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The probability distribution as a computational resource for
randomness testing

BJØRN KJOS-HANSSEN

Abstract: When testing a set of data for randomness according to a probability
distribution that depends on a parameter, access to this parameter can be considered
as a computational resource. We call a randomness test Hippocratic if it is not
permitted to access this resource. In these terms, we show that for Bernoulli
measures µp , 0 6 p 6 1 and the Martin-Löf randomness model, Hippocratic
randomness of a set of data is the same as ordinary randomness. The main idea
of the proof is to first show that from Hippocrates-random data one can Turing
compute the parameter p . However, we show that there is no single Hippocratic
randomness test such that passing the test implies computing p , and in particular
there is no universal Hippocratic randomness test.
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1 Introduction

The fundamental idea of statistics is that by repeated experiment we can learn the
underlying distribution of the phenomenon under investigation. In this paper we
partially quantify the amount of randomness required to carry out this idea. We first
show that ordinary Martin-Löf randomness with respect to the distribution is sufficient.
Somewhat surprisingly, however, the picture is more complicated when we consider a
weaker form of randomness where the tests are effective, rather than merely effective
relative to the distribution. We show that such Hippocratic randomness actually
coincides with ordinary randomness in that the same outcomes are random for each
notion, but the corresponding test concepts do not coincide: while there is a universal
test for ordinary ML-randomness, there is none for Hippocratic ML-randomness.

For concreteness we will focus on the classical Bernoulli experiment, although as the
statistical tools we need are limited to Chebyshev’s inequality and the strong law of
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large numbers, our result works also in the general situation of repeated experiments
in statistics, where an arbitrary sequence of independent and identically distributed
random variables is studied.

When using randomness as a computational resource, the most convenient underlying
probability distribution may be that of a fair coin. In many cases, fairness of the
proverbial coin may be only approximate. Imagine that an available resource generates
randomness with respect to a distribution for which the probability of heads is p 6= 1/2.
It is natural to assume that p is not a computable number if the coin flips are generated
with contributions from a physical process such as the flipping of an actual coin. The
non-computability of p matters strongly if an infinite sequence of coin flips is to be
performed. In that case, the gold standard of algorithmic randomness is Martin-Löf
randomness, which essentially guarantees that no algorithm (using arbitrary resources
of time and space) can detect any regularities in the sequence. If p is non-computable,
it is possible that p may itself be a valuable resource, and so the question arises whether
a “truly random” sequence should look random even to an adversary equipped with
the distribution as a resource. In this article we will show that the question is to some
extent moot, as these types of randomness coincide. On the other hand, while there
is a universal test for randomness in one case, in the other there is not. This article
can be seen as a follow-up to Martin-Löf’s paper where he introduced his notion of
algorithmic randomness and proved results for Bernoulli measures [3].

It might seem that when testing for randomness, it is essential to have access to the
distribution we are testing randomness for. On the other hand, perhaps if the results
of the experiment are truly random we should be able to use them to discover the
distribution for ourselves, and then once we know the distribution, test the results for
randomness. However, if the original results are not really random, we may “discover”
the wrong distribution. We show that there are tests that can be effectively applied, such
that if the results are random then the distribution can be discovered, and the results will
then turn out to be random even to someone who knows the distribution. While these
tests can individually be effectively applied, they cannot be effectively enumerated as
a family. On the other hand, there is a single such test (due to Martin-Löf) that will
reveal whether the results are random for some (Bernoulli) distribution, and another
(introduced in this paper) that if so will reveal that distribution.

In other words, one can effectively determine whether randomness for some distribution
obtains, and if so determine that distribution. There is no need to know the distribution
ahead of time to test for randomness with respect to an unknown distribution. If we
suspect that a sequence is random with respect to a measure given by the value of
a parameter (in an effective family of measures), there is no need to know the value
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of that parameter, as we can first use Martin-Löf’s idea to test for randomness with
respect to some value of the parameter, and then use the fundamental idea of statistics
to find that parameter. Further effective tests can be applied to compare that parameter
q with rational numbers near our target parameter p, leading to the conclusion that if
all effective tests for randomness with respect to parameter p are passed, then all tests
having access to p as a resource will also be passed. But we need the distribution to
know which effective tests to apply. Thus we show that randomness testing with respect
to a target distribution p can be done by two agents each having limited knowledge:
agent 1 has access to the distribution p, and agent 2 has access to the data X . Agent 1
tells agent 2 which tests to apply to X .

The more specific point is that the information about the distribution p required for
randomness testing can be encoded in a set of effective randomness tests; and the
encoding is intrinsic in the sense that the ordering of the tests does not matter, and
further tests may be added: passing any collection of tests that include these is enough
to guarantee randomness. From a syntactic point of view, whereas randomness with
respect to p is naturally a Σ0

2(p) class, our results show that it is actually an intersection
of Σ0

2 classes.

2 Definitions

If X is a 2 = {0, 1} valued random variable such that P(X = 1) = p (where P denotes
probability) then X is called a Bernoulli(p) random variable. The Bernoulli measure
µp on 2ω is defined by the stipulation that for each n ∈ ω = {0, 1, 2, . . .},

µp({X : X(n) = 1}) = p,

µp({X : X(n) = 0}) = 1 − p,

and X(0), X(1), X(2), . . . are mutually independent random variables.

Definition 2.1 A µp -ML-randomness test is a sequence {Up
n}n that is uniformly Σ0

1(p)

with µ(Up
n) 6 2−n , where 2−n may be replaced by any computable function that goes

to zero effectively.

A µp -ML-randomness test is Hippocratic if there is a Σ0
1 class S ⊆ 2ω ×ω such that

S = {(X, n) : X ∈ Up
n}. Thus, Un = Up

n does not depend on p and is uniformly Σ0
1 . If

X passes all µp -randomness tests then X is µp -random. If X passes all Hippocratic
tests then X is Hippocrates µ-random.
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To explain the terminology: Andrzej Szczeklik, in “Catharsis: on the art of medicine”
([7], page 18) writes

On his native island of Kos, only about three hundred kilometers from
Delphi, Hippocrates did not consult the oracle to seek out the harbingers
of fate, but looked at his patient’s features instead.

In the definition of Hippocratic randomness, like the ancient medic Hippocrates we are
not consulting the oracle of Delphi (i.e., an oracle for the real number p) but rather
looking for “natural causes”. This level of randomness recently arose in the study of
randomness extraction from subsets of random sets [1].

We will often write µp -random instead of µp -ML-random, as we work in the Martin-
Löf mode of randomness throughout, except when discussing a conjecture at the end
of this paper.

3 Chebyshev’s inequality

We develop this basic inequality from scratch here, in order to emphasize how generally
it holds. For an event A in a probability space, we let 1A , the indicator function of A,
equal 1 if A occurs, and 0 otherwise. The expectation of a discrete random variable X
is

E(X) =
∑

x

x · P(X = x).

where the sum is over all outcomes in the sample space. Thus E(X) is the average
value of X over repeated experiments. It is immediate that

E(1A) = P(A).

Next we observe that the random variable that is equal to a when a nonnegative random
variable X satisfies X > a and 0 otherwise, is always dominated by X . That is,

a · 1{X>a} 6 X.

Therefore, taking expectations of both sides,

a · P{X > a} 6 E(X).

In particular, for any random variable X with E(X) = ξ ∈ R we have

a2 · P{(X − ξ)2 > a2} 6 E((X − ξ)2).
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Let σ2 denote variance: σ2 = E((X − ξ)2). Then

P{|X − ξ| > |a|} 6 σ2/a2.

If we let k ∈ ω and replace a by kσ, then

P{|X − ξ| > kσ} 6 σ2/(kσ)2 = 1/k2.

This is Chebyshev’s inequality, which in words says that the probability that we exceed
the mean ξ by k many standard deviations σ is rather small.

4 Results for ordinary randomness

We first prove a version of the phenomenon that for samples of sufficiently fast growing
size, the sample averages almost surely converge quickly to the mean.

Proposition 4.1 Consider a sequence Y = {Yn}n∈ω of independent Bernoulli(p)
random variables, with the sample average

Yn :=
1
n

n−1∑
i=0

Yi.

Let N(b) = 23b−1 and let

Up
d =

⋃
b>d

{Y : |YN(b) − p| > 2−b}.

Then Up
d is uniformly Σ0

1(p), and µp(U
p
d) 6 2−d , i.e., {Up

d}d∈ω is a µp -ML-test.

The idea of the proof is to use Chebyshev’s inequality and the fact that the variance of
a Bernoulli(p) random variable is bounded (in fact, bounded by 1/4).

Proof The fact that Up
d is Σ0

1(p) is immediate, so we prove the bound on its µp -
measure. We have

E(Yn) = p and σ2(Yn) = σ2/n,

where σ2 = p(1 − p) 6 1/4 is the variance of Y0 and σ2(Yn) denotes the variance of
Yn . Thus σ 6 1/2, and

P
{
|Yn − p| > k · σ(Yn)

}
6 1/k2,

so

P
{

|Yn − p| >
k

2
√

n

}
6 P
{

|Yn − p| >
k · σ√

n

}
6 1/k2.
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Let b be defined by 2−(b+1) = 1/k2 . Now, we claim that 2−b > k
2
√

n by taking n
large enough as a function of b:

n > k24b−1 = 2b+14b−1 = 23b−1.

Thus, if n > N(b) := 23b−1 ,

P
{
|Yn − p| > 2−b} 6 2−(b+1),

so
P
{
|YN(b) − p| > 2−b for some b > d

}
6
∑
b>d

2−(b+1) = 2−d.

Brief review of computability-theory

More details can be found in standard textbooks such as Nies [4] and Soare [6] but we
provide some information here. Uppercase Greek letters such as Φ will be used for
Turing functionals, which are partial functions B 7→ ΦB from 2ω to 2ω computed by
oracle Turing machines. We write A = ΦB if A ∈ 2ω is computed from the oracle
B ∈ 2ω using the Turing functional Φ. Then A(n) = ΦB(n) is the nth bit of A. An
oracle Turing machine may, or may not, halt with oracle B on an input n; this is written
ΦB(n) ↓, and ΦB(n) ↑, respectively.

The Turing jump A ′ is the halting set (the set of solutions to the halting problem) for
oracle machines with A on the oracle tape. In terms of Turing reducibility 6T , the
relativized halting problem remains undecidable in the sense that A ′ 66T A (in fact A <T

A ′ ). The Turing jump is not injective, even on Turing degrees (equivalence classes of
the intersection ≡T of the relations 6T and >T ). Indeed, there are noncomputable
sets A (so C <T A for computable sets C) such that A ′ ≡T C ′ . It is customary to pick
the computable set ∅ for the notation here and simply write A ′ 6T ∅ ′ . Such sets A
are called low.

The low basis theorem of Jockusch and Soare asserts that each nonempty Π0
1 class

(meaning, subset of 2ω that is Π0
1 definable in arithmetic) has a low element. There

is similarly a hyperimmune-free basis theorem which asserts that each nonempty Π0
1

class contains an element A such that each function f ∈ ωω computable from A is
dominated by some computable function in ωω .

These basis theorems cannot be combined, as on the one hand each low hyperimmune-
free set is computable, and on the other hand there are Π0

1 classes without computable
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elements (such as the set of all completions of Peano Arithmetic, or the set complement
of a component Un of a Martin-Löf randomness test). These facts will be used in
Theorem 5.4.

We are now ready for a result which in a sense sums up the essence of statistics.

Theorem 4.2 If Y is µp -ML-random then Y Turing computes p.

Proof We may assume p is not computable, else there is nothing to prove; in particular
we may assume p is not a dyadic rational.

Let {Up
d}d∈ω be as in Proposition 4.1. Since Y is µp -random, Y 6∈ ∩dUp

d , so fix d
with Y 6∈ Up

d . Then for all b > d , we have

(1) |YN(b) − p| < 2−b

where N(b) = 23b−1 .

If the real number p is represented as a member of 2ω via

p =
∑
n∈ω

pn2−n−1 = .p0p1p2 · · ·

in binary notation, then we have to define a Turing functional Ψd such that pn = ΨY
d (n).

We pick b > max{n + 1, d}, such that YN(b) = .y0 · · · yn · · · is not of either of the
forms

.y0 · · · yn 1b−(n+1) · · ·

.y0 · · · yn 0b−(n+1) · · ·

where as usual 1k denotes a string of k ones. Since p is not a dyadic rational, such a
b exists. Then by (1) it must be that the bits y0 · · · yn are the first n + 1 bits of p. In
particular, yn = pn . So we let ΨY

d (n) = yn .

5 Hippocratic results

In the last section we made it too easy for ourselves; now we will obtain the same
results assuming only Hippocratic randomness.

Theorem 5.1 There is a Hippocratic µp -test such that if Y passes this test then Y
computes an accumulation point q of the sequence of sample averages

{Yn}n∈ω.
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Proof The point is that the usual proof that each convergent sequence is Cauchy gives
a Σ0

1 class that has small µp -measure for all p simultaneously. Namely, let

Vd := {Y : ∃a, b > d |YN(a) − YN(b)| > 2−a + 2−b},

where N(b) = 23b−1 . Then {Vd}d∈ω is uniformly Σ0
1 . Recall from Proposition 4.1

that we defined
Up

d = {Y : ∃b > d |YN(b) − p| > 2−b}.

If there is a p such that |YN(b) − p| < 2−b for all b > d , then

|YN(a) − YN(b)| 6 |YN(a) − p| + |p − YN(b)| < 2−a + 2−b

for all a, b > d ; thus we have
Vd ⊆ ∩pUp

d

and therefore
µp(Vd) 6 µp(U

p
d) 6 2−d

for all p. Thus if Y is Hippocrates µp -random then Y 6∈ Vd for some d . We next note
that for any numbers c > b,

|YN(b) − YN(c)| < 2−b + 2−c < 2−(b−1),

so {YN(c)}c>d will remain within 2−(b−1) of YN(b) for all c > b. Thus {YN(n)}n>d is
a Cauchy sequence and q := limn YN(n) exists. Write q = .q0q1q2 · · · . Then

|YN(b) − q| < 2−(b−1), so

|YN(b+1) − q| < 2−b;

if we define Θd as Ψd in the proof of Theorem 4.2 except with N(·) replaced by
N(·+ 1), then

qn = ΘY
d (n),

and so Y computes q using the Turing reduction Θd .

To argue that the accumulation point q of Theorem 5.1 is actually equal to p under the
weak assumption of Hippocratic randomness, we need:

An analysis of the strong law of large numbers.

We say that the strong law of large numbers (SLLN) is satisfied by X ∈ 2ω for the
parameter p ∈ [0, 1] if limn→∞ Xn/n = p. The strong law of large numbers is then the
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statement that the set of those X that do not satisfy the SLLN for p has µp -measure
zero.

Let {Xn}n∈ω be independent and identically distributed random variables with mean 0,
and let Sn =

∑n
i=0 Xi . Then S4

n will be a linear combination (with binomial coefficients
as coefficients) of the terms∑

i

X4
i ,
∑
i<j

X3
i Xj,

∑
i<j<k

X2
i XjXk,

∑
i<j<k<`

XiXjXkX`, and
∑
i<j

X2
i X2

j .

Since E(Xi) = 0, and E(Xa
i Xb

j ) = E(Xa
i )E(Xb

j ) by independence, and each Xi is
identically distributed with X1 and X2 , we get

E(S4
n) = n E(X4

1) +

(
n
2

)(
4
2

)
E(X2

1X2
2) = n E(X4

1) + 3n(n − 1)E(X2
1)

2.

Since 0 6 σ2(X2
1) = E(X4

1) − E(X2
1)

2 , this is (writing K := E(X4
1))

6 (n + 3n(n − 1))E(X4
1) = (3n2 − 2n)K,

so E(S4
n/n4) 6 3K

n2 . Now for any a ∈ R,

S4
n/n4 > a4 · 1{S4

n/n4>a4}

surely, so (as in the proof of Chebyshev’s inequality)

E(S4
n/n4) > a4 · E(1{S4

n/n4>a4}) = a4 · P(S4
n/n4 > a4),

giving

P(Xn = Sn/n > a) 6
3K

n2a4 .

We now apply this to Xn = Yn − E(Yn) = Yn − p (so that Kp := K depends on p).
Note that (writing p = 1 − p)

Kp = E[(Y1 − p)4] = p4 · p + p4 · p = pp(p3 + p3) 6
1
4
· 2 =

1
2

,

so P(∃n > N |Yn − p| > a) is bounded by∑
n>N

3Kp

n2a4 6
3

2a4

∑
n>N

1
n2 6

3
2a4

∫∞
N−1

dx
x2 =

3
2a4(N − 1)

.

This bound suffices to obtain our desired result:

Theorem 5.2 If Y is Hippocrates µp -random then Y satisfies the strong law of large
numbers for p.
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Proof Let q1 , q2 be rational numbers with q1 < p < q2 . Let

WN := {Y : ∃n > N Yn 6 q1} ∪ {Y : ∃n > N Yn > q2}.

Then {WN}N∈ω is uniformly Σ0
1 , and µp(WN)→ 0 effectively:

µp(WN) 6
3

2(p − q1)4(N − 1)
+

3
2(p − q2)4(N − 1)

= constant · 1
N − 1

.

Thus if Y is Hippocrates µp -random then Y 6∈ ∩nWn , i.e., Yn is eventually always in
the interval (q1, q2).

Corollary 5.3 If Y is Hippocrates µp -random then Y Turing computes p.

Proof By Theorem 5.1, Y computes the limit of a subsequence {YN(b)}b∈ω . By
Theorem 5.2, this limit must be p.

Note that the randomness test in the proof of Theorem 5.2 depends on the pair (q1, q2),
so we actually needed infinitely many tests to guarantee that Y computes p. This is no
coincidence. Let Y >T p abbreviate the statement that Y Turing computes p, i.e., p is
Turing reducible to Y .

Theorem 5.4 For all p, if there is a Hippocratic µp -test {Un}n∈ω such that

{X : X 6>T p} ⊆ ∩nUn,

then p is computable.

Proof Let {Un}n∈ω be such a test. By standard computability theoretic basis theorems,
the complement 2ω \ U1 has a low member X1 and a hyperimmune-free member X2 .
By assumption X1 >T p and X2 >T p, so p is both low and hyperimmune-free, hence
by another basic result of computability theory [6], p is computable.

Corollary 5.5 There is no universal Hippocratic µp -test, unless p is computable.

Proof If there is such a test then by Corollary 5.3 there is a test {Un}n∈ω as in the
hypothesis of Theorem 5.4, whence p is computable.
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Comparison with earlier work. Martin-Löf [3] states a result that in our terminology
reads as follows.

Theorem 5.6 There is a test that is a Hippocratic ML-test simultaneously for all µp ,
the passing of which implies that the Strong Law of Large Numbers is satisfied for
some p.

Levin [2] in fact states that a real x passes Martin-Löf’s test from Theorem 5.6 if
and only if x is (non-Hippocratically) µp -ML-random for some p ∈ [0, 1]. This
he obtains as a corollary of the following more general result: For any Π0

1 class C

of measures (such as the class of Bernoulli measures), there is a uniformly Σ0
1 test

{Un}n∈ω , with µ(Un) 6 2−n for each n and each µ ∈ C, such that a real x 6∈ ∩nUn iff
x is µ-ML-random with respect to some measure µ ∈ C.

Thus we see by Theorem 5.6 that we did not need infinitely many tests in the above
proof of Theorem 5.2, in order to get the Strong Law of Large Numbers to be satisfied
for some p; only to get it to be the correct p.

6 Coincidence of randomness notions

We now show that Hippocratic randomness is the same as ordinary randomness for
Bernoulli measures. The main idea is that since each random sequence computes p, it
should be possible to turn a Σ0

1(p) test into a Σ0
1 test.

Definition 6.1 Let {Op
n}n∈ω be a universal µp -test for all p, i.e. µp(O

p
n) 6 2−n

for all p and {(p, X, n) : X ∈ Op
n} is Σ0

1 , and if {Ôn}n∈ω is any other such test then
∩nÔn ⊆ ∩nOn .

The existence of such a test follows from a relativization of the usual argument that
there is a universal Martin-Löf test.

Theorem 6.2 If Y is Hippocrates µp -random then Y is µp -random.

Proof Let Hp be the set of all Hippocrates µp -random reals and 2ω \ Hp its com-
plement. As in the proof of Theorem 5.1, let

Vd = {Y : ∃a, b > d |YN(a) − YN(b)| > 2−a + 2−b}

where N(b) = 23b−1 . Let Θd denote the reduction from the proof of Theorem 5.1
under the assumption Y 6∈ Vd there.

Journal of Logic & Analysis 2:10 (2010)
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We have

{Y : Y 6∈ Vd} ⊆ {Y : ΘY
d is total } ⊆ {Y : ΘY

d = p} ∪ (2ω \ Hp).

Let
D(d)

n :=
{

Y : ∃k
(
ΘY

d � k ↓ & Y ∈ OΘ
Y
d �k

n

)}
.

Then
D(d)

n ⊆ Op
n ∪ {Y : ΘY

d 6= p} ⊆ Op
n ∪ Vd ∪ (2ω \ Hp).

Of course, µp(2ω \ Hp) = 0. So

µp(D
(d)
n ) 6 µp(Op

n) + µp(Vd) 6 2−n + 2−d.

Form the diagonal Wn = D(n)
n ; then µp(Wn) 6 2−(n−1) which goes effectively to

zero, so {Wn}n∈ω is a Hippocratic µp -test.

Suppose for contradiction that Y is Hippocrates µp -random but not µp -random. Since
Y is not µp -random, for all n, Y ∈ Op

n . Since Y is Hippocrates µp -random, there is
a d such that Y 6∈ Vd and for this d , ΘY

d = p; in fact for all n > d , ΘY
n = p. Then

Y ∈ ∩n>dD(n)
n . So Y is not Hippocrates µp -random.

An open problem. Randomness tests {Un}n∈ω can be made more effective by re-
quiring that µp(Un) is a number that is computable from p. This is essentially Schnorr
randomness [5]. It is not hard to show that Schnorr randomness is sufficient for statis-
tics to work, i.e. to ensure that a random sequence Y computes the parameter p. More
radically, we could require that µp(Un) be actually computable. If we then relax the
other side and let Un be Σ0

1(p), again a random sequence can be made to compute p,
because one can “pad” Un to make it have µp -measure equal to a computable number
such as 2−n .

Question 6.3 If we both require Un to be (uniformly) Σ0
1 and µp(Un) to be (uniformly)

computable, is it still true that a random sequence must compute p?
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