)) −E

∫ τ

0
g(Xs(x)) ds, (2.29)

where g = Lf and τ is the exit time of Xt(x) from a domain (at least if
Eτ < ∞). This implies that

Iβa f(x) = E

∫ τx

0
f(x−Xβ

t ) dx, (2.30)

whereXβ
t is the stable subordinator and τx is the time when Xβ

t reaches the

point x− a (and thus x−Xβ
t reaches a). Therefore, from the probabilistic

point of view, the generalized fractional integral, representing the analog of

Iβa for the case of the generalized derivative D
(ν)
a+ , is the path integral

Iνaf(x) = E

∫ τx

0
f(x−Xν

t ) dt, (2.31)

where Xν
t is the Lévy subordinator generated by operator (2.20) and τx the

time for this process to reach a.
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Finally, as is known (see e.g. [42]), the fundamental solution (vanishing
on the negative half-line) to the fractional derivative operator dβ/dxβ is

Uβ(x) = xβ−1
+ /Γ(β), so that the usual fractional integral Iβa f(x) represents

the integral operator with the kernel being the fundamental solution of
dβ/dxβ or, in other words, the convolution with this fundamental solution,
restricted to the space Ckill (−∞,a](R). Thus, from the point of view of the
theory of PDEs and ΨDEs, the generalized fractional integral, representing

the analog of Iβa for the case of the generalized derivativeD
(ν)
a+ , is the integral

operator

I(ν)a f(x) =

∫ x−a

0
f(x− z)U (ν)(dz), (2.32)

where U (ν)(dz) is the fundamental solution to the operator L′
ν (we denoted

it U (ν)(dz), as it turns out to be a measure, see below).
These three facets of the generalized fractional integral were given by

analogy. Let us see now that they are all well defined and in fact represent
the same objects. It is well known that the operators Lν and L′

ν generate
Feller processes on R (called Lévy subordinators) and the corresponding
strongly continuous semigroups in spaces C∞(R) and Cuc(R). The latter
space is much less used as the former, but is handy for us as it includes
the spaces of functions that are constants on the halflines. Recall that the
potential measure is defined as the integral kernel of the potential operator.
The potential measure for any Lévy subordinator is known to exist and to
equal the vague limit

U (ν)(M) =

∫ ∞

0
G(ν)(t,M) dt

of the measures
∫ K
0 G(ν)(t, .) dt, K → ∞, such that U (ν)(M) is finite for

any compact M whenever ν does not vanish (see e.g. [72] or [44]). More
precisely, for any λ > 0,

U (ν)([0, z]) ≤ eλz

φν(λ)
, φν(λ) = −ψν(iλ) =

∫ ∞

0
(1− e−λy)ν(dy). (2.33)

Here G(ν)(t, dy) is the Green function of the Cauchy problem for the op-

erator L′
ν . Thus the definition of the I

(ν)
a from the point of view of the

semigroup theory is correct.
Turning to the probabilistic definition we note that the process obtained

from a subordinator by killing on the attempt to cross the boundary is a
well defined Feller sub-Markov process, so that formula (2.52) arising from a
Dynkin’s martingale is well defined and represents a unique solution to the
corresponding boundary problem. From this uniqueness it follows that the
definitions of the generalized integral from the semigroup and probabilistic
points of view coincide.
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Finally, from the definitions of the potential measure it follows that the
potential measure represents a fundamental solution vanishing on the neg-
ative half-line. Therefore to fix the definition arising from the PDEs theory
it is only needed to show the uniqueness of such fundamental solution. This
is the content of the following assertion from [43] (see also [44]), which also
includes the λ-potential measures defined as

U
(ν)
λ (A) =

∫ ∞

0
e−λtG(ν)(t, A) dt. (2.34)

These measures are known to be bounded (see e.g. [72] or [44]):

‖U (ν)
λ ‖ =

∫ ∞

0
U

(ν)
λ (dx) ≤ 1

φν(λ)
. (2.35)

Proposition 2.1. Let the measure ν on {y : y > 0} satisfy (2.19).

(i) For any λ > 0, the λ-potential measure U
(ν)
λ represents the unique

fundamental solution of the operator λ− L′
ν .

(ii) If the support of ν is not contained in a lattice {αn, n ∈ Z}, with
some α > 0, the measure U (ν)(dy) represents the unique fundamental solu-
tion to the operator −L′

ν , up to an additive constant.
(iii) Let {αn, n ∈ Z} be the minimal lattice (that cannot be further

rarified) containing the support of ν, so that for any k ∈ Z, k > 1, there
exists n ∈ Z such that αn belongs to the support of ν and n/k /∈ Z.
Then any two fundamental solutions to the operator −L′

ν differ by a linear
combination of the type

G(x) =
∑

n∈Z

an exp{2πnix/α} (2.36)

with some numbers an. In particular, U (ν)(dy) is again the unique funda-
mental solution vanishing on the negative half-line.

The following result summarizes the properties of generalized fractional
integrals.

Proposition 2.2. (i) Let a measure ν on {y : y > 0} satisfy (2.19).
For any generalized function g ∈ D′(R) supported on the half-line [a,∞)

with any a ∈ R, and any λ ≥ 0, the convolution U
(ν)
λ ⋆g with the λ-potential

measure (2.34) is a well-defined element of D′(R), which is also supported
on [a,∞). This convolution represents the unique solution (in the sense of
generalized function) of the equation (λ− L′

ν)f = g, or equivalently

D
(ν)
+ f = −λf + g,

supported on [a,∞).
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(ii) If λ > 0 and g ∈ C∞(R) ∩ Ckill (−∞,a](R), then

f(x) = (U
(ν)
λ ⋆ g)(x) = R′

λg(x) =

∫ ∞

−∞
g(x− y)U

(ν)
λ (dy)

=

∫ x−a

0
g(x− y)

∫ ∞

0
e−λtG(ν)(t, dy) dt (2.37)

belongs to the domain of the operator L′
ν (considered as the generator of

the Feller semigroup on C∞(R)) and thus represents the classical solution
to the equation (λ− L′

ν)f = g, or equivalently

D
(ν)
+ f = D

(ν)
a+f = D

(ν)
a+∗f = −λf + g. (2.38)

(iii) If reduced to the space Ckill (−∞,a]((−∞, b]) with b > a (this space
is invariant under T ′

t and hence under all R′
λ), the potential operator R′

0

with the kernel U (ν) becomes bounded and hence

(U (ν) ⋆ g)(x) = R′
0g(x) = I(ν)a g(x) (2.39)

belongs to the domain of L′
ν and thus represents the classical solution to

the equation

− L′
νf = D

(ν)
+ f = D

(ν)
a+f = D

(ν)
a+∗f = g (2.40)

on Ckill{a}([a, b]).

P r o o f. (i) Since the generalized functions U
(ν)
λ and g have support

bounded from below, their convolution U
(ν)
λ ⋆ g is well-defined and solves

the equation (λ−L′
ν)f = g. Uniqueness follows from the uniqueness of the

fundamental solution.
(ii) Since L′

ν generates a semigroup, which preserves the space Ckill (−∞,a]

(R), this space is also invariant under the resolvent R′
λ = (λ−L′

ν)
−1. Since

the image of the resolvent always coincides with the domain of the generator
(see e.g. [16]), R′

λg belongs to the intersection of the space Ckill (−∞,a](R)

and the domain of D
(ν)
+ .

(iii) As was mentioned above, the potential operator

R′
0g(x) = (U (ν) ⋆ g)(x) =

∫ x−a

0
g(x− y)U (ν)(dy)

is bounded on Ckill (−∞,a](R) ∩ C((−∞, b]). Hence the required equation
can be obtained from (ii) by passing to the limit λ → 0. ✷

In particular, applying (2.37) to L′
ν = −dβ/dxβ and comparing with

the classical solution of the fractional linear equation via the Mittag-Leffler
function yields the integral representation

βzβ−1E′
β(−λzβ) =

∫ ∞

0
e−λtGβ(t, z) dt = Uβ

λ (z), (2.41)
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which is equivalent to Zolotarev’s formula

Eβ(s) =
1

β

∫ ∞

0
esxx−1−1/βGβ(1, x

−1/β) dx, (2.42)

thus yielding a proof of this formula from the semigroup theory by-passing
subtle analytic manipulations of Zolotarev’s initial derivation (see [77] and
[78]).

For general ν the classical interpretation of the solution R′
λg(x) is subtle

for g ∈ C([a,∞)) not vanishing at a. However, R′
λg(x) may well belong

to the domain locally, outside the boundary point a. And in fact, the
requirement for the solution to belong to the domain outside a boundary
point is common for the classical problems of PDEs. The following assertion
illustrates this point concretely.

Proposition 2.3. Under the assumptions of Proposition 2.2 let the
potential measure U (ν)(dy) have a continuous density, U (ν)(y), with respect
to Lebesgue measure. Let g ∈ C1[a, b] and is continued as zero to the left of
a. Then the function f(x) = R′

0g(x) is continuously differentiable in (a, b].

Hence it satisfies the equation D
(ν)
a+∗f = g locally, at all points from (a, b].

P r o o f. From the formula for R′
0g(x) it follows that

(d/dx)R′
0g(x) =

∫ x−a

0

d

dx
g(x − y)U (ν)(y) dy + g(a)U (ν)(x− a),

which is well-defined and continuous for x ≥ a. The limit from the right of
(d/dx)R′

0g(x) as x → a is g(a)U (ν)(0), which may cause a jump when this
function crosses the value x = a. ✷

Apart from generalized solutions arising from duality as considered
above, one uses also the notions of generalized solution by approximation.
Namely, for a measurable bounded function g(x) on [a,∞), a continuous
curve f(x), t ≥ a, is the generalized solution via approximation to the

problem D
(ν)
+ f = −λf + g on C([a, b]), if there exists a sequence of curves

gn(.) ∈ Ckill (−∞,a](R) such that gn → g a.s., as n → ∞, and the corre-
sponding classical (i.e. belonging to the domain) solutions fn(x), given by
(2.37) with gn(x) instead of g(x), converge point-wise to f(t), as n → ∞.

The following assertion is a consequence of Proposition 2.2.

Proposition 2.4. For any measurable bounded function g(x) on
[a,∞), formula (2.37) (resp. (2.39)) supplies the unique generalized so-
lution by approximation to problem (2.38) (resp. (2.40)) on [a, b] for any
b > a.
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2.4. Generalized fractional integrals: weighted mixed derivatives.

Let us turn to operators (2.22). It is known (see e.g. [40]) that the operator
Ll
ν,γ generates a conservative Feller semigroup Tt in C∞(R) with invariant

core C1
∞(R) whenever the following conditions hold:

(i) b ∈ C1(Rd) and b ≥ 0;
(ii) ∇ν(x, dy), the gradient of the Lévy kernel with respect to x, exists

in the weak sense as a signed measure that depends weakly continuously
on x, in the sense that

∫

f(y)∇ν(x, dy) is a continuous function for any

f ∈ C(Rd) with a support separated from zero;
(iii)

sup
x

∫

min(1, y)ν(x, dy) < ∞, sup
x

∫

min(1, y)|∇ν(x, dy)| < ∞, (2.43)

and for any ǫ > 0 there exists a K > 0 such that

sup
x

∫ ∞

K
ν(x, dy) < ǫ, sup

x

∫ ∞

K
|∇ν(x, dy)| < ǫ, sup

x

∫ 1/K

0
yν(x, dy) < ǫ.

(2.44)
The next result shows the existence of the potential measures describing

the integral kernel of the resolvent and potential operators of this Feller
semigroup:

Rλg(x) =

∫ ∞

0
e−λt(Ttg)(x) dt =

∫ ∞

0
dte−λt

∫ x

−∞
P(ν,γ)(t, x, dy)g(y)

=

∫ x

−∞
Πλ

(ν,γ)(x, dy)g(y), (2.45)

with λ ≥ 0, where P(ν,γ) denote the transition probabilities of the semigroup

Tt and Πλ
(ν,γ)(x, dy) the λ-potential measure.

Proposition 2.5. Let a kernel ν(x, dy) and a function b satisfy as-
sumptions (i)-(iii) above. Let the inequality

ν(x, dy) ≥ ν̃(dy) (2.46)

hold with some non-vanishing measure ν̃ satisfying (2.19). Then the fol-
lowing holds:

(i) For any nonincreasing function f we have the comparison principle
for semigroups:

Ttf ≥ T̃ ′
tf, (2.47)

where T̃ ′
t is the semigroup generated by the operator L′

ν̃ .
(ii) The potential operator Π(ν,γ) = Π0

(ν,γ) of the semigroup Tt is well

defined and satisfies the comparison principle for potential operators:
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(Π(ν,γ)1≥a)(x) = Π(ν,γ)(x, [a, x]) ≤ U (ν̃)([a, x]) ≤ eλz

φν(λ)
, x > a, (2.48)

where by Π(ν,γ) we denoted both the integral operator and the measure
representing its integral kernel (see (2.33) for the last estimate).

(iii) The same holds for the λ-potential operators Πλ
(ν,γ), λ > 0, x > a:

(Rλ1≥a)(x) = (Πλ
(ν,γ)1≥a)(x) = Πλ

(ν,γ)(x, [a, x]) ≤ U
(ν̃)
λ ([a, x]) ≤ 1

φν(λ)
(2.49)

(see (2.35) for the last estimate).
(iv) If additionally ν(x, dy) ≤ ν̄(dy) with some non-vanishing ν̄(dy)

satisfying (2.19), then Ttf ≤ T̄ ′
tf for a non-increasing function f .

P r o o f. Let us consider the case of b = 0 (by approximating the
derivative with finite differences we can reduce the general case to this
one).

(i) Notice that

(L− L′
ν̃)f(x) =

∫ ∞

0
(f(x− y)− f(x))(ν(x, dy) − ν̃(dy)),

which is positive for any nonincreasing function f . Let us write the differ-
ence between the actions of Tt and T̃ ′

t in the standard form via the difference
of the generators (see e.g. [39]):

Ttf − T̃ ′
tf =

∫ t

0
Tt−sf(L− L′

ν̃)T̃
′
sf.

Since T̃ ′
s preserves the set of nonincreasing functions, T̃ ′

sf is nonincreasing.

Hence, (L− L′
ν̃)T̃

′
sf ≥ 0 and hence Ttf − T̃ ′

tf ≥ 0, yielding (2.47).
(ii) By changing f to −f it follows from (2.47) that

Ttf ≤ T̃ ′
tf (2.50)

for any nondecreasing function f .
Applying (2.50) to the indicator functions of half-lines shows that

P(Xt(x) > c) ≤ P(x−Xt > c),

where Xt is the decreasing process generated by L and Xt is the subordi-
nator defined by the measure ν̃. By the definition of potential operator of
the process Xt it equals (whenever it exists)

Π(ν,γ)f(x) =

∫ ∞

0
Ttf(x) dt.

In particular,

(Π(ν,γ)1≥a)(x) ≤
∫ ∞

0
(T̃ ′

ν1≥a)(x) dx = U (ν̃)([a, x]),

yielding (2.48).
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(iii), (iv) are fully analogous to (ii). ✷

Consequently, under the assumptions of Proposition 2.5, the potential
operator Π(ν,γ) is an integral operator, which is well defined for functions
with a support bounded below. It is a bounded operator when reduced
to the spaces of functions with a fixed compact support. The integral
kernel of the potential operator, Π(ν,γ)(x, dy), is such that, for any x, the
measure Π(ν,γ)(x, ·.) is supported on the set (−∞, x]. Consequently, from
the point of view of the semigroup theory, we can define the generalized

mixed fractional (weighted) integral I
(ν,γ)
a as the potential operator Π(ν,γ)

reduced to the space Ckill (−∞,a](R):

I(ν,γ)a g(x) =

∫ x

a
g(y)Π(ν,γ)(x, dy) (2.51)

On the space Ckill (−∞,a](R) the composition D
(ν,γ)
a+ ◦ I(ν,γ)a acts as identity,

as it should be.
Since the process generated by Ll

(ν,γ) and stopped at the attempt to

cross the given boundary-point a is a well defined Feller process with a
regular boundary point, we can apply the theory of Dynkin’s martingale
that implies that if a function g solves the boundary-value problemDβg = f
with g(x) = 0 for x ≤ a, then it can be expressed as the path integral
yielding the probabilistic definition of the generalized fractional integral:

I(ν,γ)a g(x) = E

∫ τx

0
g(Xν

t (x)) dt, (2.52)

where Xν
t (x) is the decreasing process generated by operator (2.23) started

at x and τx the time for this process to reach a.
As the fundamental solutions are less in use for the operators that are

not shift invariant, we shall not give detail on this interpretation here.
The results of the previous section extend now automatically to the

case of weighted integrals. For instance, the following holds.

Proposition 2.6. Let the assumptions of Proposition 2.5 hold. (i) If
λ > 0 and g ∈ C∞(R) ∩ Ckill (−∞,a](R), then

f(x) = Rλg(x) =

∫ x

−∞
Πλ

(ν,γ)(x, dy)g(y))

belongs to the domain of the operator Ll
ν,γ and thus represents the classical

solution to the equation (λ− Ll
ν,γ)f = g, or equivalently, to the equation

D
(ν,γ)
+ f = D

(ν,γ)
a+ f = D

(ν)
a+∗f = −λf + g. (2.53)

(ii) If reduced to the space Ckill (−∞,a]((−∞, b]) with b > a (this space
is invariant under Tt and hence under all Rλ), the potential operator R0

becomes bounded and hence the integral (2.51) belongs to the domain of
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Ll
ν,γ and thus represents the classical solution to the equation (2.53) with

λ = 0.

Similarly, Proposition 2.4 on the generalized solutions has the straight-
forward extension.

The mixed fractional integrals can be also defined when arising from
more general fractional derivatives (2.28). Namely, they represent the po-
tential operators of the semigroups and processes generated by (2.28) and
killed at the boundary. Their probabilistic or path integral representation
can be written as in (2.52):

I
(ν,γ,S,R)
a+ f(x) = E

∫ τx

0
f(Xt(x)) dt, (2.54)

where Xt is the decreasing sub-Markov process generated by the operator

D
(ν,γ,S,R)
a+ f(x) = −

∫ x

a
(f(s)−f(x))ν̃(x, ds)+f(x)[K(a, x)+S(a, x)]+b(x)

df

dx
.

Alternatively, using the Feynman-Kac theory, it can be rewritten as

I
(ν,γ,S,R)
a+ f(x) = E

∫ ∞

0
f(Yt(x)) exp{−

∫ t

0
[K(a, Ys(x)) + S(a, Ys(x))]ds} dt,

(2.55)
where Yt is the decreasing Markov process on [a,∞) generated by the op-
erator

D
(ν,γ,S,R)
a+ f(x) = −

∫ x

a
(f(s)− f(x))ν̃(x, ds) + b(x)

df

dx
.

Remark 2.5. It is natural to ask (especially in order to link our
mixed fractional integrals with generalized integrals from [4]), which inte-
gral operators can be represented as our mixed fractional integrals, that
is, as potential operators to the semigroups generated by decreasing pro-
cesses. This question is essentially answered in Chapter 2, Section 4 of [16].
Namely, in this book the criterion is given for operators to represent poten-
tial operators of killed Markov processes (even though this criterion is not
very easy to check). In our case just the additional requirement arises that
the kernel Π(x, dy) of such operator should have support on the half-line
(−∞, x] for any x.

2.5. Further extensions of mixed fractional operators. Extensions of
the fractional operators and the fractional differential equations introduced
above corresponds to monotone stochastic processes. They do not exhaust
all interesting problems. Apart from the extensions with β ∈ (1, 2) (which
we shall not touch here, see [41]) important additional situations include
two-sided problems (very natural in the fractional calculus of variations)
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and multidimensional problems. Unlike the problems considered above,
working with potential operators for these cases is usually much more com-
plicated, because we cannot in general use the potential operator of the
free problem (without a boundary) and just reduce it to problems with
a one-sided support. On the other hand, the representation via Dynkin’s
martingale works usually equally well in all cases. However, it gives only
uniqueness of the solution and the integral representation for it, that is, a
generalized solution in probabilistic sense. The difficulty lies in the identifi-
cation of the analytic characteristics of thus obtained generalized solutions
and of the conditions when they are classical.

The most general extension of mixed fractional derivatives within the
probability theory arises from an arbitrary Markov process by interrupting
it on the attempt to cross a boundary. We refer to [41] for detail and only
mention here briefly three examples.

(i) Two-sided problem mixed with a diffusion (see detail in [21]). The
typical case is the problem

(Dβ1

a+∗ +Dβ2

b−∗ +A)f = g, f(a) = fa, f(b) = fb,

with a given function g and a diffusion operator A. Extending the deriva-

tives Dβ1

a+∗ and Dβ2

b−∗ to fully mixed derivatives −L′
ν and Lν leads to the

two-sided problem

(L+A)f = g, f(a) = fa, f(b) = fb, ,
with

Lf(x) =

∫ b−x

a−x
(f(x+ y)− f(x))ν(x, dy) + ga(x)

df

dx

+ (f(b)− f(x))

∫ ∞

b−x
ν(x, dy) + (f(a)− f(x))

∫ a−x

−∞
ν(x, dy). (2.56)

The generalized solution to this problem (the two-sided analog of the
fractional integral) can be given by Dynkin’s martingale (2.29) with τ the
exit time from (a, b) of the process Xt(x) generated by L + A, or simply
the process generated by

∫ b−x

a−x
(f(x+ y)− f(x))ν(x, dy) + ga(x)

df

dx
+Af(x),

as these two processes coincide before exiting (a, b). Spectral problems for
two-sided derivatives will be analyzed in Section 5.1.

(ii) One-sided multidimensional fractional equations. These are the
equations in the orthant

O = {x = (x1, · · · , xk) : xj ≥ aj}
of the type

(Dβ1

a1+∗ + · · ·+Dβk
ak+∗)f(x1, · · · , xk) = g(x1, · · · , xk),
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where Dj acts on the variable xj. When f is given on the boundary of the
orthant O, the generalized solution is well defined by Dynkin’s martingale
(2.29) with τ the exit time from the interior of O.

(iii) Fully multidimensional case. The analog of RL derivative arising
from a process in Rd and a domain D ⊂ Rd is the generator of the process
killed on leaving D. For CD version this is more subtle, as we have to
specify a point where a jump crosses the boundary. The most natural model
assumes that a trajectory of a jump follows the shortest path. Namely,
assume that A is a generator of a Feller process Xt(x) in Rd with the
generator of type

Af(x) = (γ(x),∇)f(x) +

∫

Rd

(f(x+ y)− f(x))ν(x, dy) (2.57)

with a kernel ν(x, .) on Rd \ {0} such that

sup
x

∫

Rd

min(1, |y|)ν(x, dy) < ∞, (2.58)

that is, in the terminology of [39], [40], a generator or order at most one.
Let D be an open convex subset of Rd with boundary ∂D and closure

D̄. For x ∈ Rd and a unit vector e let Lx,e = {x + λe, λ ≥ 0} be the ray
drawn from x in the direction e. For x ∈ D, let

λ(x, y/|y|) = max{R > 0 : x+Ry/|y| ∈ D̄}

RD(x, y) =

{

x+ y, if |y| ≤ λ(x, y/|y|),
x+ λ(x, y/|y|)y/|y|, if |y| ≥ λ(x, y/|y|). (2.59)

The process Xs
t (x) in D interrupted and stopped on an attempt to cross

∂D can be defined by the condition of stopping at ∂D and the generator

AD⋆f(x) = (γ(x),∇)f(x) +

∫

D(x)
[f(RD(x, y)) − f(x)]ν(x, dy), (2.60)

which represents a multidimensional extension of the CD boundary op-
erator. The unique generalized solution for a boundary value problem
AD⋆f = g with a given function g and given values of f on ∂D can be
again given via Dynkin’s martingale.

Finally, in the spirit of the most general extension of one-sided mixed
derivatives (2.28), the most general multidimensional mixed derivative of
order at most one in the open set S ⊂ Rn can be defined as the pseudo-
differential operator of order at most one generating (with negative sign) a
sub-Markov process in the closure S̄:

D
(ν,γ,S,R)
a+ f(x) = −

∫

S̄
(f(s)− f(x))ν̃(x, ds) + f(x)K(x) + (b(x)∇f(x)))

(2.61)
with a measure ν such that supx

∫

|s− x|ν(x, ds) < ∞.
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In all cases above the corresponding mixed fractional integral can be
defined as the potential operators of the corresponding sub-Markov pro-
cesses, with their path integral or probabilistic interpretation given in terms
of Dynkin’s martingale.

By the probabilistic representation for various generalized derivatives
discussed below we shall understand their representation in forms (2.26),
(2.27), (2.28), (2.61), which explicitly reveal the structure of the Markov
process they generate.

3. Probabilistic representations for

the fundamental fractional operators

Apart from the basic RL fractional operators, the next popular frac-
tional operators are possibly the Hadamard and the Erdélyi-Kober oper-
ators. We shall now remind their definitions together with their popular
extensions and then derive their probabilistic representations. Next we
shall describe two general analytic approaches, which can be used to mo-
tivate the introduction of these operators and their further extensions. Fi-
nally we shall briefly discuss the multiplicative interpolations of derivatives
introduced by Hilfer and possible generalizations leading to the random
fractional operators.

3.1. Hadamard-Kilbas fractional operators. TheHadamard fractional
integral of fractional order q > 0 and a boundary point a > 0 is defined by
the formula (where x > a)

HIqag(x) =
1

Γ(q)

∫ x

a

(

ln
x

s

)q−1 g(s)

s
ds =

1

Γ(q)

∫ x/a

1
(ln y)q−1g(x/y)

dy

y
,

(3.1)
the second version being obtained by the change x/s = y, s = x/y, ds =
−xdy/y2. The corresponding Hadamard fractional derivative of RL type of
order q ∈ (0, 1) is defined as

HDq
a+f(x) = x

d

dx
◦ HI1−q

a f(x) = x
d

dx

1

Γ(1− q)

∫ x/a

1
(ln y)−qf(x/y)

dy

y
,

(3.2)
and the Hadamard fractional derivative of CD type of order q ∈ (0, 1) as

HDq
a+∗f(x) =

HI1−q
a ◦ x d

dx
f(x) =

1

Γ(1− q)

∫ x

a

(

ln
x

s

)−q
f ′(s) ds, (3.3)

both again for x > a.

Proposition 3.1. If f is continuously differentiable, then

HDq
a+f(x) =

1

Γ(1− q)
(ln

x

a
)−qf(x)
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− q

Γ(1− q)

∫ x−a

0

(

ln
x

x− y

)−q−1

(f(x− y)− f(x))
ds

x− y

=
1

Γ(1− q)
(ln

x

a
)−qf(x)− q

Γ(1− q)

∫ x

a

(

ln
x

s

)−q−1
(f(s)−f(x))

ds

s
, (3.4)

HDq
a+∗f(x) = [HDq

a+(f(.)− f(a))](x)

=
1

Γ(1− q)

(

ln
x

a

)−q
(f(x)−f(a))− q

Γ(1− q)

∫ x

a

(

ln
x

s

)−q−1
(f(s)−f(x))

ds

s
.

(3.5)

P r o o f. We get from (3.2) that

HDq
a+f(x) =

x

a

1

Γ(1− q)

(

ln
x

a

)−q
f(a)

a

x
+

x

Γ(1− q)

∫ x/a

1
(ln y)−qf ′(x/y)

dy

y2

=
1

Γ(1− q)

(

ln
x

a

)−q
f(a) +

1

Γ(1− q)

∫ x

a

(

ln
x

s

)−q
f ′(s)ds. (3.6)

Using f ′(s) = (f(s) − f(x))′ and integrating by parts and taking into ac-
count that

lim
s→x

(f(s)− f(x))(ln(x/s))−q = 0,

yields

HDq
a+f(x) =

1

Γ(1− q)

(

ln
x

a

)−q
f(a)− 1

Γ(1− q)
(ln

x

a
)−q(f(a)− f(x))

− q

Γ(1− q)

∫ x

a

(

ln
x

s

)−q−1
(f(s)− f(x))

ds

s

=
1

Γ(1−q)

(

ln
x

a

)−q
f(x)− q

Γ(1−q)

∫ x−a

0
(ln

x

x−y
)−q−1(f(x−y)−f(x)) dy

x−y
.

On the other hand, the r.h.s. of (3.3) equals the second term in (3.6)
implying (3.41). ✷

Since
∫ x

x−a

(

ln
x

x− y

)−q−1 dy

x− y
=

∫ a

0

(

ln
x

s

)−q−1 ds

s
=

1

q

(

ln
x

a

)−q
,

one can write equivalently that

HDq
a+f(x) = f(x)

∫ x

x−a
ν(x, y) dy −

∫ x−a

0
(f(x− y)− f(x))ν(x, y) dy,

ν(x, y) =
q

Γ(1− q)(x− y)
(ln

x

x− y
)−q−1. (3.7)
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This representation shows that the Hadamard derivatives represent partic-
ular case of the general operators (2.26), revealing the probabilistic mean-
ing of these operators: −HDq

a+ is seen to generate the process on [0,∞)
obtained from the process generated by the operator

− HDq
0+f(x) =

∫ x

0
(f(x− y)− f(x))ν(x, y) dy, (3.8)

by killing the latter process when attempting to cross the boundary x = a.
Notice also that for a = 0 both derivatives are well defined and coincide

with operator (3.8) (with inverse sign), which generates a well defined pro-
cess on [0,∞) and represents a Hadamard analog of the fractional derivative
in generator form (2.10).

Kilbas in [27] introduced the generalized Hadamard (HK) operators:

HKIqa,µg(x) =
1

Γ(q)

∫ x

a
(s/x)µ

(

ln
x

s

)q−1 g(s)

s
ds, x > a > 0, (3.9)

HKDq
a+,µf(x) = x−µ(x

d

dx
)xµ ◦ HI1−q

a,µ f(x), (3.10)

HKDq
a+∗,µf(x) =

HI1−q
a,µ ◦

(

x−µ(x
d

dx
)xµ

)

f(x). (3.11)

Extending the calculations above yields the following result (we omit
similar calculations, more general case is considered below):

Proposition 3.2. If f is continuously differentiable, then

HKDq
a+f(x) =

1

Γ(1− q)

(

ln
x

a

)−q
(x/a)−µf(x)

−
∫ x

a
(f(s)− f(x))νHK(x, s) ds + f(x)

µ

Γ(1− q)

∫ x

a

(

ln
x

s

)−q
(x/s)−µ ds

s
.

(3.12)

HKDq
a+∗f(x) =

1

Γ(1− q)

(

ln
x

a

)−q
(x/a)−µ(f(x)− f(a))

−
∫ x

a
(f(s)− f(x))νHK(x, s) ds + f(x)

µ

Γ(1− q)

∫ x

a

(

ln
x

s

)−q
(x/s)−µ ds

s
(3.13)

with

νHK(x, s) =
q

sΓ(1− q)

(

ln
x

s

)−q−1 (x

s

)−µ
.

The distinguishing property of this case as compared with the standard
Hadamard case is the presence of the killing term also in the CD version of
the derivative.
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For a = 0 both derivatives coincide and equal

HKDq
0+∗f(x) =

HDq
0+f(x) = −

∫ x

0
(f(s)− f(x))νHK(x, s) ds

+ f(x)
µ

Γ(1− q)

∫ x

0

(

ln
x

s

)−q
(x/s)−µ ds

s

= −
∫ x

0
(f(s)− f(x))νHK(x, s) ds + µqf(x). (3.14)

This operator (with the negative sign) generates a decreasing process on
[0,∞) with the uniform killing rates µq.

This process and its stopped versions arising from a > 0 can be well
called the Hadamard-Kilbas (HK) processes. Of course, they belong to the
general class of processes generated by (2.28).

3.2. Erdélyi-Kober-Kiryakova-Luchko fractional operators. Now we
turn to the Erdélyi-Kober (EK) operators. Let us deal directly with the gen-
eralized Erdélyi-Kober integrals, see e.g. in the book [70, Sect.18.1]. The
corresponding fractional calculus was developed by Kiryakova and Luchko
(see e.g. [30], [76], [31], [33], [34]) and we shall refer to these operators
as the Erdélyi-Kober-Kiryakova-Luchko (EKKL) operators. The fractional
EKKL integrals are defined by the formulas

EKKLIγ,qa,βg(x) =
βx−β(γ+q)

Γ(q)

∫ x

0
(xβ − sβ)q−1sβγ+β−1g(s) ds

= Ωβ ◦ x−(γ+q) Iq0 x
γ ◦Ω−1

β g(x), x ≥ 0, (3.15)

where Iq0 is the standard RL fractional integral and Ωβ is the operator

changing the variable: Ωβf(x) = f(xβ). The choice of the lower bound
a = 0 makes these operators quite specific. Namely, by the change of the
variable the integral (3.15) rewrites in another useful form:

EKKLIγ,qa,βg(x) =
β

Γ(q)

∫ 1

0
(1− uβ)q−1uβγ+β−1g(ux) du. (3.16)

This expression shows that all these integral operators with various β, γ, q
commute.

The classical Erdélyi-Kober operators are given by this formula with
β = 1 and β = 2, by Kober, Erdélyi and Sneddon, see [70]. For q ∈ (0, 1),
the corresponding RL type derivatives can be defined (see [30]) via the three
equivalent expressions (simple check shows that these expressions coincide):

EKKLDγ,q
0+,βf(x) =

x1−β−βγ

Γ(1− q)

d

dx

∫ x

0
(xβ − uβ)−quβ(γ+q+1)−1f(u) du, (3.17)



THE PROBABILISTIC POINT OF VIEW ON . . . 567

EKKLDγ,q
0+,βf(x)

=

(

x

β

d

dx
+ γ + 1

)

[

βx−β(1+γ)

Γ(1− q)

∫ x

0
(xβ − uβ)−quβ(γ+q+1)−1f(u) du

]

,

(3.18)
and

EKKLDγ,q
0+,β = Ωβ ◦ (x−γ d

dx
I1−q
0+ xγ+q) ◦Ω−1

β . (3.19)

For a Caputo type EK derivative corresponding to (3.17), see [54].

The probabilistic representation of these derivatives is as follows.

Proposition 3.3. If f is continuously differentiable, then

EKKLDγ,q
0+,β = −

∫ x

0
(f(s)−f(x))νEKK(x, s) ds+f(x)

Γ(γ + q + 1)

Γ(1 + γ)
, (3.20)

with

νEKKL(x, s) = −βx−βγ

Γ(−q)
(xβ − sβ)−q−1sβ(γ+q+1)−1. (3.21)

P r o o f. Changing the variable of integration in (3.17) to u = xs and
then differentiating yields

EKKLDγ,q
0+,β =

x1−β−βγ

Γ(1− q)

d

dx
xβ(γ+1)

∫ 1

0
(1− sβ)−qsβ(γ+q+1)−1f(xs) ds

=
β(γ + 1)

Γ(1− q)

∫ 1

0
(1− sβ)−qsβ(γ+q+1)−1f(xs) ds

+
x

Γ(1− q)

∫ 1

0
(1− sβ)−qsβ(γ+q+1)−1sf ′(xs) ds.

Returning back to the variables s = u/x yields

EKKLDγ,q
0+,β =

x−β(γ+1)

Γ(1− q)

∫ x

0
(xβ−uβ)−quβ(γ+δ+1)−1[β(γ+1)f(u)+uf ′(u)] du.

Integrating by parts via f ′(u) = (f(u)− f(x))′ yields

EKKLDγ,q
0+,β = −qβ

x−β(1+γ)

Γ(1− q)

∫ x

0
(f(u)−f(x))(xβ−uβ)−q−1uβ(γ+q+1)uβ−1 du

−β
x−β(1+γ)

Γ(1− q)

∫ x

0
(f(u)− f(x))(xβ − uβ)−quβ(γ+q+1)−1(γ + q + 1) du

+β
x−β(1+γ)

Γ(1− q)

∫ x

0
f(u)(xβ − uβ)−quβ(γ+q+1)−1uβ−1(γ + 1) du
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= −qβ
x−β(1+γ)

Γ(1− q)

∫ x

0
(f(u)− f(x))(xβ − uβ)−q−1uβ(γ+q+1)uβ−1 du

−qβ
x−β(1+γ)

Γ(1− q)

∫ x

0
(f(u)− f(x))(xβ − uβ)−quβ(γ+q+1)−1 du

+β(γ + 1)f(x)
x−β(1+γ)

Γ(1 − q)

∫ x

0
(xβ − uβ)−quβ(γ+q+1)−1 du.

Performing cancellations and using the integral
∫ x

0
(xβ − uβ)−quβ(γ+q+1)−1 du =

1

β
xβ(1+γ)B(1− q, γ + q + 1)

=
Γ(1− q)Γ(1 + q + γ)

βΓ(2 + γ)
xβ(1+γ),

yields (3.20). ✷

The process generated by (3.20) (with the negative sign) can be called
the Erdélyi-Kober-Kiryakova-Luchko process. This is a decreasing process
on [0,∞) with the constant killing rate Γ(γ + q + 1)/Γ(γ).

Of course one can obtain formula for the interrupted version of this pro-
cess generated by the fractional derivatives EKKLDγ,q

a+,β and EKKLDγ,q
a+∗,β

with a > 0. We shall do it below in a more general setting. The lower
bound a = 0 is specific both for yielding the commuting class of operators
and by the fact that the underlying processes have uniform killing rates.

3.3. Elementary analytic approaches to generalized fractional op-

erators. The development of the generalized fractional calculus was ini-
tially led and motivated by the theory of special functions, namely the class
of the so-called G-functions and more general H-functions. This develop-
ment is well presented in the literature (see e.g. [30], [31], [53], [33], [63],
[34] [57], [34], etc.)

We introduce here two elementary approaches both leading rapidly to
the wide class of operators that cover the majority of operators discussed
in the literature. Then we derive the probabilistic representation for these
operators revealing the stochastic processes that govern the solutions of the
corresponding PDEs.

1. Method of iterations. Extending the approach leading to the defini-
tion (2.1) of the RL integral let us look at a more general integral operator
of the Riemann-Stieltjes type

Ia,Gf(x) =

∫ x

a
f(u)dG(u), (3.22)

where G(u) is a non decreasing function. Assuming that G is differen-
tiable, G′(u) = g(u), it simplifies to Ia,Gf(x) =

∫ x
a g(u)f(u) du. By direct

induction and integration by parts one gets the formula for the iterations:
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Ina,Gf(x) =
1

(n− 1)!

∫ x

a
(G(x) −G(t))n−1g(t)f(t)dt, (3.23)

for differentiable G, and

Ina,Gf(x) =
1

(n− 1)!

∫ x

a
(G(x) −G(t))n−1f(t)dG(t), (3.24)

in general case. In full analogy with the definition (2.1) formula suggests
the definition of the fractional RL-Stieltjes integral by the formula

Iqa,Gf(x) =
1

Γ(q)

∫ x

a
(G(x) −G(t))q−1f(t)dG(t) (3.25)

for any q > 0.
If we take g(u) = 1/u and a > 0, formula (3.25) turns to formula (3.1)

defining the Hadamard integral.

In [25], Katugampola aimed at obtaining some interpolation between
the standard RL integral and the Hadamard integral and for this purpose
applied the above scheme of reasoning with the power function g(u) = sρ,
ρ > −1, which yields the integral

Iqa,ρf(x) =
(ρ+ 1)1−q

Γ(q)

∫ x

a
(xρ+1 − tρ+1)q−1tρf(t) dt. (3.26)

Katugampola was seemingly unaware of the Erdélyi-Kober operators’ the-
ory and did not recognise the link with the classical Erdélyi-Kober integral
(3.15) with γ = 0:

EKKLI0,qa,βg(x) = x−βqβqIqa,β+1f(x). (3.27)

The difference in the so-called (new) Katugampola operator is there-
fore just in a multiplier that does not seem to be very essential from the
first sight. However, as was noted above, with precisely this multiplier
the Erdélyi-Kober-Kiryakova-Luchko integrals with various indices become
commuting operators, which creates the beautiful link with the theory of
H-functions and leads to the multi-indices Mittag-Leffler functions and the
multi-indices Erdélyi-Kober integrals (see e.g. [33]).

To extend this commuting class of operators, it was suggested by Kalla
[24] (see also references in [33]) to analyse the operators of the type

IΦ0 g(x) =

∫ 1

0
Φ(u)g(ux) du, (3.28)

parametrized by functions Φ (can be arbitrary special functions). However,
by the direct change of the variables u = e−ξ, x = ey, these operators turn
just to the general shift invariant integral operators

f →
∫ ∞

0
f(y − ξ)K(ξ)dξ, K(ξ) = Φ(e−ξ)e−ξ.
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Thus by the universal change of variables the whole class of Erdélyi-Kober-
Kiryakova-Lucko operators is inserted in the class of such shift invariant
operators. However, these concerns only the operators with the lower bound
a = 0.

Operators (3.22) were applied in [68], [69] for solving certain ordinary
ODEs via the ’fractional tools’.

2. Substitution and dressing. Assuming G is strictly monotone and
continuous and rewriting integral (3.22) via the method of substitution,

Ia,Gf(x) =

∫ G(x)

G(a)
f(u(G))dG, (3.29)

with u(G) the inverse function ofG, suggests that the fractional RL-Stieltjes
integral (3.25) can be obtained directly from the corresponding standard
RL integral just by the change of variable. Namely, denoting by Ω the
operator acting as ΩGf(x) = f(G(x)) and fixing the function G by the
condition G(a) = a, one sees that Ia,G = ΩG ◦ Ia ◦ Ω−1

G and

Iqa,G = ΩG ◦ Iqa ◦ Ω−1
G , (3.30)

that is, Ia,G and Iqa,G (defined by (3.25)) are obtained from the correspond-
ing standard integrals via ’dressing’ with the operator Ω of the change of
variable.

Once the idea of dressing is introduced, it is natural to exploit its further
by ’dressing’ with respect to other linear transformations of functions, the
simplest one being the operators of multiplication Mwf(x) = w(x)f(x)
with a function w. Using such dressing in combination with (3.30) leads to
the following generalized dressed fractional integral operator

Iqa,G,w = M−1
w ◦ΩG ◦ Iqa ◦ Ω−1

G ◦Mw, (3.31)

or concretely,

Iqa,G,wf(x) =
1

Γ(q)w(x)

∫ x

a
(G(x) −G(t))q−1f(t)w(t)dG(t). (3.32)

Assuming G to be differentiable, it becomes

Iqa,G,wf(x) =
1

Γ(q)w(x)

∫ x

a
(G(x) −G(t))q−1f(t)w(t)G′(t) dt. (3.33)

Formula (3.31) suggests the definition of the corresponding derivatives
as the dressed versions of the standard fractional derivatives. Namely,
working for simplicity with differentiable G and noting that

Ω ◦ d

dx
◦ Ω−1f(x) =

1

G′(x)
f ′(x),
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we obtain, for the case for q ∈ (0, 1), the following RL and CD dressed
derivatives:

ADq
a+,G,wf(x) = M−1

w ◦ΩG ◦Dq
a+ ◦Ω−1

G ◦Mwf(x)

=
1

w(x)G′(x)Γ(1 − α)

d

dx

(∫ x

a

w(t)G′(t)f(t)

[G(x) −G(t)]α
dt

)

, (3.34)

ADq
a+∗,G,wf(x) = M−1

w ◦ΩG ◦Dq
a+∗ ◦ Ω−1

G ◦Mwf(x)

=
1

w(x)Γ(1 − α)

∫ x

a

[w(t)f(t)]′

[G(x) −G(t)]α
dt. (3.35)

Notation AD reflects the fact that operators (3.33), (3.34), (3.35) were
seemingly first introduced and studied by Agrawal in [3].

Remark 3.1. The authors of [28] introduced and studied the mod-
ified Hadamard integrals, which are seen to be obtained from the usual
Hadamard integrals via dressing with the operator Mw with w(x) = x.

As an alternative to (3.31), one can use the dressing by multiplications
and change of variables in a different order, and also use different functions
in the input and output yielding the operators

Iqa,G,w,v = ΩG ◦Mv ◦ Iqa ◦Mw ◦ Ω−1
G , (3.36)

the corresponding derivatives being

Dq;G,w,v
a+ = ΩG ◦Mv ◦Dq

a+ ◦Mw ◦ Ω−1
G , (3.37)

Dq;G,w,v
a+∗ = ΩG ◦Mv ◦Dq

a+ ◦Mw ◦ Ω−1
G . (3.38)

The Erdélyi-Kober-Kiryakova-Luchko fractional operators are obtained
via these formulas with all functions G,w, v being power functions.

3.4. Probabilistic representations. Of course, differential equations in-
volving dressed operators can be reduced to the usual fractional equations
via dressing and redressing. This method was developed in detail in [7]
(where it was called the transmutation method) for the case of Erdélyi-
Kober operators. However, if one is interested in mixtures of the deriva-
tives of different kind (say, dressed by different operators), one needs to
have explicit representation for each mixed component.

Proposition 3.4. IfG is differentiable increasing function withG(a) =
a and f is continuously differentiable, then

ADq
a+,G,wf(x) = −

∫ x

a
(f(s)− f(x))νA(x, s) ds
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+
f(x)

Γ(1− q)

[

1

(G(x)−G(a))q
− q

∫ x

a

w(u) − w(x)

w(x)(G(x) −G(u))1+q
G′(u) du

]

,

(3.39)

ADq
a+∗,G,wf(x) = −

∫ x

a
(f(s)−f(x))νA(x, s) ds+

w(a)

w(x)

f(x)− f(a)

Γ(1− q)(G(x) − a)q

+
f(x)

Γ(1− q)

[

w(x)− w(a)

w(x)(G(x) −G(a))q
− q

∫ x

a

w(u) −w(x)

w(x)(G(x) −G(u))1+q
G′(u) du

]

,

(3.40)
with

νA(x, s) = − 1

Γ(−q)

w(s)

w(x)(G(x) −G(s))1+q
G′(s). (3.41)

P r o o f. It is most handy to use the first formula in (3.34) and the
formula for the standard derivatives (2.11) implying that

ADq
a+,G,wf(x)

=
1

Γ(−q)w(x)

∫ G(x)

a

(wf)(G−1(y))− (wf)(x)

(G(x) − y)1+q
dy +

f(x)

Γ(1− q)(G(x) − a)q
.

Changing variable of integration yields
ADq

a+,G,wf(x)

=
1

Γ(−q)

∫ x

a

(w(u)/w(x))f(u) − f(x)

(G(x) −G(u))1+q
G′(u) du +

f(x)

Γ(1− q)(G(x) − a)q
,

which can be rewritten as

ADq
a+,G,wf(x) =

1

Γ(−q)

∫ x

a

w(u)(f(u) − f(x))

w(x)(G(x) −G(u))1+q
G′(u) du

+f(x)

[

1

Γ(1−q)(G(x)−G(a))q
+

1

Γ(−q)

∫ x

a

w(u)−w(x)

w(x)(G(x)−G(u))1+q
G′(u) du

]

,

as yielding (3.39).

Similarly,

ΩG◦Dq
a+∗◦Ω−1

G f(x)=
1

Γ(−q)

∫ x

a

(f(u)−f(x))G′(u) du

(G(x)−G(u))1+q
+

f(x)−f(a)

Γ(1−q)(G(x)−a)q
.

Dressing by Mw and rearranging yields (3.40). ✷

If the function w(x) has a constant sign everywhere and the coefficient
at f(x) is positive (for instance, if w(x) is an increasing positive function),
the operator −ADq

a+,G,w generates a decreasing Markov process with killing
that can be called Agrawal’s process.

As a hallmark of the dressing with the multiplication operators, the CD
derivative also gets a killing term (with the rate given by the last square
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bracket in (3.40)) and the equation ADq
a+∗f = ADq

a+(f−f(a)) does not hold
anymore. However, the RL and CD derivatives still coincide if f(a) = 0.

Needless to stress that these operators also fit the general framework
of the operators (2.28).

Let us turn to the derivatives (3.37), (3.38) representing the extension
of the Erdélyi-Kober-Kiryakova-Luchko operators.

Proposition 3.5. IfG is differentiable increasing function withG(a) =
a and f is continuously differentiable, then

Dq;G,w,v
a+ = −

∫ x

a
(f(s)− f(x))νG,w,v(x, s) ds + f(x)(ΩG ◦Mv ◦Dq

a+w)(x),

(3.42)

Dq;G,w,v
a+∗ = −

∫ x

a
(f(s)− f(x))νG,w,v(x, s) ds + f(x)(ΩG ◦Mv ◦Dq

a+∗w)(x)

+
(f(x)− f(a))w(x)v(G(x))

Γ(1− q)(G(x) − a)q
, (3.43)

with

νG,w,v(x, s) = − v(G(x))w(G(s))G′(s)

Γ(−q)(G(x)−G(s))1+q
(3.44)

P r o o f. By (2.11),

Mv ◦Dq
a+ ◦Mw ◦Ω−1

G f(x)

=
v(x)

Γ(−q)

∫ x

a

w(y)f(G−1(y))− w(x)f(G−1(x))

(x− y)1+q
+

f(G−1(x))w(x)v(x)

Γ(1− q)(x− a)q
.

Therefore,

Dq;G,w,v
a+

=
v(G(x))

Γ(−q)

∫ G(x)

a

w(y)f(G−1(y))−w(G(x))f(x)

(G(x)−y)1+q
dy +

f(x)w(G(x))v(G(x))

Γ(1−q)(G(x)−a)q

=
v(G(x))

Γ(−q)

∫ x

a

w(G(u))f(u)−w(G(x))f(x)

(G(x)−G(u))1+q
G′(u)du+

f(x)w(G(x))v(G(x))

Γ(1−q)(G(x)−a)q
,

and consequently,

Dq;G,w,v
a+ =

v(G(x))

Γ(−q)

∫ x

a

w(G(u))(f(u) − f(x))

(G(x) −G(u))1+q
G′(u)du

+f(x)

[

v(G(x))

Γ(−q)

∫ x

a

w(G(u)) − w(G(x))

(G(x)−G(u))1+q
G′(u)du +

f(x)w(G(x))v(G(x))

Γ(1− q)(G(x) − a)q

]

.
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The expression in the square bracket rewrites as

v(G(x))

Γ(−q)

∫ G(x)

a

w(y)− w(G(x))

(G(x) − y)1+q
dy +

f(x)w(G(x))v(G(x))

Γ(1− q)(G(x) − a)q

yielding (3.42).
Similarly,

Dq;G,w,v
a+∗ =

v(G(x))

Γ(−q)

∫ G(x)

a

w(y)f(G−1(y))− w(G(x))f(x)

(G(x) − y)1+q
dy

+
(f(x)w(G(x)) − f(a)w(a))v(G(x))

Γ(1− q)(G(x) − a)q
,

yielding (3.43). ✷

As was noted above, dressing fractional derivatives by the multiplication
operators leads to killing even in the CD version. Therefore it is natural to
modify the obtained CD-type derivatives by subtracting the killing term.
In fact, performing thus procedure with the dressing by the exponential
function e−λx leads to the tempered fractional derivatives defined by the
Lévy kernel (2.21) (see [6] and [58]).

3.5. Multiplicative interpolations of Hilfer. Let us touch upon the
multiplicative interpolations between (or multiplicative mixtures of) the
CD and RL derivatives introduced by Hilfer (see e.g. [23]), which are defined
by the formulas

HiDα,β
a+ = I(1−α)βDI

(1−α)(1−β)
a+ , β ∈ (0, 1), (3.45)

so that for β = 0 this operator turns to the RL derivative and for β = 1 to
the CD one.

From the point of view of probability, these derivatives do not lead to
any new processes, as the following statement shows.

Proposition 3.6. If f is continuously differentiable and β < 1, then

HiDα,β
a+ f(x) = Dα

a+f(x), (3.46)

that is, for smooth f , the interpolated derivatives turn to the usual RL
derivatives.

P r o o f. Using the definition and integration by parts we get

I
(1−α)(1−β)
a+ f(x) =

1

Γ[(1− α)(1 − β)]

∫ x

a
(x− t)(1−α)(1−β)−1f(t)dt

= − 1

Γ[(1− α)(1 − β)]

∫ x

a
f(t)

d

dt

(x− t)(1−α)(1−β)

(1− α)(1 − β)
dt
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=
1

Γ[(1− α)(1− β)]
f(a)

(x− a)(1−α)(1−β)

(1− α)(1− β)
+ (I

(1−α)(1−β)+1
a+ f ′)(x).

Therefore,

DI
(1−α)(1−β)
a+ f(x) =

(x− a)(1−α)(1−β)−1

Γ[(1− α)(1 − β)]
f(a) + (I

(1−α)(1−β)
a+ f ′)(x),

and

I(1−α)βDI
(1−α)(1−β)
a+ f(x) = (I

(1−α)
a+ f ′)(x)

+
f(a)

Γ[(1− α)β]

1

Γ[(1− α)(1 − β)]

∫ x

a
(x− s)(1−α)β−1(s− a)(1−α)(1−β)−1ds

=Dα
a+∗f(x)+

f(a)

Γ[(1− α)β]

1

Γ[(1− α)(1− β)]
(x−a)−αB[(1−α)β, (1−α)(1−β)]

= Dα
a+∗f(x) +

f(a)

Γ(1− α)(x− a)α
= Dα

a+f(x).

✷

For completeness, let us note that the working with derivatives (3.45)
allows one to distinguish succinctly the scales of the regularity classes of
the solutions to the spectral problems:

HiDα,β
a+ f = I

(1−α)β
a+ DI

(1−α)(1−β)
a+ f = λf. (3.47)

In fact, applying the operator I
(1−α)(1−β)
a to the both sides of this equation

leads to the spectral problem for the CD operator:

Dα
a+∗g = λg, g = I

(1−α)(1−β)
a+ f, (3.48)

and applying further the usual derivative D leads to to the spectral problem
for the RL operator:

Dα
a+h = λh, h = g′ = D

1−(1−α)(1−β)
a+ f. (3.49)

The natural boundary value condition g(a) = Y for the CD problem (3.48)

leads to the integral boundary condition I
(1−α)(1−β)
a+ f(a) = Y for the Hilfer

spectral problem for f . In particular, this condition turns to

I
(1−α)
a+ f(a) = Y (3.50)

for the RL spectral problem.
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3.6. Random fractional integrals. Iterated integrals (3.22) and the cor-
responding fractional integrals were considered so far only for the case of
differentiable G(x). The general approach presented here suggests further
extensions. Firstly one can look at non-smooth increasing G, for instance,
choosing as G the famous Cantor staircase. Aiming to assess the gen-
eral features of such integrals, one can look at random fractional integrals
arising from choosing G(x) as an increasing process, for instance, a Lévy
subordinator. Even more exotic calculus can be introduced attempting to
build fractional versions of more general indefinite stochastic integrals. For
instance, one can start with the Wiener or Ito integral

IW f(x) =

∫ x

0
f(y)dB(y),

where dB(y) is the Ito stochastic differential of the standard Brownian mo-
tion. Simple (but lengthy) calculations show that if f is a smooth function
(or even a smooth adapted processes on the Wiener space) vanishing at
zero, the iterated integral can be expressed as the following usual (non-
stochastic) integral:

(IW )kf(x) =
1

k!

∫ x

0
f ′(y)(x− y)k/2Hk

(

B(x)−B(y)√
x− y

)

dy, (3.51)

where

Hk(x) = (−1)kex
2/2 dk

dxk
e−x2/2 =

(

x− d

dx

)k

1, k ∈ N,

are the Hermite polynomials. Extending Hk(x) to fractional values of k
(by using either fractional derivative in the first equality or the fractional
power in the second equality of the last formula) would naturally define the
fractional Wiener integral. We shall not explore this topic further here.

Remark 3.2. In the theory of probability by fractional Wiener integral
one understands another object, namely the integral

∫ x
0 f(y) dBH(y) with

BH the fractional Brownian motion.

4. Simplest linear equations and

generalized Mittag-Leffler functions

4.1. Equations with shift invariant mixed derivatives. If a non-
negative measure ν on {y : y > 0} satisfy (2.19) and g ∈ Cconst (−∞,a](R)∩
Cuc(R), the resolvent operator R′

λ from (2.37) yields the unique solution
R′

λg of the equation

D
(ν)
a+∗f(x) = −λf(x) + g(x) (4.1)

in the domain of the generator of the semigroup Tt on Cuc(R). This function
equals g(a)/λ to the left of a.
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However, R′
λg is not the solution we are mostly interested in, as it pre-

scribes the boundary value at a, rather than solves the boundary value
problem. By prescribing the boundary value one necessarily takes the so-
lution out of the domain of the generator.

The natural way to state properly the boundary value problem

D
(ν)
a+∗f(x) = −λf(x) + g(x), f(a) = Y, x ≥ a, (4.2)

is by turning it to the problem with the vanishing boundary value, which is
a usual trick in the theory of PDEs. Namely, introducing the new unknown
function u = f − Y we see that u must solve the problem

D
(ν)
a+u(x) = −λu(x)− λY + g(x), u(a) = 0, x ≥ a, (4.3)

just with g − λY instead of g. We can thus define the solution to (4.2) to
be the function f = u + Y , where u solves (4.3). Let us stress for clarity
that in (4.3) the r.h.s. g(x) − λY is considered to be continued as zero to
the left of a.

Remark 4.1. It is also possible to work directly with the resolvents
of the CD derivatives (see [20], [21] ), but the approach via equation (4.3)
seems to be simpler.

Taking first g = 0 we find the solution to (4.2) to be

f(x) = Y + u(x) = Y − λY

∫ x−a

0

∫ ∞

0
e−λtG(ν)(t, dy) dt

= λY

∫ ∞

0
e−λt

(
∫ ∞

x−a
G(ν)(t, dy)

)

dt, (4.4)

since

λ

∫ ∞

0

∫ ∞

0
e−λtG(ν)(t, dy) dt = 1.

Integrating by parts and taking into account that
∫∞
x−aG(ν)(0, dy) = 0

for x > a, we get in this case the alternative expression:

f(x) = Y

∫ ∞

0
e−λt ∂

∂t

(∫ ∞

x−a
G(ν)(t, dy)

)

dt.

Restoring g we arrive at the following.

Proposition 4.1. For any g supported on [a,∞) the unique solution
to problem (4.2) in the sense defined above is given by the formula

f(x) = Y

∫ ∞

0
e−λt ∂

∂t

(∫ ∞

x−a
G(ν)(t, dy)

)

dt
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+

∫ x−a

0
g(x− y)

∫ ∞

0
e−λtG(ν)(t, dy) dt. (4.5)

This solution can be classified as classical (from the domain of the genera-
tor) or generalized (in the sense of the generalized functions or by approx-
imation) according to Proposition 2.2 applied to problem (4.3).

In analogy with the derivative dβ/dxβ, one can define the family of
generalized Mittag-Leffler functions depending on the positive parameter z
as

E(ν),z(−λ) =

∫ ∞

0
e−λt ∂

∂t

(
∫ ∞

z
G(ν)(t, dy)

)

dt

= 1− λ

∫ ∞

0
e−λt

(
∫ z

0
G(ν)(t, dy)

)

dt = 1− λ

∫ z

0
U

(ν)
λ (dy). (4.6)

Since the function
∫∞
x−aG(ν)(t, dy) increases with t, its derivative (in the

sense of generalized functions) is well-defined as a positive measure (and
as a function almost everywhere), and therefore the function E(ν),z(−λ)
are well defined and continuous for λ ≥ 0. They are completely monotone
function of these λ and are bounded by 1:

|E(ν),z(−λ)| ≤
∫ ∞

0

∂

∂t

(
∫ ∞

z
G(ν)(t, dy)

)

dt =

(
∫ ∞

z
G(ν)(t, dy)

)∣

∣

∣

∣

∞

0

= 1.

(4.7)
Moreover, E(ν),z(0) = 1 and the solution (4.4) to problem (4.3) is expressed
as

f(x) = Y E(ν),x−a(−λ) +

∫ x−a

0
g(x − y)U

(ν)
λ (dy), (4.8)

where the λ-potential measure is expressed in terms of E(ν),z by the equa-
tion

∫ z

0
U

(ν)
λ (dy) = (1− E(ν),z(−λ))/λ. (4.9)

If the measures G(ν)(t, dy) have densities with respect to Lebesgue mea-

sure, G(ν)(t, y), then the λ-potential measure also has a density, U
(ν)
λ (y),

and (4.9) rewrites as

U
(ν)
λ (y) = − 1

λ

∂E(ν),y(−λ)

∂y
. (4.10)

However, only for the case of the derivative dβ/dxβ , due to the particu-
lar scaling property of Gβ, one has the additional relation E(ν),z(−λ) =

Eβ(−λzβ).
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In case of Lν = −dβ/dxβ ,
∫ ∞

1
Gβ(t, y)dy =

∫ ∞

1
t−1/βGβ(1, t

−1/βy)dy =

∫ ∞

t−1/β
Gβ(1, x)dx.

so that
∂

∂x

∫ ∞

1
Gβ(t, y)dy =

1

β
t−1−1/βGβ(1, t

−1/β),

and therefore we again arrive at formula (2.42).
Let us now turn to the extension of the linear equations to the Banach-

space-valued setting, that is, to the equations

D
(ν)
a+∗µ(x) = Aµ(x) + g(x), µ(a) = Y, x ≥ a. (4.11)

If µ(a) = Y = 0, this turns to the RL type equation

D
(ν)
a+µ(x) = Aµ(x) + g(x), µ(a) = 0, x ≥ a. (4.12)

As above, we shall define the solution to (4.11) as the function µ(x) =
Y + u(x), where u(x) solves the problem

D
(ν)
a+u(x) = Au(x) +AY + g(x), u(a) = 0, x ≥ a. (4.13)

Notice also that the assumption of etA to be a contraction naturally
extends the case A = −λ with λ > 0, as e−λt ≤ 1, and allows one to define
the operator-valued generalized Mittag-Leffler functions by the operator-
valued integral

E(ν),z(A) =

∫ ∞

0
etA

∂

∂t

(∫ ∞

z
G(ν)(t, dy)

)

dt

= 1 +A

∫ ∞

0
etA

(∫ z

0
G(ν)(t, dy)

)

dt. (4.14)

Theorem 4.1. (i) Let the measure ν on {y : y > 0} satisfy (2.19)
and let A be the generator of the strongly continuous semigroup etA of
contractions in the Banach space B, with the domain of the generator
D ⊂ B. Then the L(B,B)-valued potential measure,

U
(ν)
−A(M) =

∫ ∞

0
etAG(ν)(t,M) dt, (4.15)

of the semigroup T ′
te

tA on the subspace Ckill(a)([a, b], B) of Cuc((−∞, b], B)
is well-defined as a σ-finite measure on {y : y ≥ 0} such that for any z > 0,
λ > 0,

‖U (ν)
−A([0, z])‖ ≤ eλz/φν(λ).

Therefore, the potential operator (given by convolution with U
(ν)
−A) of the

semigroup T ′
te

tA on Ck
kill(a)([a, b], B) is bounded for any b > a.
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(ii) For any g ∈ Ckill(a)([a, b], B), the B-valued function

f(x) =

∫ x−a

0
U

(ν)
−A(dy)g(x − y) =

∫ x−a

0

∫ ∞

0
etAG(ν)(t, dy) dt g(x − y)

(4.16)
belongs to the domain of the generator of the semigroup T ′

te
tA and rep-

resents the unique solution to problem (4.12) from the domain. For any
g ∈ C([a, b], B) (continued as zero to the left of a), this function represents
the unique generalized solution to (4.12), both by approximation and in
the sense of generalized functions.

(iii) For any g ∈ C([a, b], B) (continued as zero to the left of a) and
Y ∈ B, the function

f(x) = Y +

∫ x−a

0
U

(ν)
−A(dy)(AY + g(x − y))

= E(ν),x−a(A)Y +

∫ x−a

0
U

(ν)
−A(dy)g(x − y) (4.17)

represents the unique generalized solution to problem (4.11) or (4.13).

P r o o f. (i) The norms of the operator-valued measure U
(ν)
A are es-

timated by the measure U (ν), because etA are contractions. (ii) and (iii)
follow in the same way as for real-valued A above. ✷

4.2. Equations with weighted mixed derivatives. Let us turn to equa-
tions arising from the operator Ll

(ν,γ) from (2.22) and the corresponding de-

rivative (2.26), assuming everywhere that the assumptions of Proposition
2.5 hold.

The linear problem

D
(ν,γ)
a+∗ f(x) = −λf(x) + g(x), f(a) = Y, x ≥ a, (4.18)

will be dealt with in the same way as (4.2). Namely, its solution will be
defined as the function f = u+ Y , where u solves the equation

D
(ν,γ)
a+ u(x) = −λu(x)− λY + g(x), u(a) = 0, x ≥ a. (4.19)

Taking first g = 0 we find (by (2.51) for λ = 0 and by the definition of
resolvent (2.45) for λ > 0) that the solution to (4.2) equals

f(x) = Y + u(x) = Y − λY

∫ x

a

∫ ∞

0
e−λtP(ν,γ)(t, x, dy) dt, (4.20)
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where P(ν,γ)(t, x, dy) are the transition probabilities for the process gener-

ated by Ll
(ν,γ). Consequently, we get for x > a that

f(x) = λY

∫ ∞

0
e−λt

(
∫ a

−∞
P(ν,γ)(t, x, dy)

)

dt

= Y

∫ ∞

0
e−λt ∂

∂t

(
∫ a

−∞
P(ν,γ)(t, x, dy)

)

dt. (4.21)

As in the case of shift invariant mixtures, the expression under the bracket
is monotonic in t and hence the derivative is well defined almost every-
where and is positive. Of course, strictly speaking, the last formula holds
only in case of absolutely continuous (in t) function

∫ a
−∞ P(ν,γ)(t, x, dy). In

the general case, the last formula should be written more precisely as the
Stieltjes integral

f(x) = Y

∫ ∞

0
e−λtdt

(∫ a

−∞
P(ν,γ)(t, x, dy)

)

, (4.22)

where dt is the differential with respect to the variable t.

Restoring g, we arrive at the following.

Proposition 4.2. Let the assumptions of Proposition 2.5 hold. Then
for any λ ≥ 0 and any g supported on [a,∞) the unique solution to problem
(4.18) in the sense defined above is given by the formula

f(x) = Y

∫ ∞

0
e−λtdt

(∫ a

−∞
P(ν,γ)(t, x, dy)

)

+

∫ x

a
g(y)Πλ

(ν,γ)(x, dy). (4.23)

We can now define the family of generalized Mittag-Leffler functions as

E(ν,γ)
x,a (−λ) =

∫ ∞

0
e−λtdt

(
∫ a

−∞
P(ν,γ)(t, x, dy)

)

= 1− λΠλ
(ν,γ)(x, [a, x]).

(4.24)
In explicitly probabilistic form it can be written also as

E(ν,γ)
x,a (−λ) = λYE

∫ ∞

0
e−λt1y≤a(X

t
x) dt, (4.25)

where Xt
x is the Feller process generated by Ll

(ν,γ) (a simpler expression

will be given below in (4.38)). These functions are completely monotone.
Moreover, it follows that the differential of E with respect to a exists as a
measure so that

Πλ
(ν,γ)(x, dy) = dyE

(ν,γ)
x,y (−λ)

and the solution (4.23) rewrites as

f(x) = Y E(ν,γ)
x,a (−λ) +

∫ x

a
g(y)dyE

(ν,γ)
x,y (−λ). (4.26)



582 V.N. Kolokoltsov

Similarly the operator-valued equation

D
(ν)
a+∗µ(x) = Aµ(x) + g(x), µ(a) = Y, x ≥ a (4.27)

is analyzed for the case of A generating a semigroup of contractions, etA,
in a Banach space B.

The operator-valued generalized Mittag-Leffler functions are defined by
the operator-valued integral

E(ν,γ)
x,a (A) =

∫ ∞

0
eAtdt

(
∫ a

−∞
P(ν,γ)(t, x, dy)

)

= 1 +AΠ−A
(ν,γ)(x, [a, x]),

(4.28)
where Π−A

(ν,γ) is the operator-valued potential measure,

Π−A
(ν,γ)(x, dy) =

∫ ∞

0
eAt dt P(ν,γ)(t, x, dy), (4.29)

and the following direct extension of Theorem 4.1 is obtained.

Theorem 4.2. Let the assumptions of Proposition 2.5 hold and let A
be the generator of the strongly continuous semigroup etA of contractions
in the Banach space B. Then the L(B,B)-valued potential measure (4.29)
is well defined. Moreover, for any g ∈ C([a, b], B) (continued as zero to the
left of a) and Y ∈ B, the function

f(x) = E(ν,γ)
x,a (−λ)Y +

∫ x

a
[dyE

(ν,γ)
x,y (−λ)]g(y), (4.30)

where in the square bracket sits the operator-valued Stiltjes measure, rep-
resents the unique generalized solution to problem (4.27).

4.3. Power series expansion for generalized Mittag-Leffler func-

tions. We have constructed the solutions to the linear problems (4.12)
and (4.11) only for the case of A generating a contraction semigroup (with
a direct extension to the case of a uniformly bounded semigroup etA). This
restriction was ultimately linked with formula (4.24) for the generalized
Mittag-Leffler function, from which it is not seen directly that it can be
extended to negative λ. We shall see that this is always possible providing
by-passing the power series representation for these functions.

From the definition (4.24) it follows that

E(ν,γ)
x,a (−λ) = 1− λ(Rλ1≥a)(x)

with the resolvent operator (2.45). But in the space Ckill (−∞,a]((−∞, b])

for any b > a, the potential operator I
(ν,γ)
a+ is the bounded right inverse to

D
(ν,γ)
+ , so that the resolvent equals
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Rλ = (λ+D
(ν,γ)
+ )−1 = I

(ν,γ)
a+ (1 + λI

(ν,γ)
a+ )−1 =

∞
∑

k=0

(−λ)k(I
(ν,γ)
a+ )k+1,

the series being convergent at least for λ‖I(ν,γ)a+ ‖b < 1, where ‖I(ν,γ)a+ ‖b is the
norm of the operator I

(ν,γ)
a+ on the space Ckill(−∞,a]((−∞, b]). Therefore,

E(ν,γ)
x,a (−λ) =

[

∞
∑

k=0

(−λI
(ν,γ)
a+ )k1≥a

]

(x). (4.31)

This yields the series representation for the generalized Mittag-leffler func-
tions. Since the series has a non-vanishing convergence radius (for any finite

x), it defines the continuation of the Mittag-leffler functions E
(ν,γ)
x,a (−λ) to

a neighborhood of zero.
In order for this series to be convergent for all λ ∈ C one has to impose

some additional assumptions on the kernel ν, the simplest one being a lower
bound of a stable type.

Proposition 4.3. Under the assumptions of Proposition 2.5 let ν(x, dy)
have the lower bound of the β-fractional type

ν(x, dy) ≥ (−1/Γ(−β))Cνy
−1−β dy (4.32)

with some β ∈ (0, 1) and Cν > 0. Then, for any x > a,

Π(ν,γ)(x, [a, x]) ≤ CνU
β[0, x− a] = Cν(I

β
0 1)(x− a) = Cν(x− a)β/Γ(β),

(4.33)

Πλ
(ν,γ)(x, [a, x]) ≤ CνU

β
λ [0, x− a] ≤ Cν

|λ| [Eβ(|λ|(x − a)β)− 1], (4.34)

Eν,b
x,a(λ) ≤ max(1, Cν)Eβ(|λ|(x− a)β). (4.35)

P r o o f. All inequalities follow from the comparison principle of Propo-
sition 2.5 and equation (4.24). ✷

Proposition 4.3 implies that the function Eν,b
x,a(λ) is well defined as a

whole analytic function of λ and series (4.31) converges for all λ. This
allows one to get a more or less direct extension of Theorem 4.1 to arbitrary
strongly continuous semigroups etA (not necessarily contractions), see detail
in [44].



584 V.N. Kolokoltsov

4.4. Probabilistic solutions of linear equations and probabilistic

representation for generalized Mittag-Leffler functions. Solutions
to linear fractional equations constructed above are expressed in terms of
the transition probabilities of underlying processes. The derivation was
performed analytically, via resolvents. It is instructive to give an alterna-
tive, pure probabilistic derivation of these results. this approach leads also
to the new representations for the solutions.

The main tool here is the Dynkin martingale. Namely, as is well known
in probability theory, if Xt is a Feller process Xx

t in Rd generated by the
operator L and f is a function from the domain of L, then the process

Mf,λ
t = f(Xx

t )e
−λt +

∫ t

0
e−λs(λ− L)f(Xs) ds

is a martingale for any λ ≥ 0, called the Dynkin martingale. Let τ be
a stopping time with a finite expectation Eτ . Then one can use Doob’
optional sampling theorem to deduce the following Dynkin formula:

f(x) = E[f(Xx
τ )e

−λτ +

∫ τ

0
e−λs(λ− L)f(Xx

s ) ds]. (4.36)

Suppose now that f is a solution for the problem (4.18) with Y =
0 (chosen for simplicity, as the general case is reduced to this anyway).
Recalling that the fractional derivative is the negation of the generator of
the corresponding Markov process and choosing the stopping time τx,a to
be the time of exit of the process from the interval (a,∞) we find that

f(x) = E

∫ τx,a

0
e−λsg(Xx

s ) ds. (4.37)

It is of course not surprising that this formula coincides with the ex-
pression (4.23) with Y = 0. In fact, recalling that g is considered to be
continued as zero to the left of a, we have

E

∫ τx,a

0
e−λtg(Xx

t )dt=

∫ ∞

0
e−λtg(Xx

t )dt=

∫ ∞

0
e−λt

∫ x

a
P(ν,γ)(t, x, dy)g(y)ds.

Thus (4.37) yields the probabilistic representation for the solution (4.23)
with Y = 0.

Next, we get from (4.24) (or from (4.20)) that

E(ν,γ)
x,a (−λ) = 1− λ

∫ ∞

0
e−λt

∫ x

a
P(ν,γ)(t, x, dy) ds

= 1− λE

∫ τx,a

0
e−λt dt = 1− λE

1− e−λτx,a

λ
= Ee−λτx,a ,

yielding the fundamental probabilistic representation for the generalized
Mittag-Leffler function:

E(ν,γ)
x,a (−λ) = Ee−λτx,a . (4.38)
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Thus this function is just the Laplace transform of the exit time of the
underlying decreasing Markov process. For instance, for the shift invariant
case, the function (4.6) equals

E(ν),x(−λ) = E exp{−λτ (ν)x }, (4.39)

where τ
(ν)
x is the exit time from the interval [0, x) for the Lévy subordinator

generated by the operator Lν from (2.20). For the classical Mittag-Leffler
function formula (4.39) reduces to the known formula

Eβ(−λxβ) = E exp{−λτβx } (4.40)

(seemingly first derived in [11], see also [60]), where τβx is the corresponding
exit time for the β-stable subordinator.

Remark 4.2. The remarkable formula (4.40) and its direct application
to the Banach space valued problems seem to be poorly appreciated by the
’fractional community’.

The solution to the spectral problem (4.11) with g(x) = 0 can now be
written in the following remarkably simple form

µ(x) = E exp{Aτ (ν)x }Y, (4.41)

that explicitly unifies the solutions for all mixed fractional derivatives of
order up to and including 1.

As another example let us consider the Cauchy problem
HDq

a+∗f(x) = Af(x), f(a) = Y, (4.42)

in the Banach space B, with the Hadamard derivative (3.41) and A as
above. Its solution writes down as

µ(x) = E exp{Aτx,a}Y, (4.43)
where τx,a is the exit time from the interval (a, x] for the Hadamard process
generated by (3.8) and started at x.

4.5. Some examples. Let us present some examples.

(i) Generalized fractional Schrödinger equation:

D
(ν,γ)
a+∗ ψ = −iHψ, (4.44)

where H is a self-adjoint operator in a Hilbert space H. Since H gen-
erates a unitary group, and hence a contraction semigroup, Theorem 4.2
applies. Similarly one can deal with fractional Schrödinger equation with
the complex parameter

D
(ν,γ)
a+∗ ψ = σHψ, (4.45)

if H is a negative self-adjoint operator. Specific examples of these equations
were analyzed recently in [17].
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(ii) Generalized fractional Feller evolution, where the operator A gen-
erates a Feller semigroup in C∞(Rd) and a Feller process, for instance, a
diffusion or a stable-like process.

(iii) Generalized fractional evolutions generated by ΨDOs with spatially
homogeneous symbols (or with constant coefficients):

D
(ν,γ)
a+∗ f = −ψ(−i∇)f + g, f |t=a = fa, (4.46)

under various assumptions on symbols ψ(p) ensuring that −ψ(−i∇) gen-
erates a semigroup. In this case the solution given by Theorem 4.2 can be
constructed explicitly via the Fourier transform, see detail in [44].

5. Further linear equations

5.1. Two-sided problems. We shall now touch upon the theory of two-
sided problems that includes the problem

D
(ν)
a+∗f +D

(ν)
b−∗f = −λf + g, f |t=a = fa, f |t=b = fb. (5.1)

In its general form it is the problem of the type

D
(ν)
[a,b]∗f = −Lf = −λf + g, f |t=a = fa, f |t=b = fb, (5.2)

with L from (2.56). It turns out that essential simplification for the two-
sided problems occurs in case of the Lévy measures with densities. We
shall consider only this case (also omitting for simplicity the usual drift)
thus choosing

Lf(x) =

∫ b−x

a−x
(f(x+ y)− f(x))ν(x, y)dy

+ (f(b)− f(x))

∫ ∞

b−x
ν(x, y)dy + (f(a)− f(x))

∫ a−x

−∞
ν(x, y)dy. (5.3)

As follows from the discussions of the previous section, by shifting the
unknown function, the problem can be reduced to the problem with the
vanishing boundary conditions. To solve the latter problem one has to
construct the Feller process and the resolvent generated by the operator

−D
(ν)
[a,b]f(x) = Lkillf(x) =

∫ b−x

a−x
(f(x+ y)− f(x))ν(x, y)dy − k(x)f(x),

(5.4)
with

k(x) = ka(x) + kb(x) =

(
∫ a−x

−∞
+

∫ ∞

b−x

)

ν(x, y)dy,

describing the process killed on the boundary. As was mentioned already,
these semigroup and the resolvent cannot be obtained from the correspond-
ing objects for the operator without boundary just by reducing it to the
space of functions vanishing outside (a, b).
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We shall denote by primes the derivatives with respect to the variable
x. For instance, ν ′(x, y) = (∂/∂x)ν(x, y).

The following conditions on ν will be assumed throughout this section:

(A) ν(x, y) is a continuous function of two variables on the set (x ∈
[a, b], y �= 0) having a continuous derivative ν ′(x, y) such that

zν(x, z) ≤ κ

∫ ∞

z
ν(x, y)dy (5.5)

with a constant κ < 1 and sufficiently small z;

(B) ν(x, y) ≤ ν̃(y), ν ′(x, y) ≤ ν̃(y) with a function ν̃:
∫

(1∧ y)ν̃(y)dy <
∞;

(C) k(x) → ∞ as x → a or x → b.

Note that (C) is just the assumption that the Lévy kernel ν(x, y)dy
is unbounded. Assumption (A) is not too restrictive, at least it holds
for all standard examples. Say, for α-stable processes (classical fractional
derivatives) it holds with κ = α.

Let us introduce the special notations for our main Banach spaces: C0 =
Ckill{a,b}([a, b]) equipped with the sup-norm ‖.‖, C00 = {f ∈ C0 : f ′ ∈ C0}
equipped with the norm ‖f‖00 = ‖f‖+ ‖f ′‖.

Lemma 5.1. Under conditions (A)-(C) the operator −K of multipli-
cation by −k(x) from (5.15) generates: (i) a semigroup of contractions in
C([a, b]), (ii) a strongly continuous semigroup of contractions in C0 with
the domain

DK = {f ∈ C0 : lim
x→a

k(x)f(x) = 0, lim
x→b

k(x)f(x) = 0},

(iii) a uniformly bounded semigroup in C0 ∩ C1([a, b]), (iv) a uniformly
bounded strongly continuous semigroup in C00.

P r o o f. It is mostly straightforward. Let us prove only (iii) and (iv).
We have

[e−tk(x)f(x)]′ = e−tk(x)f ′(x)− tk′(x)e−tk(x)f(x).

The first term is bounded: ‖e−tk(.)f ′(.)‖ ≤ ‖f ′‖. The second term is
bounded away from the boundaries. Let us estimate it in a neighbor-
hood of x = b (neighborhoods of a are analogous). Near x = b the main
(unbounded) part of k(x) is kb(x) =

∫∞
b−x ν(x, y)dy and thus

tk′(x)e−tk(x)f(x) ∼ tν(x, b− x)(b− x)f ′(b)e−tk(x)

+t(b− x)f ′(b)e−tk(x)

∫ ∞

b−x
ν ′(x, y)dy.
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For b− x ≤ 1 we estimate the two terms by (A) and (B) respectively:

tν(x, b− x)(b− x)|f ′(b)|e−tk(x) ≤ κ|f ′(b)|tkb(x)e−tkb(x) ≤ κ|f ′(b)|,

t(b− x)|f ′(b)|e−tk(x)

∫ ∞

b−x
ν ′(x, y)dy

≤ t|f ′(b)|
∫ ∞

0
(1 ∧ y)ν ′(x, y)dy ≤ t|f ′(b)|

∫ ∞

0
(1 ∧ y)ν̃(y)dy.

Thus both terms are uniformly bounded. Moreover, if f ′(b) = 0, then
limx→b[e−tk(x)f(x)]′ = 0, so that e−tK : C0 ∩ C1([a, b]) → C00 for t > 0.
This implies the strong continuity of e−tK in C00. ✷

Theorem 5.1. Assume that (A)-(C). Then the operator Lkill of (5.15)
generates a Feller semigroup in C0 and a bounded semigroup in C00. The
domain of this semigroup in C0 contains the space

Dkill = {f ∈ C00 : Lkillf(x) → 0, as x → a, x → b}.

P r o o f. Step 1. Let us introduce the approximation Lh of Lkill, h ∈
(0, 1), by the formula

Lhf(x) =

∫ b−x

a−x
(f(x+ y)− f(x))(1− χh(y))ν(x, y)dy − k(x)f(x), (5.6)

where χh a continuous even function R → [0, 1] such that χh(z) = 1 for
z ∈ [−h, h] and χh(z) = 0 for |z| ≥ 2h. Since Lh differs from the opera-
tor −K by a bounded operator (in both C([a, b]) and C1([a, b])), we can
conclude from Lemma 5.1 and the perturbation theory that Lh generates
bounded semigroups T h

t in the spaces C([a, b]) and C1([a, b]). Moreover,
the perturbation series representation for the semigroup T h

t has the form
(see e.g. [40])

T h
t = e−tK +

∞
∑

m=1

∫

0≤s1≤···≤sm≤t
ds1 · · · dsm

×e−(t−sm)K(Lh +K)e−(sm−sm−1)K · · · (Lh +K)e−s1K .

It follows from this formula and Lemma 5.1 that the spaces C0 and C00

are invariant under T h
t . It is also straightforward to see that T h

t is strongly
continuous in both C0 and C00. Since the operator Lh is conditionally
positive, it follows that T h

t is a contraction in C0. The domain of the
semigroup T h

t in C0 is given by those f ∈ C0 such that Lhf(x) → 0, as
x → a and x → b. Moreover, (T h

t f(x) − f(x))/t → Lhf(x) uniformly on
any closed interval [a′, b′] ⊂ (a, b) and for any f ∈ C0 ∩ C1([a, b]). The
domain of the semigroup T h

t in C00 is given by those f ∈ C00 such that
Lhf(x) → 0 and (Lhf)

′(x) → 0, as x → a and x → b.
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Step 2. The next key step is to show that the semigroups T h
t are

bounded in C00 uniformly in h. To this end let us differentiate the equation
ḟt = Lhft satisfied by ft = T h

t f with f from the C00. Thus for gt = ∂ft/∂x
we get the equation

ġt(x) = Ωhgt(x) = Lhgt(x)

+ L′
hft(x)− ft(x)χh(b− x)ν(x, b− x) + ft(x)χh(a− x)ν(x, a− x), (5.7)

with

L′
hf(x) =

∫ b−x

a−x
(f(x+ y)− f(x))(1− χh(y))ν

′(x, y)dy

−ft(x)

(
∫ a−x

−∞
ν ′(x, y)dy +

∫ ∞

b−x
ν ′(x, y)dy

)

.

Writing

−f(x)χh(b− x)ν(x, b− x) + f(x)χh(a− x)ν(x, a− x)

=

∫ b

x
g(y) dyχh(b− x)ν(x, b− x) +

∫ x

a
g(y) dyχh(a− x)ν(x, a− x)

=

∫ b

x
(g(y)−g(x)) dyχh(b−x)ν(x, b−x)+

∫ x

a
(g(y)−g(x)) dyχh(a−x)ν(x, a−x)

+g(x)[χh(b− x)(b− x)ν(x, b− x) + χh(x− a)(x− a)ν(x, a − x)],

we get

Ωhg(x) = L̃hg + L′
hf,

with

L̃hg(x) =

∫ b−x

a−x
(g(x + y)− g(x))(1 − χh(y))ν(x, y)dy − k̃(x)g(x), (5.8)

where

k̃(x) = ka(x)+kb(x)−χh(b−x)(b−x)ν(x, b−x)−χh(x−a)(x−a)ν(x, a−x).

The key point is now the observation that, by (5.5),

k̃(x) ≥ (1− κ)k(x).

Hence we can show by the same perturbation argument as used above for
Lh that L̃h generates a strongly continuous semigroup in C0. Moreover,
since all terms in the expression for L̃h are conditionally positive operators
this semigroup is a group of contractions and thus is bounded uniformly
in h. Expressing f via g as above in L′

hf , we observe that this operator
becomes a uniformly bounded operator in C([a, b]) and hence, using again
perturbation argument, we conclude that the semigroups T t

h in C00 are
uniformly bounded in h.
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Step 3. Let us show now that the operators T h
t converge strongly in

C0, as h → 0. To compare these operators for different h we shall use the
following standard (and easy to prove) formula (see e.g. [40])

(T h1

t − T h2

t )f =

∫ t

0
T h2

t−s(Lh1
− Lh2

)T h1

s ds (5.9)

expressing the difference of the semigroups in terms of the difference of
their generators. For arbitrary h1 > h2 and f ∈ C00, we have

(Lh1
− Lh2

)φ(x) =

∫ b−x

a−x
(f(x+ y)− f(x))(χh2

− χh1
(y))ν(x, y)dy

and thus,

|(Lh1
− Lh2

)φ(x)| ≤
∫

|y|≤h1

‖f ′‖|y|ν(x, y)dy ≤ ‖f ′‖
∫

|y|≤h1

|y|ν̃(y) dy.

Since ‖(T h
t f)

′‖ is uniformly bounded by Step 2, we have

‖(T h1

t − T h2

t )f‖ = o(1)t‖f ′‖C1
∞

, h1 → 0. (5.10)

Therefore the family T h
t f converges in C0 to a family Ttf , as h → 0, for

any f ∈ C00. By the standard density argument this convergence holds also
for any f ∈ C0 and the limiting family Tt specifies a strongly continuous
semigroup in C∞(Rd).

Step 4. Writing
Tt − f

t
=

Tt − T h
t f

t
+

T h
t − f

t
and noting that by (5.10) the first term is of order o(1)‖f ′‖, as h → 0,
allows one to conclude that, for any f ∈ C0∩C1([a, b]), (Ttf(x)−f(x))/t →
Lkillf(x) uniformly on any closed interval [a′, b′] ⊂ (a, b). It follows that
Dkill belongs to the domain of Lkill. ✷

Having proved Theorem 5.1, we can safely apply the resolvent of the
operator Lkill to obtain the solutions for the equations

D
(ν)
[a,b]f = −λf + g

with vanishing boundary conditions, which are classical (lie in the domain
of the generator of Lkill) for g ∈ C0 and generalized otherwise.

By shifting the solutions to (5.2) can be reduced to the boundary prob-
lem with vanishing boundary conditions. For instance, writing f = u+ f0

with f0 = fa + (x− a)(fb − fa)/(b− a), the spectral problem

D
(ν)
[a,b]∗f = −Lf = −λf, f |t=a = fa, f |t=b = fb, (5.11)

is reduced to the problem

D
(ν)
[a,b]u = −Lf = −λu− λf0 −D

(ν)
[a,b]∗f

0, u(a) = u(b) = 0, (5.12)
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which is solved by the equation

f(x) = f0(x) + u(x) = f0 +Rλ
kill(λf

0 +D
(ν)
[a,b]∗f

0). (5.13)

Using the technique of Dynkin’s martingale (see Section 4.4), this can
be expressed in probabilistic (or path integral) terms as

f(x) = f0(x) +E

∫ τx

0
e−λs(λf0 +D

(ν)
[a,b]∗f

0)(Xx
s ) ds, (5.14)

where Xx
s is the process generated by Lkill and τx is its killing time.

Alternatively, to solve the equations with CD derivatives one can work
directly with the process generated by (5.15) by stopping it when reaching
the boundary. To justify this approach one needs the following result.

Theorem 5.2. Assume that (A)-(C). Then the operator L of (5.15)
generates a Feller semigroup in C([a, b]) and also a strongly continuous
semigroup in the space C ′

0 = {f ∈ C1([a, b]) : f ′(a) = f ′(b) = 0}.

P r o o f. It is a consequence of Theorem 5.1. Let us consider the semi-
group generated by L in the space C ′

0. Differentiating the equation ḟ = Lf
we get (after some handy cancellations) for the derivative g = f ′ the equa-
tion

ġ = (Lf)′ =

∫ b−x

a−x
(f(x+ y)− f(x))ν(x, y)dy − g(x))

×
(
∫ ∞

b−x
ν(x, y)dy +

∫ a−x

−∞
ν(x, y)dy

)

+

∫ b−x

a−x
(f(x+ y)− f(x))ν ′(x, y)dy

+ (f(b)− f(x))

∫ ∞

b−x
ν ′(x, y)dy + (f(a)− f(x))

∫ a−x

−∞
ν ′(x, y)dy. (5.15)

By Theorem 5.1, the first two terms on the r.h.s generates a well-defined
Feller semigroup in C0. All other terms (the terms with ν ′) are bounded
when expressed in terms of g, and hence application of the perturbation
theory yields the claimed result. ✷

5.2. Mixed RL-CD-Hilfer boundary-value problems. As was noted
(see (3.50)), the usual boundary-value problem for RL derivative imposes
a bit artificial integral boundary condition on the unknown function. How-
ever, under certain assumptions on the source function g the usual Cauchy
problem,

D
(ν)
a+f(x) = −λf(x) + g(x), f(a) = Y, (5.16)

can be solved. To see how it works let us analyse a bit more general case
of mixed RL and CD derivatives:

(γD
(ν)
0+∗ + δD

(ν)
0+ )f(x) = −λf(x) + g(x), f(0) = Y, (5.17)
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where γ, δ are nonnegative constants, g is a locally integrable function van-
ishing to the left of 0, and the derivative operators are of form (2.24) and
(2.25). For γ = 0, problem (5.17) turns to the RL problem (5.16).

Acting as earlier, we make a substitution of the unknown function
f(x) = u(x) + Y , which turns (5.17) to the problem

(γ+ δ)D
(ν)
0+∗u(x) = (γ+ δ)D

(ν)
0+u(x) = −λu(x)−λY + g(x)− δY

∫ ∞

x
ν(dy),

(5.18)
with u(0) = 0, because RL and CD derivatives coincide for functions van-

ishing at the boundary and D
(ν)
0+1≥0(x) =

∫∞
x ν(dy). Since g is locally

integrable and thus an element of the space of generalized functions D′(R),
we can apply Proposition 2.2 to get the unique generalized solution to this
problem

u(x) =

∫ ∞

0
[g(x− y)− δY

∫ ∞

x−y
ν(dz)− λY ]U

(ν)
λ (dy).

In order to satisfy the boundary requirement classically, that is, to have
limx→0 u(x) = 0, it is sufficient that

sup
y

∣

∣

∣

∣

g(y)− δY

∫ ∞

y
ν(dz)

∣

∣

∣

∣

< ∞ (5.19)

at least for y from some neighborhood of the origin. If g is continuous
for x > 0 and satisfies this condition we obtain the classical solution to
problem (5.18) and thus to problem (5.17).

Similarly one can solve the boundary-value problem with mixed Hilfer
and CD derivatives of the type

(γD
(ν)
0+∗ + δHiDα,β

a+ )f(x) = −λf(x) + g(x), f(a) = Y, (5.20)

The sufficient condition (5.19) for the classical solvability turns to the
condition

sup
y

∣

∣

∣

∣

g(y) − δY
y−α

Γ(1− α)

∣

∣

∣

∣

< ∞, (5.21)

at least for y from some neighborhood of the origin, because HiDα,β
a+ 1≥0(x) =

x−α/Γ(1− α).

5.3. Higher order and partial derivatives and related equations.

Let us mention briefly how the equations with higher order and partial
derivatives can be dealt with.

1. Let us consider, for instance, the equation

(D
(ν)
a+∗)

kf(x) = −λf(x), f(a) = Y0, D
(ν)
a+∗)

lf(a) = Yl, l = 1, · · · k − 1,
(5.22)
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where D
(ν)
a+∗ is given by (2.24). Introducing the vector-valued unknown

function F = (f0, · · · , fk−1) with f0 = f , fl = (D
(ν)
a+∗)

lf , l = 1, · · · , k − 1,
problem (5.22) rewrites in the vector form as

(D
(ν)
a+∗)

kF (x) = AF (x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1 · · · 0

· · ·
0 0 · · · 0 1

− λ 0 · · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎠

F (x), F (a) = Y =

⎛

⎜

⎜

⎜

⎝

Y0

Y1

· · ·
Yk−1

⎞

⎟

⎟

⎟

⎠

.

(5.23)

By (4.41) the solution to this problem can be written as F (x)=E exp{Aτ (ν)x }Y .

2. Let us consider the partial fractional differential equation

D
(ν2),x2

a2+∗ D
(ν1),x1

a1+∗ f(x1, x2) = −λf(x1, x2) + g(x1, x2), x1 ≥ a1, x2 ≥ a2,
(5.24)

with the simplest vanishing boundary conditions f(a1, x2) = f(x1, a2) = 0,

where D
(νj),xj

aj+∗ acts on the variable xj , j = 1, 2. Introducing the vector-

valued function F = (f1, f2), f = f1, f2 = D
(ν1),x1

a1+∗ f , we rewrite equation
(5.24) in the matrix form:

DF (x) =

⎛

⎝

D
(ν1),x1

a1+∗ f1

D
(ν1),x1

a1+∗ f2

⎞

⎠ = AF (x) =

(

0 1

− λ 0

)

F =

(

f2

− λf1

)

. (5.25)

The operator D generates a Markov process on the triples (j, x1, x2),
or, in other words on the two copies of the orthant {x1 ≥ a1, x2 ≥ x2}
such that x1 is decreasing according to the generator −D

(ν1),x1

a1+∗ on one of
the copies and x2 is decreasing independently according to the generator

−D
(ν2),x2

a2+∗ on the other copy. The solution can be again expressed either
via the resolvent of D or via Dynkin’s martingale.

6. Additional bibliographical comments

The literature on fractional calculus is enormous. We shall mention
only the sources most closely related to the probabilistic point of view of
the present paper. Some historical reviews can be found in e.g. [23], [31],
the wealth of physical and economics application, e.g. in [35], [73], [74],
[75], numerical methods are dealt with in monographs [9], [50]. One of
the main impetus for the physics interest in fractional equations was in
fact probabilistic in nature. It was inspired by their appearance as the
scaled limits of continuous time random walks, see e.g. [58], [38], [49] and
extensive bibliography therein.
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Fractional Schrödinger equation is getting popularity in physics commu-
nity, see e.g. [48], [61], [10], [17] and references therein. For the fractional
versions of the wave equations we refer to [66]. Of importance for physics
are also fractional kinetic equations with application to statistical mechan-
ics and fractional stochastic PDEs. For these developments we refer to [37],
[45] and [51], [55], [79], [80] and references therein.

An insightful collection of references on nonlinear fractional equations
and their applications can be found in [64]. Mild forms are studied in detail
in [46], [47] and [44], where they are applied to the theory of fractional
Hamilton-Jacobi-Bellman equations.

For various approaches to equations in bounded domains we refer to
[2], [13], [19], [59] Two-sided and multidimensional problems appear natu-
rally in the fractional calculus of variations, see [56], [5]. The optimization
problems of this theory are formulated in terms of the certain class of
fractional equations on bounded domains, the so-called fractional Euler-
Lagrange equations. Their analysis was initiated seemingly in [12]. Prob-
lems with partial fractional derivatives are studied in detail in [1].

A handy tool for dealing with fractional equations is based on the
method of duality, which we did not discussed here, see [42].

The method of generalized Mittag-Leffler functions developed above
cannot be directly extended to deal with non-autonomous equations of

the type D
(ν)
a+∗f(x) = A(x)f(x) + g(x) with a family of operators A(x)

depending on x. The relevant modification of the theory is developed in [43],
[44] and is based on the method of chronological operator-valued Feynman-
Kac formulae.

The present paper is mostly based on the ideas suggested by the author
in [41] and further developed in [20], [21], [22], [46] and [43].
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