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Abstract. Choosing a probability distribution to represent

daily precipitation depths is important for precipitation fre-

quency analysis, stochastic precipitation modeling and in

climate trend assessments. Early studies identified the two-

parameter gamma (G2) distribution as a suitable distribution

for wet-day precipitation based on the traditional goodness-

of-fit tests. Here, probability plot correlation coefficients and

L-moment diagrams are used to examine distributional alter-

natives for the wet-day series of daily precipitation for hun-

dreds of stations at the point and catchment scales in the

United States. Importantly, both Pearson Type-III (P3) and

kappa (KAP) distributions perform very well, particularly for

point rainfall. Our analysis indicates that the KAP distribu-

tion best describes the distribution of wet-day precipitation at

the point scale, whereas the performance of G2 and P3 distri-

butions are comparable for wet-day precipitation at the catch-

ment scale, with P3 generally providing the improved good-

ness of fit over G2. Since the G2 distribution is currently the

most widely used probability density function, our findings

could be considerably important, especially within the con-

text of climate change investigations.

1 Introduction

Precipitation is paramount in the fields of hydrology, meteo-

rology, climatology and others. However, long series of pre-

cipitation data are not always available; therefore, establish-

ing a probability distribution that provides a good fit to daily

precipitation depths has long been a topic of interest. Investi-

gations into the probability distribution of daily precipitation

can be found in at least three main research areas, namely,

(1) stochastic precipitation models, (2) frequency analysis of

precipitation and (3) precipitation trends related to global cli-

mate change. Table 1 displays a sampling of the literature

related to those three topics, including the particular precipi-

tation series and durations under investigation as well as the

proposed probability distributions recommended. Table 1 is

by no means exhaustive; it only attempts to document the

widespread interest in the determination of a suitable distri-

bution for daily precipitation totals in a wide range of studies

across a wide range of fields of inquiry.

1.1 Stochastic precipitation models

Our central goal is to select a suitable generalized probabil-

ity distribution for modeling daily precipitation depths; thus,

we are only concerned with the class of “two-part” stochas-

tic daily precipitation models that utilize a probability dis-

tribution function to describe precipitation amounts on wet

days, while a probabilistic representation of precipitation oc-

currences can be separately described using a Markov model

or some form of a stochastic renewal process (Buishand,

1978; Geng et al., 1986; Waymire and Gupta, 1981; Wat-

terson, 2005). We only consider the selection of a suitable

distribution for modeling wet-day daily rainfall, leaving the

stochastic representation of the occurrence of zeros to others.

It is evident from Table 1 that the wet-day precipitation

series is the primary series considered within the stochas-

tic precipitation model literature. Thom’s (1951) suggestion

of the two-parameter gamma (G2) distribution function for
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Table 1. Review of literature pertinent to daily precipitation probability distribution selection.

Author Year Stations Series type Duration Distribution Justification

1. Stochastic precipitation modeling

Thom 1951 Wet-day 1-day Gamma

Buishand 1978 6 Wet-day 1-day Gamma Cv–Cs ratio

Geng et al. 1986 6 Wet-day, by month 1-day, Gamma Regress. fit: β vs. mean

monthly wet-day depth

Woolhiser and Roldan 1982 Wet-day 1-day Mixed exponential MLE, Akaike information

criterion

Duan et al. 1995 1 Wet-day, by month 1-day Calib. W2, gamma MLE, Chi-sq test

Wilks 1998 25 Wet-day 1-day Mixed exponential MLE, goodness of fit

Watterson and Dix 2003 Wet-day 1-day Gamma Literature

Burgueno et al. 2005 75 Wet-day 1-day Exponential, Weibull Normalized rainfall curve

Kigobe et al. 2011 110 Wet-day, by month Gamma

Li et al. 2013 24 Wet-day 1-day Mixed exponential Goodness of fit and

Kolmogorov–Smirnov

tests

Schoof et al. 2010 Gridded Wet-day 1-day Gamma Goodness of fit

precipitation

Papalexiou 2018 Wet-day 1 h, day Generalized gamma Probability plots

2. Precipitation frequency analysis

Hershfield (TP-40) 1961 AMS 24 h Gumbel

Pilon et al. 1991 75 AMS 5 min–24 h GEV L-moments

Naghavi and Yu 1995 25 AMS 1–24 h GEV L-moments, PWMs,

Monte Carlo experiments

Park and Jung 2002 61 AMS 1, 2-day Kappa(4)

Lee and Maeng 2003 38 AMS 1-day GEV, GLO L-moments

Bonnin et al. 2006 AMS 5 min–24 h GEV L-moments

Shoji and Kitaura 2006 243 Complete, wet-day Hour, day, Lognormal, Weibull Goodness of fit

month, year

Deidda and Puliga 2006 200 Left-censored 1-day Generalized Pareto “Failure-to-reject” method,

L-moments

Wet-day PDS

Wilson and Toumi 2005 270 Complete 1-day Self-derived

Papalexiou and Koutsoyiannis 2012 11 519 Wet-day 1-day Generalized gamma L-moments

Papalexiou and Koutsoyiannis 2013 15 137 AMS 1-day GEV L-moments

Papalexiou and Koutsoyiannis 2016 14 157 Wet-day, by month 1-day Generalized gamma L-moments and

and Burr type XII Goodness of fit

3. Precipitation trends and climate change

Waggoner 1989 55 Monthly 1-month Gamma Literature review

Groisman et al. 1999 1313 Summer (wet-day) 1-day Gamma Literature review, goodness of

fit to extreme rainfall quantiles

Wilby and Wigley 2002 GCM Seasonal 1-day Gamma Literature review

Yoo et al. 2005 31 Monthly (wet-day) 1-day Gamma Literature review

Watterson 2005 GCM January, July 1-month Gamma Literature review

(daily forced)

wet-day amounts seems to carry considerable weight. Buis-

hand (1978) lent support to the suggestion of the G2 distri-

bution by showing that for the wet-day series at six stations,

the empirical ratio of the coefficient of variation to coeffi-

cient of skewness was quite close to the theoretical value of

2 for a G2 distribution. Geng et al. (1986) provided a review

of other literature supporting the use of the G2 distribution

for modeling wet-day rainfall.

While the G2 distribution is by far the most commonly

advocated distribution for wet-day precipitation amounts,

other distributions have also been suggested. Woolhiser and

Roldan (1982), Wilks (1998) and Li et al. (2013) suggested

the use of a three-parameter mixed exponential distribution

instead of G2. Through a variety of goodness-of-fit tests and

log-likelihood analyses, the mixed exponential was preferred

to G2 (Wilks, 1998).

The Weibull (W2) and to a lesser extent the exponential

distribution have also been suggested for modeling daily pre-

cipitation amounts (Duan et al., 1995; Burgueno et al., 2005).

Duan et al. (1995) used a Chi-squared test to demonstrate

that synthetic rainfall generated from the W2 and G2 mod-

els best match the observed daily rainfall data within each

month. Burgueno et al. (2005) used graphical methods and

the Kolmogorov–Smirnov test to give support to the W2 and

exponential distributions.
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1.2 Precipitation frequency analysis

The second section of Table 1 displays a small portion of the

literature related to precipitation frequency analyses. Since

extreme rainfall values are of primary importance in these

studies, censored series of rainfall (e.g. the annual maximum

series – AMS – and partial duration series – PDS) are often

useful in these analyses (Stedinger et al., 1993). Table 1 dis-

plays that many of the precipitation frequency investigations

of daily precipitation depths have selected the AMS series.

For many years, the most common approach to summa-

rizing precipitation frequency analyses in the US was the

work of Hershfield (1961), which is commonly referred to

as TP-40. Hershfield (1961) fitted a Gumbel distribution to

the AMS of 24 h precipitation. In the context of a national re-

vision to the TP-40, Bonnin et al. (2006) fitted a generalized

extreme value (GEV) distribution to the AMS of rainfall.

While the results of Bonnin et al. (2006) apply to the

United States, other researchers have found similar results

using similar methods in other parts of the world. Pilon et

al. (1991) used L-moment goodness-of-fit results to show

that the Gumbel distribution should be rejected in the favor of

the GEV in Ontario, Canada. In Korea, Park and Jung (2002)

successfully used the kappa distribution (of which the GEV

is a special case) to generate extreme precipitation quantile

maps. In perhaps the most comprehensive assessment of the

distribution of precipitation extremes, Papalexiou and Kout-

soyiannis (2013) examined the goodness of fit of the GEV

distribution to a global data set of AMS. Analysis of such a

large data set enabled them to conclude that GEV models of

AMS of daily precipitation provide a good approximation.

Interestingly, while a great deal of attention is given to fit-

ting distributions to the relatively short AMS series of precip-

itation depths, very few studies directly explore the probabil-

ity distribution of the complete series of daily precipitation

(including zeros) or the wet-day series of daily precipitation

(zeros excluded). Shoji and Kitaura (2006) investigated both

complete and wet-day daily precipitation series, but included

only the normal, lognormal, exponential, and W2 distribu-

tions as candidate distributions, and did not employ mod-

ern regional hydrologic methods such as the method of L-

moments. Deidda and Puliga (2006) investigated the degree

of left-censoring of wet-day series needed to fit a general-

ized Pareto (GPA) distribution for 200 stations in Italy with

a range of modern statistical analysis techniques. Wilson and

Toumi (2005) derived a fundamental distribution for heavy

rainfall, with a simple expression for rainfall as the product

of mass flux, specific humidity and precipitation efficiency.

Statistical theory predicted that the tail of the derived rainfall

distribution has a stretched exponential form with a shape

parameter of two-thirds, which was verified by a global daily

precipitation data set.

Perhaps the most thorough investigations, to date, on the

probability distribution of daily precipitation amounts are

the global studies by Papalexiou and Koutsoyiannis (2012,

2016). Papalexiou and Koutsoyiannis (2012) derived a gen-

eralized gamma (GG) distribution from entropy theory, us-

ing plausible constraints for wet-day series of daily precip-

itation series. Together, the two studies by Papalexiou and

Koutsoyiannis (2012, 2016) revealed that the GG distribution

provides a good approximation of the behavior of observed

L-moments of global series of wet-day daily precipitation at

11 519 and 14 157 stations, respectively. The GG distribution

was also used in stochastic modeling of precipitation; see

Fig. 5 for hourly and Fig. 6 for daily in Papalexiou (2018).

Actually any distribution that describes wet-day precipitation

(or at any other scale) well can be used as this stochastic

modeling scheme; this makes it feasible to use any probabil-

ity distribution and any correlation structure.

1.3 Precipitation trends and changes

The third section of Table 1 summarizes a small portion of

the precipitation trend literature, which has become a rather

large area of inquiry due to concerns over climate change,

as evidenced from recent reviews on the subject (Easterling

et al., 2000; Trenberth, 2011; Madsen et al., 2014). Almost

universally, the G2 distribution appears to be accepted with-

out serious consideration of alternative distributions. For in-

stance, Groisman et al. (1999) compared maps of the empir-

ical probability of summer 1-day rainfall exceeding 50.4 mm

with maps of probabilities determined by a stochastic model

using the fitted G2 distribution for the amounts. They found

acceptable fits in regions where there are enough observed

daily rainfall events greater than 50.4 mm.

This is an interesting contrast to the precipitation fre-

quency analysis literature where a G2 distribution is often

fit to wet-day series for the purpose of examining extreme

rainfall instead of using the AMS series fitted by a GEV

or other distribution. Yoo et al. (2005) explained that con-

ventional frequency analysis (using AMS) cannot expect to

predict precipitation changes resulting from climate change,

while an examination of the differences in the G2 distribu-

tion’s parameters (fitted to the whole wet-day record) might

predict such changes. They found that modifying the param-

eters of the daily G2 distribution can explain changes in rain-

fall quantiles predicted by general circulation models under

various climate change scenarios.

In a national study of precipitation trends, Karl and

Knight (1998) employed the G2 distribution to fill in missing

precipitation observations. Both Watterson and Dix (2003)

and Watterson (2005) assumed a G2 distribution for daily

precipitation in the development of stochastic rainfall mod-

els for use in evaluating changes in precipitation extremes.

1.4 Research objectives

In summary, there are a wide variety of previous studies

which have explored the probability distribution of daily pre-

cipitation for the purposes of precipitation frequency anal-
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Figure 1. Map showing locations of (a) 237 precipitation gaging

stations and (b) 305 catchments.

ysis, stochastic precipitation modeling and trend detection.

There seems to be a consensus that annual maxima appear

to be well approximated by either a GEV or Gumbel prob-

ability density function (pdf), while peaks above threshold

values are well approximated by a GPA distribution, and the

series of wet-day precipitation is well approximated by a G2,

GG, W2 or in some cases a mixed exponential distribution.

However, other than the two recent global studies by Pa-

palexiou and Koutsoyiannis (2012, 2016), we are unaware of

any studies that have used recent developments in regional

hydrologic frequency analysis such as L-moment diagrams

or probability-plot goodness-of-fit evaluations to evaluate the

probability distribution of very large regional data sets com-

prised of the wet-day series of daily precipitation.

The recent studies by Papalexiou and Koutsoyian-

nis (2012, 2016) represent perhaps the most comprehen-

sive studies to date. However, their L-moment evaluations

only evaluate the relationship between L-skewness and L-

Cv; thus they were unable to fully evaluate the goodness of

fit of the several relatively new three-parameter pdfs intro-

duced in their studies such as the GG and the Burr type XII

Figure 2. Distribution of full record length of point precipitation

based on weather stations.

pdfs, which would require construction of L-kurtosis versus

L-skew diagrams, which are currently unavailable for those

pdfs. Analogous to those two studies, this paper uses two

large-scale national data sets to re-examine the question of

which of the commonly used continuous distribution func-

tions which are widely used in the fields of hydrology, mete-

orology and climate best fit wet-day series of observed daily

precipitation data. We focus our research interest on the dis-

tribution of wet-day series of precipitation since the pdf of

complete series can be derived by a mixed distribution con-

sisting of a combination of the pdf of wet-day series and a

stochastic model of the percentage and occurrence of zeros.

Instead of considering the GG distribution, the pdf rec-

ommended by both Papalexiou and Koutsoyiannis (2012,

2016), which has seen very limited use and for which ana-

lytical and/or polynomial relationships for L-kurtosis are un-

available (as they are for most commonly used pdfs in hy-

drology), we consider the more widely used three-parameter

generalization of the G2 distribution known as the Pearson

type III (P3) distribution. Our primary objective is to use a

very large national spatially distributed data set at both the

point and catchment scales, to determine a suitable prob-

ability distribution of wet-day series of daily precipitation

using L-moment diagrams and probability-plot correlation-

coefficient goodness-of-fit statistics.

2 Study area and data

Precipitation depths at the point and catchment scales pro-

vide important information in hydrology, meteorology and

other fields; thus, our study focuses on both scales. For

point precipitation, we employ a data set comprised of daily

precipitation depths at 237 first-order NOAA stations from

49 US states (Hawaii is excluded due to fundamentally dif-

ferent precipitation behavior). Station locations are shown

in Fig. 1a. In contrast, the areal average precipitation for

305 catchments in the international Model Parameter Esti-

mation Experiment (MOPEX) data set (Duan et al., 2006)

Hydrol. Earth Syst. Sci., 22, 6519–6531, 2018 www.hydrol-earth-syst-sci.net/22/6519/2018/
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Figure 3. Distribution of wet-day record length: (a) point precipita-

tion and (b) areal average precipitation over watersheds. Days with

zero precipitation are removed in the wet-day records.

is also selected for analysis. The catchment locations and

boundaries are shown in Fig. 1b. The data were quality con-

trolled to remove null values. When more than six null val-

ues occurred in a given year or more than three in a given

month, the full year of data was removed. When fewer than

these numbers of null values were present, they were treated

as zeroes. The average record length for point precipitation

depths for the 237 sites is 24 657 days (67.5 years). The dis-

tribution of record lengths corresponding to the 237 first-

order NOAA stations is shown in Fig. 2. The MOPEX data

set consists of 56 years of areal average daily precipitation

from 1948 to 2003, corresponding to a fixed record length of

20 454 days for each of the 305 catchments shown in Fig. 1b.

The wet-day series were extracted from both data sets.

The wet-day series were constructed by excluding zero

and “trace” values (those with less than 0.01 in. – approx-

imately equivalent to 0.25 mm – recordable precipitation).

Wilks (1990) discussed other ways to treat trace precipita-

tion and left-censored data, but for convenience, they are

simply excluded. The mean wet-day record lengths for point

and areal average precipitation are 7219 days (equivalent to

nearly 20 years) and 14 043 days (more than 38 years), re-

spectively. The distributions of wet-day record length are

shown in Fig. 3. As expected, the proportion of wet days in

the areal average precipitation data set is higher than that in

the point precipitation data set.

Figure 4. L-Cv vs. L-skew L-moment ratio diagram of sample L-

moments and theoretical distributions: (a) point precipitation and

(b) areal average precipitation depths.

3 Methodology

This section describes the methods of analysis used for as-

sessing the goodness of fit of various distributional hypothe-

ses, namely, L-moment diagrams and probability plot corre-

lation coefficients.

3.1 L-moment diagrams

L-moment diagrams are now a widely accepted approach for

evaluating the goodness of fit of alternative distributions to

observations. The theory and application of L-moments in-

troduced by Hosking (1990) are now widely available in the

literature (Stedinger et al., 1993; Hosking and Wallis, 1997);

hence, they are not reproduced here.

The distribution of wet-day series of precipitation is highly

skewed due to the large proportion of small non-zero values

and high variance. Higher order conventional moment ratios

such as skewness and kurtosis are very sensitive to extreme

values and can exhibit enormous downward bias even for ex-

tremely large sample sizes (Vogel and Fennessey, 1993), as is

the case here. However, L-moment ratios are approximately
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Figure 5. L-skew vs. L-kurtosis L-moment ratio diagram of sam-

ple L-moments and theoretical distributions: (a) point precipitation

and (b) areal average precipitation depths. Logistic (L), normal (N ),

uniform (U ), Gumbel (G), and exponential (E) distributions appear

as a single point.

unbiased in comparison to conventional moment ratios, thus

providing a particularly useful tool for investigating the pdf

of daily wet-day precipitation series.

L-moment ratio diagrams provide a convenient graphical

image to view the characteristics of sample data compared

to theoretical statistical distributions. The L-moment dia-

grams, L-kurtosis (τ4) vs. L-skew (τ3) and L-Cv (τ2) vs. L-

skew (τ3), enable us to compare the goodness of fit of a range

of four-parameter, three-parameter, two-parameter and one-

parameter (or special case) distributions. Table 2 displays

distributions analyzed by means of the τ4 vs. τ3 L-moment

ratio diagrams.

Table 3 displays distributions analyzed by means of the τ2

vs. τ3 L-moment ratio diagrams.

L-moment ratio diagrams have been used before to ex-

amine the distribution of series of annual maximum precip-

itation data (Pilon et al., 1991; Park and Jung, 2002; Lee

and Maeng, 2003; Papalexiou and Koutsoyiannis, 2013) and

left-censored records (Deidda and Puliga, 2006). Other than

the two recent global studies by Papalexiou and Koutsoyian-

nis (2012, 2016), which examined the agreement between

empirical and theoretical relationships between L-Cv and L-

skew, this is the only study we are aware of in which a set

of daily wet-day precipitation records have been subjected to

such a comprehensive L-moment goodness-of-fit analysis. L-

moment estimators were chosen in this study for a variety of

reasons: (1) they are easily computed and nicely summarized

by Hosking and Wallis (1997) for all the cases considered

in this study, and (2) estimates of L-moments are unbiased

and estimates of L-moment ratios are nearly unbiased, and

thus for the extremely large sample sizes considered here,

sampling variability of empirical L-moment ratios will be ex-

tremely small, especially when contrasted with the variability

among the theoretical L-moment ratios corresponding to the

various distributions considered.

3.2 Probability-plot correlation-coefficient

goodness-of-fit evaluation

Probability plots are constructed for each of the wet-day se-

ries using L-moment estimators of the distribution parame-

ters (see Hosking and Wallis, 1997) for the distributions in-

dicated in Table 4. A probability plot is constructed in such

a manner as to ensure that the observations will appear to

create a linear relationship when they arise from the hypoth-

esized distribution assumed for each plot.

The goodness of fit of each probability plot is summa-

rized using a probability plot correlation coefficient (PPCC,

or simply, r) which is simply a measure of the linearity of

the plot. The PPCC statistic has a maximum value of 1. The

PPCC has been shown to be a powerful statistic for evaluat-

ing the goodness of fit of a wide range of alternative distribu-

tional hypotheses (Stedinger et al., 1993) and for performing

hypothesis tests of various two-parameter distributional al-

ternatives.

To construct a probability plot and to estimate a PPCC re-

quires estimation of a plotting position. There are two classes

of plotting positions, those that yield unbiased exceedance

probabilities and those that yield unbiased quantile estimates.

The Weibull plotting position given by p = i/(n + 1) yields

an unbiased estimate of exceedance probability regardless of

the underlying distribution (see Stedinger et al., 1993). Al-

ternatively, there would be a unique plotting position to use

for each probability distribution, and it is now well known

that unbiased plotting positions for three parameter distribu-

tions require an additional parameter to estimate within the

plotting position. For example, Vogel and McMartin (1991)

derived an unbiased plotting position for the P3 distribution

which depends upon the skewness of the distribution, a pa-

rameter which adds so much additional uncertainty to the

analysis that it led Vogel and McMartin (1991), after consid-

erable analysis, to not recommend its use. To put all the dis-

tributional alternatives on the same footing, we chose to use

Hydrol. Earth Syst. Sci., 22, 6519–6531, 2018 www.hydrol-earth-syst-sci.net/22/6519/2018/
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Table 2. Theoretical probability distributions presented on the L-kurtosis vs. L-skew L-moment diagram.

Distribution Abbreviation PDF Parameters

Kappa KAP F(x) =
{

1 − γ2

[

1 − γ1(x − α)/β
]1/γ1

}1/γ2
4

f (x) = β−1
[

1 − γ1(x − α)/β
](1/γ1)−1 × [F(x)]1−γ2 , β > 0

Generalized extreme GEV f (x) = 1
β

(

1 + γ x−α
β

)−1/γ−1
exp

[

−
(

1 + γ x−α
β

)−1/γ
]

3

value type III

Generalized GLO f (x) =
γ exp

(

− x−α
β

)

β
(

1+exp
(

− x−α
β

))γ+1 3

Logistic

Generalized GPA f (x) = 1
β

(

1 + γ (x−α)
β

)−1/γ−1
3

Pareto

Lognormal LN3 f (x) = 1

(x−γ )
√

2πβ
exp

[

− 1
2

(

ln(x−γ )−α
β

)2
]

3

Pearson P3 f (x) = 1
βγ Ŵ(γ )

(x − α)γ−1 exp
(

− x−α
β

)

3

Type III

Exponential E f (x) =
{

λexp(−λx), x ≥ 0

0, x < 0
2

Gumbel G f (x) = 1
β

exp
[

x−α
β

− exp
(

x−α
β

)]

2

Normal N f (x) = 1√
2πβ2

exp
(

− (x−α)2

2β2

)

2

Logistic L f (x) =
exp

(

− x−α
β

)

β
(

1+exp
(

− x−α
β

))2 2

Uniform U f (x) =
{

1
b−a

, a < x < b

0, x < a or x > b
1

Note that α, β and γ are parameters used for location, scale and shape, respectively; if more than one parameter of the same type exists, indices (e.g. γ1,

γ2) are used.

Table 3. Theoretical probability distributions presented on the L-Cv vs. L-skew L-moment diagram.

Distribution Abbreviation PDF Parameters

Gamma G2 f (x) =
xγ−1 exp

(

− x
β

)

Ŵ(γ )βγ 2

Generalized Pareto GP2 f (x) = 1
β

(

1 + γ x
β

)(−1/γ−1)
2

Lognormal LN2 f (x) = 1

xβ
√

2π
exp

(

− (lnx−α)2

2β2

)

2

Weibull W2 f (x) = γ
β

(

x
β

)γ−1
exp

[

−
(

x
β

)γ ]

, x ≥ 0 2

Note that α, β and γ are used for location, scale and shape, respectively; if more than one parameter of the same type exists,

indices (e.g. γ1, γ2) are used.
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Figure 6. Standard box plots of r for all 7 distributions evaluated

for wet-day series of (a) point precipitation and (b) areal average

precipitation depths.

the Weibull plotting position for estimation of all PPCC val-

ues.

4 Results and analysis

4.1 L-moment diagrams

4.1.1 L-Cv vs. L-skew

Figure 4 displays empirical and theoretical distributional re-

lationships between L-Cv and L-skew for point values of

daily precipitation (Fig. 4a) and areal average values of daily

precipitation (Fig. 4b). The various curves represent the the-

Table 4. Distributions used in probability plot goodness-of-fit eval-

uations.

Distribution Abbreviation Parameters

Generalized extreme value type III GEV 3

Generalized logistic GLO 3

Generalized Pareto GPA 3

Lognormal LN3 3

Pearson Type III P3 3

Gamma G2 2

Kappa KAP 4

oretical relationship between L-Cv and L-skew for the dis-

tributions indicated. Each plotted point represents the em-

pirical relationship between L-Cv and L-skew for a single

precipitation station or catchment. By comparing the empir-

ically derived points with the theoretical curves, it is possi-

ble to see the degree to which the distributional tail behav-

ior of the data record matches those of the candidate dis-

tributions. We emphasize again, importantly, that the sam-

ple sizes are large enough in this study so that one may, ap-

proximately, ignore sampling variability in all L-moment di-

agrams. This phenomenon was nicely illustrated in Fig. 2 of

Blum et al. (2017), using synthetic data, for record lengths

similar to those used here, but corresponding to daily stream-

flow records.

In Fig. 4a, the L-moment ratios fall primarily within a re-

gion bounded by the G2 and GP2 theoretical curves, with

the W2 passing through some of the points. In Fig. 4b,

the L-moment ratios fall primarily in the upper region of

the W2 theoretical curve, with the G2 passing through or

very close to most of the points. These patterns do not in-

dicate a clearly preferred distribution for point values, espe-

cially considering that the large sample sizes associated with

these series result in negligible sampling variability. How-

ever, Fig. 4b documents that the G2 pdf provides a good ap-

proximation to the pdf of wet-day series for areal average

values.

Blum et al. (2017, Fig. 2) used L-moment diagrams for

complete and synthetic series of daily streamflow obser-

vations to demonstrate that the sampling variability in L-

moment ratios is negligible for the sample sizes considered

in this study. Thus, the scatter shown in Fig. 4 is likely

due to real distributional differences rather than due to sam-

pling variability as is often the case when one constructs L-

moment diagrams for short AMS precipitation and stream-

flow records, as is the case in most previous studies which

have employed L-moment ratio diagrams.

4.1.2 L-kurtosis vs. L-skew

Figure 5 displays empirical and theoretical distributional re-

lationships between L-kurtosis vs. L-skew point values of

daily precipitation (Fig. 5a) and areal average values of daily

precipitation (Fig. 5b). It should be noted that the P3 dis-
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Table 5. Central tendency and spread of values of PPCC for the 237 precipitation stations and 305 catchments. Bold values are the optimal

value of each column.

Distribution Point precipitation Percentiles Areal average precipitation Percentiles

Mean Median ŝ 95th 5th Mean Median ŝ 95th 5th

P3 0.9952 0.9971 0.0063 0.9995 0.9872 0.9977 0.9985 0.0028 0.9996 0.9936

GEV 0.9338 0.9375 0.0222 0.9609 0.8944 0.8003 0.7965 0.0474 0.8917 0.7264

GPA 0.9793 0.9828 0.0145 0.9949 0.9500 0.8688 0.8687 0.0484 0.9586 0.7894

GLO 0.9115 0.9154 0.0235 0.9423 0.8734 0.7800 0.7750 0.0441 0.8669 0.7101

LN3 0.9838 0.9855 0.0075 0.9924 0.9727 0.9362 0.9373 0.0224 0.9737 0.8983

G2 0.9925 0.9949 0.0079 0.9990 0.9789 0.9974 0.9985 0.0034 0.9996 0.9924

KAP 0.9971 0.9985 0.0048 0.9997 0.9915 0.9976 0.9987 0.0026 0.9998 0.9929

tribution is the two-parameter G2 with an additional location

parameter which does not affect the shape characteristics and

thus the theoretical curve of P3 shown in Fig. 5 is the same as

the G2. The same holds for GPA and GP2 and for LN2 and

LN3. The empirical relationships of plotted points for both

wet-day series are very similar to the theoretical relationship

for the P3 distribution. In fact, among the pdfs considered

in Fig. 5, the P3 pdf seems to be the only three-parameter

distribution that could possibly fit the wet-day record data.

Although there is a small proportion of points lying outside

the P3 curve, the overall fit is still very striking.

It should also be noted that the L-moment ratio estimates

for both wet-day series occupy a space that can be well rep-

resented by the KAP distribution, which occupies a region

of the L-kurtosis vs. L-skew diagram as shown in Fig. A1

of Hosking and Wallis (1997). A complete description of

the four-parameter KAP distribution can be found in Hosk-

ing (1994) and Hosking and Wallis (1997).

4.2 Probability plot correlation coefficient

4.2.1 Standard box plots of PPCC

The L-moment ratio diagrams were useful for identifying

several potential candidate distributions for representing the

wet-day daily precipitation series at the point and catchment

scales. From that analysis, we conclude that a four-parameter

kappa pdf is needed to approximate the pdf of point wet-day

series whereas a G2 and P3 pdf are adequate to approximate

the pdf of areal average wet-day series. The PPCC statistic

offers another quantitative method for comparing the good-

ness of fit of different distributions to the daily precipitation

observations. Table 5 summarizes the central tendency and

spread of the values of PPCC for each of the distributions

for the wet-day series of point- and catchment-scale daily

precipitation, respectively. The highest values for the mean,

median, 95th percentile and 5th percentile of the PPCC are

shown in bold type. The lowest values of the sample standard

deviation of the PPCC values, denoted ŝ, are also shown in

bold. Figure 6 illustrates box plots of the values of PPCC for

distributions fitted to the wet-day series of daily precipitation

data at the point and catchment scales.

Figure 6 and Table 5 indicate that for the wet-day series of

point daily precipitation depths, all the distributions have me-

dian PPCCs well above 0.9, but only the median PPCCs of

G2, P3 and KAP distributions are over 0.99. The same situa-

tion appears in the catchment-scale precipitation, except that

the median PPCCs of the remaining four distributions are

significantly lower than the corresponding values for point

precipitation.

The insets in Fig. 6 show detailed views of the box plots

of PPCC values for the G2, P3 and KAP distributions for

point and areal average daily precipitation. From Fig. 6a,

KAP distribution results in the best goodness of fit for point

precipitation because all of its indices are the best, while the

P3 distribution generally performs better than the G2 distri-

bution. However, for catchment-scale precipitation (Fig. 6b),

the four-parameter KAP distribution is no longer competi-

tive, and both the G2 and P3 pdfs will suffice. We are reluc-

tant to advocate the use of a four-parameter pdf, such as the

KAP distribution, due to its inherent complexity, though such

a pdf may be needed for point values, as evidenced from our

analyses.

4.2.2 Graphical comparison of P3, G2 and KAP

Across all previous comparisons, the P3, G2 and KAP are the

best-fitting distributions for describing daily precipitation at

the point or catchment scales. The insets in Fig. 6 identify the

distributions that exhibit the best fit to each observed series.

However, these inserts do not indicate by how much the best-

performing distribution outperforms the second or third best.

For this purpose, pairwise comparisons of the PPCC values

of two highly performing distributions for all the stations and

catchments are instructive. A simple graphical method can

accomplish this goal.

Figure 7 compares the PPCC values of the P3 (vertical

axis) and G2 (horizontal axis) distributions for point- and

catchment-scale daily precipitation. Approximately 98 % of

stations are displayed in the figure; the remaining points lie

outside the plot domains. Points lying above the diagonal line
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Figure 7. Comparison of PPCC (r) values for the P3 (vertical axis) and G2 (horizontal axis) distributions for the (a) point, and (b) areal

average precipitation depths series. Points lying above the line represent stations with a higher r for the P3 distribution than G2 distribution.

Figure 8. Comparison of r values for P3 (horizontal axis) and KAP (vertical axis) distributions for the (a) point and (b) areal average

precipitation depths’ wet-day series.

indicate that the P3 distribution has a higher PPCC for that

particular station, and points lying below the diagonal line

indicate the G2 results in a higher PPCC. Figure 7a shows

that in nearly every case, the P3 distribution outperforms the

G2 distribution. When the G2 does outperform the P3, the

PPCCs are both very high and nearly equal. The point-scale

precipitation plot shows that the P3 distribution performs

significantly better than the G2 distribution in many cases.

Thus, we conclude the P3 distribution better represents wet-

day daily point precipitation than the more commonly used

G2 distribution in nearly every case. Figure 7b compares the

PPCC values of P3 and G2 for the catchment-scale precipi-

tation. The results are nearly the same as for the point-scale

precipitation in the sense that most points are above the di-

agonal line, while, for a few catchments where G2 does out-

perform P3, the points lie on the dividing line, showing only

very slight superiority.

Figure 8 displays similar plots comparing the KAP (verti-

cal axis) and P3 (horizontal axis) distribution for point- and

catchment-scale daily precipitation. It can be seen in Fig. 8a

that the KAP distribution does not always outperform the

P3 pdf, as one might expect given that it has an additional

parameter. We are reluctant to advocate the KAP pdf given

its additional model complexity combined with the fact that it

does not appear to provide a uniform improvement, in either

case, over the P3 pdf.

5 Discussion

From the L-moment diagrams and PPCC comparisons we

concluded that KAP can better capture the tail behavior of

point wet-day series, though both P3 and G2 can provide rea-

sonable approximations in many situations. In contrast, we

found that a KAP pdf is not needed to approximate the be-

havior of areal average wet-day series, where instead, either

a P3 or G2 model would suffice. In this section, we evaluate

the relationship between these findings and the size of the

catchments considered.

Figure 9 displays the PPCC values of P3 and G2 pdfs ver-

sus catchment drainage area for areal average wet-day series.
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Figure 9. The spatial distribution of best daily precipitation distribution function.

The PPCC values are chosen from 0.99 to 1, approximately

96 % of catchments are displayed in the figure; the remain-

ing points lie outside the plot domains. It can be seen that for

most of the catchments, the PPCC values for G2 and P3 pdfs

are very close, with points corresponding to G2 and P3 pdfs

almost overlapping. This is especially true for PPCC values

higher than 0.998. The phenomena clearly indicate that when

G2 can represent the behavior of catchment-scale wet-day

precipitation series well, P3 also provides very good perfor-

mance. However, for the areas where PPCC values are lower

than 0.996, the P3 distribution outperforms the G2 distribu-

tion for most cases, with a very slight improvement.

Figure 10 shows the spatial map of catchments with the

corresponding best distribution functions for areal average

wet-day series. KAP distribution is the best pdf for large pro-

portion of the catchments, especially in the middle of the US.

P3 distribution occupies the second large proportion of the

catchments especially in the east-central US. Only a very few

catchments can be best represented by G2 distribution. Seen

from Fig. 10, it seems that the performances of the three pdfs

vary greatly. However, as we have seen from previous fig-

ures, the differences between the three pdfs for catchments

are very small.

6 Conclusions

This study has demonstrated that L-moment diagrams and

probability plot correlation coefficient goodness-of-fit eval-

uations can provide new insight into the distribution of

very long series of daily wet-day precipitation at both the

point and catchment scales. Although previous studies have

claimed that the commonly used two-parameter gamma dis-

tribution performs fairly well on the basis of traditional

goodness-of-fit tests, this study reveals, through the use of L-

moment diagrams and probability plot correlation coefficient

goodness-of-fit evaluations that very long series of uncen-

Figure 10. The spatial map of catchments with the corresponding

best distribution functions for areal average wet-day series.

sored daily point and areal average precipitation are better

approximated by a KAP distribution and a Pearson-III dis-

tribution respectively, and importantly, they do not resemble

any of the other commonly used distributions. Analogous to

the recent study by Papalexiou and Koutsoyiannis (2016),

our evaluations yield very different conclusions than pre-

vious research on this subject and thus could have impor-

tant implications for climate change investigations and other

studies which employ a pdf of daily precipitation.

We conclude that for representing wet-day precipitation,

the gamma and Pearson-III distributions are comparable with

the four-parameter kappa distribution for the areal average

precipitation; however, when the point precipitation is of

concern, the kappa distribution should be the distribution of

choice. We also conclude that future investigations should

consider comparisons between the generalized gamma dis-

tribution introduced by Papalexiou and Koutsoyiannis (2012,

2016) for wet-day daily precipitation and the G2, Pearson

type III and kappa distributions recommended here.
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Once analytical and polynomial L-moment relationships

and parameter estimation methods become available for the

GG distribution, future studies should compare the P3 and

GG distributions on wet-day series, because on the basis

of this study, and Papalexiou and Koutsoyiannis (2016), the

P3 and GG distributions appear to have tremendous potential

for approximating the distribution of wet-day series.

Data availability. The point daily precipitation data come from the

United States National Weather Service’s Cooperative Station Net-

work and can be downloaded from https://mesonet.agron.iastate.

edu/request/coop/obs-fe.phtml (NWS COOP, 2018). The areal aver-

age precipitation data come from the MOPEX data sets (2018) and

can be downloaded from ftp://hydrology.nws.noaa.gov/pub/gcip/

mopex/US_Data/.

Author contributions. LY and LSH performed the calculation of the

data and wrote the paper. PD assisted in analyzing the data. DW and

RMV provided feedback on the structure of the paper and reviewed

the paper.

Competing interests. The authors declare that they have no conflict

of interest.

Acknowledgements. The first and third authors are partially

supported by the National Natural Science Foundation of China

(nos. 91647201, 51709033, 91547116). Special thanks are given

to Simon M. Papalexiou and other two anonymous reviewers and

editors for their constructive remarks, which led to a significantly

improved version.

Edited by: Louise Slater

Reviewed by: Simon Michael Papalexiou and two anonymous

referees

References

Blum, A. G., Archfield, S. A., and Vogel, R. M.: On the probabil-

ity distribution of daily streamflow in the United States, Hydrol.

Earth Syst. Sci., 21, 3093–3103, https://doi.org/10.5194/hess-21-

3093-2017, 2017.

Bonnin, G. M., Martin, D., Lin, B., Parzybok, T., Yekta, M., and

Riley, D.: Precipitation-frequency atlas of the United States,

NOAA atlas, National Oceanic and Atmospheric Administration,

National Weather Service, Silver Springs, Maryland, 14, 1–65,

2006.

Buishand, T. A.: Some remarks on the use of daily rainfall models,

J. Hydrol., 36, 295–308, 1978.

Burgueno, A., Martinez, M. D., Lana, X., and Serra, C.: Statistical

distributions of the daily rainfall regime in Catalonia (northeast-

ern Spain) for the years 1950–2000, Int. J. Climatol., 25, 1381–

1403, 2005.

Deidda, R. and Puliga, M.: Sensitivity of goodness-of-fit statistics

to rainfall data rounding off, Phys. Chem. Earth Pt. A/B/C, 31,

1240–1251, 2006.

Duan, J., Sikka, A. K., and Grant, G. E.: A comparison of stochas-

tic models for generating daily precipitation at the HJ Andrews

Experimental Forest, Northwest Sci., 69, 318–329, 1995.

Duan, Q., Schaake, J., Andreassian, V., Franks, S., Goteti, G.,

Gupta, H. V., Gusev, Y. M., Habets, F., Hall, A., and Hay,

L.: Model Parameter Estimation Experiment (MOPEX): An

overview of science strategy and major results from the second

and third workshops, J. Hydrol., 320, 3–17, 2006.

Easterling, D. R., Evans, J., Groisman, P. Y., Karl, T. R., Kunkel, K.

E., and Ambenje, P.: Observed variability and trends in extreme

climate events: a brief review, B. Am. Meteorol. Soc., 81, 417–

425, 2000.

Geng, S., de Vries, F. W. P., and Supit, I.: A simple method for

generating daily rainfall data, Agr. Forest Meteorol., 36, 363–

376, 1986.

Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jama-

son, P. F., Hennessy, K. J., Suppiah, R., Page, C. M., Wibig, J.,

and Fortuniak, K.: Changes in the probability of heavy precipi-

tation: important indicators of climatic change, in: Weather and

Climate Extremes, Springer, Dordrecht, 243–283, 1999.

Hershfield, D. M.: Rainfall frequency atlas of the United States for

durations from 30 minutes to 24 hours and return periods from

1 to 100 years, Technical Paper 40, U.S. Dept. of Agriculture,

Washington, DC, 1961.

Hosking, J. R.: L-moments: analysis and estimation of distributions

using linear combinations of order statistics, J. Roy. Stat. Soc.

Ser. B, 70, 105–124, 1990.

Hosking, J. R.: The four-parameter kappa distribution, IBM J. Res.

Dev., 38, 251–258, 1994.

Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis:

an approach based on L-moments, Cambridge University Press,

Cambridge, 1997.

Karl, T. R. and Knight, R. W.: Secular trends of precipitation

amount, frequency, and intensity in the United States, B. Am.

Meteorol. Soc., 79, 231–241, 1998.

Kigobe, M., McIntyre, N., Wheater, H., and Chandler, R.: Multi-site

stochastic modelling of daily rainfall in Uganda, Hydrolog. Sci.

J., 56, 17–33, 2011.

Lee, S. H. and Maeng, S. J.: Frequency analysis of extreme rainfall

using L moment, Irrig. Drain., 52, 219–230, 2003.

Li, Z., Brissette, F., and Chen, J.: Finding the most appropriate pre-

cipitation probability distribution for stochastic weather genera-

tion and hydrological modelling in Nordic watersheds, Hydrol.

Process., 27, 3718–3729, 2013.

Madsen, H., Lawrence, D., Lang, M., Martinkova, M., and Kjeld-

sen, T.: Review of trend analysis and climate change projections

of extreme precipitation and floods in Europe, J. Hydrol., 519,

3634–3650, 2014.

MOPEX data sets: ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/

US_Data/, last access: December 2018.

Naghavi, B. and Yu, F. X.: Regional frequency analysis of extreme

precipitation in Louisiana, J. Hydraul. Eng., 121, 819–827, 1995.

Papalexiou, S. M.: Unified theory for stochastic modelling of hydro-

climatic processes: Preserving marginal distributions, correlation

structures, and intermittency, Adv. Water Resour., 115, 234–252,

2018.

Hydrol. Earth Syst. Sci., 22, 6519–6531, 2018 www.hydrol-earth-syst-sci.net/22/6519/2018/

https://mesonet.agron.iastate.edu/request/coop/obs-fe.phtml
https://mesonet.agron.iastate.edu/request/coop/obs-fe.phtml
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
https://doi.org/10.5194/hess-21-3093-2017
https://doi.org/10.5194/hess-21-3093-2017
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/


L. Ye et al.: The probability distribution of daily precipitation at the point and catchment scales in US 6531

Papalexiou, S. M. and Koutsoyiannis, D.: Entropy based derivation

of probability distributions: A case study to daily rainfall, Adv.

Water Resour., 45, 51–57, 2012.

Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value

distributions: A global survey on extreme daily rainfall, Water

Resour. Res., 49, 187–201, 2013.

Papalexiou, S. M. and Koutsoyiannis, D.: A global survey on the

seasonal variation of the marginal distribution of daily precipita-

tion, Adv. Water Resour., 94, 131–145, 2016.

Park, J.-S. and Jung, H.-S.: Modelling Korean extreme rainfall using

a Kappa distribution and maximum likelihood estimate, Theor.

Appl. Climatol., 72, 55–64, 2002.

Pilon, P. J., Adamowski, K., and Alila, Y.: Regional analysis of an-

nual maxima precipitation using L-moments, Atmos. Res., 27,

81–92, 1991.

Schoof, J. T., Pryor, S. C., and Surprenant, J.: Development of

daily precipitation projections for the United States based on

proba-bilistic downscaling, J. Geophys. Res.-Atmos., 115, D13,

https://doi.org/10.1029/2009JD013030, 2010.

Shoji, T. and Kitaura, H.: Statistical and geostatistical analysis of

rainfall in central Japan, Comput. Geosci., 32, 1007–1024, 2006.

Stedinger, J. R., Vogel, R. M., and Foufoula-Georgiou, E.: Fre-

quency analysis of extreme events, in: Handbook of Hydrology,

25, chap. 18, edited by: Maidment, D. R., McGraw Hill Book

Co, New York, 1993.

Thom, H. C.: A frequency distribution for precipitation, B. Am. Me-

teorol. Soc., 32, 397, 1951.

Trenberth, K. E.: Changes in precipitation with climate change,

Clim. Res., 47, 123–138, 2011.

United States National Weather Service’s Cooperative Station Net-

work (NWS COOP): https://mesonet.agron.iastate.edu/request/

coop/obs-fe.phtml, last access: December 2018.

Vogel, R. M. and Fennessey, N. M.: L moment diagrams should re-

place product moment diagrams, Water Resour. Res., 29, 1745–

1752, 1993.

Vogel, R. W. and McMartin, D. E.: Probability Plot Goodness-of-

Fit and Skewness Estimation Procedures for the Pearson Type 3

Distribution, Water Resour. Res., 27, 3149–3158, 1991.

Waggoner, P. E.: Anticipating the frequency distribution of precip-

itation if climate change alters its mean, Agr. Forest Meteorol.,

47, 321–337, 1989.

Watterson, I. G. and Dix, M.: Simulated changes due to global

warming in daily precipitation means and extremes and their

interpretation using the gamma distribution, J. Geophys. Res.-

Atmos., 108, D13, https://doi.org/10.1029/2002jd002928, 2003.

Watterson, I. G.: Simulated changes due to global warming in

the variability of precipitation, and their interpretation using a

gamma-distributed stochastic model, Adv. Water Resour., 28,

1368–1381, 2005.

Waymire, E. and Gupta, V. K.: The mathematical structure of rain-

fall representations: 1. A review of the stochastic rainfall models,

Water Resour. Res., 17, 1261–1272, 1981.

Wilby, R. L. and Wigley, T.: Future changes in the distribution of

daily precipitation totals across North America, Geophys. Res.

Lett., 29, 39–31, https://doi.org/10.1029/2001GL013048, 2002.

Wilks, D. S.: Maximum likelihood estimation for the gamma dis-

tribution using data containing zeros, J. Climate, 3, 1495–1501,

1990.

Wilks, D. S.: Multisite generalization of a daily stochastic precip-

itation generation model, Journal of Hydrology, 210, 178-191,

1998.

Wilson, P. S. and Toumi, R.. A fundamental probability distri-

bution for heavy rainfall, Geophys. Res. Lett., 32, L14812,

https://doi.org/10.1029/2005gl022465, 2005.

Woolhiser, D. A. and Roldan, J.: Stochastic daily precipitation mod-

els: 2. A comparison of distributions of amounts, Water Resour.

Res., 18, 1461–1468, 1982.

Yoo, C., Jung, K. S., and Kim, T. W.: Rainfall frequency analy-

sis using a mixed Gamma distribution: evaluation of the global

warming effect on daily rainfall, Hydrol. Process., 19, 3851–

3861, 2005.

www.hydrol-earth-syst-sci.net/22/6519/2018/ Hydrol. Earth Syst. Sci., 22, 6519–6531, 2018

https://doi.org/10.1029/2009JD013030
https://mesonet.agron.iastate.edu/request/coop/obs-fe.phtml
https://mesonet.agron.iastate.edu/request/coop/obs-fe.phtml
https://doi.org/10.1029/2002jd002928
https://doi.org/10.1029/2001GL013048
https://doi.org/10.1029/2005gl022465

	Abstract
	Introduction
	Stochastic precipitation models
	Precipitation frequency analysis
	Precipitation trends and changes
	Research objectives

	Study area and data
	Methodology
	L-moment diagrams
	Probability-plot correlation-coefficient goodness-of-fit evaluation

	Results and analysis
	L-moment diagrams
	L-Cv vs. L-skew
	L-kurtosis vs. L-skew

	Probability plot correlation coefficient
	Standard box plots of PPCC
	Graphical comparison of P3, G2 and KAP


	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

