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THE PROBABILITY DISTRIBUTIONS

OF THE FIRST HITTING TIMES

OF BESSEL PROCESSES

YUJI HAMANA AND HIROYUKI MATSUMOTO

Abstract. We consider the first hitting times of the Bessel processes. We
give explicit expressions for the distribution functions by means of the zeros of
the Bessel functions. The resulting formula is simpler and easier to treat than
the corresponding results which have already been obtained.

1. Introduction

In this article we consider the first hitting time of the Bessel process, which itself
is an interesting object and is one of the important tools to study several problems
in probability theory. By general theory of one-dimensional diffusion processes,
the Laplace transform of the distribution satisfies an eigenvalue problem for the
generator and it is given by a ratio of the modified Bessel functions.

Except for some special cases, it is not easy to invert the Laplace transforms.
When the index ν of the Bessel process is a half integer n + 1/2, n ∈ N, the
Macdonald function Kν is of a simple form. In this case, it turns out that Kν+1/Kν

is represented by the ratio of polynomials. With the help of the partial fraction
decomposition, Hamana [9], [10] recently has inverted the Laplace transform and
applied the results to show the explicit form and the asymptotic behavior of the
expected volume of the Wiener sausage for the odd dimensional Brownian motion.
The method used in [10] requires some formulae for the zeros of Kν .

When the starting point of a Bessel process is closer to the boundary 0 than its
arrival point, the Laplace transform of the first hitting time is given by a ratio of the
modified Bessel function Iν . In this case, Kent [14] has given an explicit expression
(see (2.7), (2,8) and (2.9) below) by means of the zeros of Iν or the Bessel function
Jν for the density in his general framework.

The purpose of this paper is to show the explicit formula for the distribution
function in the other case, where the boundary ∞ is natural and the Laplace
transform is written by a ratio ofKν ’s. For our expressions, we need the zeros ofKν .
In order to prove the results, we represent the ratio of the Macdonald functions by
using contour integrals of functions easier to treat, and invert the Laplace transform.
Recently Byczkowski, et al. [2, 3] have given similar but different expressions for
the densities of the first hitting times, and applied the results to some study on
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geometric Brownian motions and hyperbolic Brownian motions. We use the same
curve for the contour integral. However, we show a decomposition of the Bessel
function ratio and use it, which makes our expression simpler.

Moreover we should mention that Ismail has considered several types of functions
given as the ratios of modified Bessel functions and discussed when the functions are
completely monotone; see [11] and the references therein. In particular he showed
that the function on the right hand side of (2.5) below is completely monotone by
expressing it as a Stieltjes transform of some function. This result gives another
expression for the distribution function of the first hitting time, while it is more
complicated.

Ismail has also shown that the function Kν+1/Kν is completely monotone in a
similar way. In our context, such a function appears if we give an expression for the
Lévy measure of the distribution of the first hitting time. The Lévy measure will
be deduced in the forthcoming paper. General theory on the infinite divisibility of
the distributions of the first hitting times of one-dimensional diffusion processes is
given by Yamazato [19].

This article is organized as follows. We give the main result, Theorem 2.2, in
Section 2 and prove it in Section 3. Section 4 is devoted to the asymptotic behavior
of the tail probability of the first hitting time, which is obtained as an application
of the result.

2. The first hitting time of the Bessel processes

For ν ∈ R the one-dimensional diffusion process with infinitesimal generator

G(ν) =
1

2

d2

dx2
+

2ν + 1

2x

d

dx
=

1

2x2ν+1

d

dx

(
x2ν+1 d

dx

)
is called the Bessel process with index ν. If 2ν + 2 is a positive integer, the Bessel
process is identical in law with the radial motion of a (2ν+2)-dimensional Brownian
motion. Hence, 2ν + 2 is called the dimension of the Bessel process.

The classification of boundary points gives the following information. The end-
point ∞ is a natural boundary for any ν ∈ R. For ν � 0, 0 is an entrance and
not exit boundary. For −1 < ν < 0, 0 is a regular boundary, which is instantly
reflecting. For ν � −1, 0 is an exit but not entrance boundary. For more details,
see [12] and [17].

For a, b � 0 we denote by τ
(ν)
a,b the first hitting time to b of the Bessel process with

index ν starting at a. By general theory of one-dimensional diffusion processes,

we can evaluate the Laplace transform of the distribution of τ
(ν)
a,b by solving an

eigenvalue problem. In fact, denoting by E the expectation, we have that the
function

x �→ E[e−λτ
(ν)
x,b ]

is increasing (decreasing) on [0, b) (resp. (b,∞)) and satisfies

G(ν)u = λu, u(b) = 1.

The following explicit expressions for E[e−λτ
(ν)
a,b ] are well known (cf. [7], [13]):

for λ > 0, if b > 0 and ν > −1,

(2.1) E[e−λτ
(ν)
0,b ] =

(b
√
2λ)ν

2νΓ (ν + 1)

1

Iν(b
√
2λ)

;
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if 0 < a � b and ν > −1,

(2.2) E[e−λτ
(ν)
a,b ] =

a−νIν(a
√
2λ)

b−νIν(b
√
2λ)

;

if 0 < a � b and ν � −1,

(2.3) E[e−λτ
(ν)
a,b ] =

a−νI−ν(a
√
2λ)

b−νI−ν(b
√
2λ)

;

if a > 0 and ν < 0,

(2.4) E[e−λτ
(ν)
a,0 ] =

2ν+1

Γ (|ν|)(a
√
2λ)ν

Kν(a
√
2λ);

if 0 < b � a and ν ∈ R,

(2.5) E[e−λτ
(ν)
a,b ] =

a−νKν(a
√
2λ)

b−νKν(b
√
2λ)

.

Here Γ is the gamma function and Iν and Kν denote modified Bessel functions of
the first and the second kinds of order ν, respectively. Both Iν and Kν are the
solutions of the modified Bessel differential equation

(2.6) z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0.

The distribution function of τ
(ν)
a,b for a < b was obtained in [14]. If b > 0 and

ν > −1,

(2.7) P (τ
(ν)
0,b � t) = 1− 1

2ν−1Γ (ν + 1)

∞∑
k=1

jν−1
ν,k

Jν+1(jν,k)
e−

j2ν,k

2b2
t.

If 0 < a < b, we have that, ν > −1,

(2.8) P (τ
(ν)
a,b � t) = 1− 2

(
b

a

)ν ∞∑
k=1

Jν(ajν,k/b)

jν,kJν+1(jν,k)
e−

j2ν,k

2b2
t

and that, for ν � −1,

(2.9) P (τ
(ν)
a,b � t) =

(
b

a

)2ν

− 2

(
b

a

)ν ∞∑
k=1

J−ν(aj−ν,k/b)

j−ν,kJ−ν+1(j−ν,k)
e−

j2−ν,k

2b2
t.

Here Jμ is the Bessel function of the first kind of order μ and {jν,k}∞k=1 is the
increasing sequence of positive zeros of Jν .

When b > 0 and 2ν+2 is a positive integer, Ciesielski and Taylor [4] have already
shown (2.7). When 2ν+2 is not a positive integer, it is possible to derive the inverse
Laplace transform of the right hand side of (2.1) by the same methods as those used
to prove Theorem 1 in [4]. The formula (2.8) immediately shows that, if 0 < a < b
and ν > −1,

P (τ
(ν)
a,b > t) = 2

(
b

a

)ν
Jν(ajν,1/b)

jν,1Jν+1(jν,1)
e−

j2ν,1

2b2
t{1 + o(1)}.

A similar asymptotic result, in the case where a = 0 and 2ν+2 is an integer greater
than 2 (Brownian case), was used in [4] to show the law of iterated logarithm for
the total time spent by the Bessel process in (0, b) as b ↓ 0.
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Remark 2.1. We find in [5], p. 104, the formula

Jν(cz)

Jν(z)
= cν +

∞∑
k=1

2z2

jν,k(j2ν,k − z2)

Jν(cjν,k)

Jν+1(jν,k)

for 0 � c � 1, which implies (2.8) and (2.9) by virtue of Iν(x) = e−iπν/2Jν(xe
iπ/2)

for x > 0 (cf. [18], p. 77).

In the case a > 0 and ν < 0, we can easily check

P (τ
(ν)
a,0 � t) =

2ν

Γ (|ν|)a2
∫ t

0

sν−1e−
a2

2s ,

by (2.4) and the formula

Kν(z) =
1

2

(
z

2

)ν ∫ ∞

0

e−t− z2

4t t−ν−1dt.

To give our result on the distribution functions of τ
(ν)
a,b in the case of 0 < b < a,

we need to recall some facts about the zeros of the Bessel function Kν . For ν ∈ R

we denote by N(ν) the number of zeros of Kν . It is known that N(ν) = |ν|− 1/2 if
ν−1/2 is an integer and that N(ν) is the even number closest to |ν|−1/2 otherwise.
We remark that N(ν) = 0 if |ν| < 3/2 and N(ν) � 1 if |ν| � 3/2. Each zero, if it
exists, lies in the half plane {z ∈ C ; Re(z) < 0}, denoted by C

−. In this case, we
write zν,1, zν,2, . . . , zν,N(ν) for the zeros. Since Kν is a solution of (2.6), all zeros of
Kν are of multiplicity one by the uniqueness of the solution of ordinary differential
equations. This means that all zeros of Kν are distinct. If ν−1/2 is not an integer,
there are no real zeros. For details, see [18], pp. 511–513.

Theorem 2.2. Let 0 < b < a. For μ � 0 and c > 1, we set

Lμ,c(x) =
cos(πμ){Iμ(cx)Kμ(x)− Iμ(x)Kμ(cx)}

{Kμ(x)}2 + π2{Iμ(x)}2 + 2π sin(πμ)Kμ(x)Iμ(x)
.

(1) If ν = ±1/2,

P (τ
(ν)
a,b � t) =

(
b

a

)ν+|ν| ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds.

(2) If |ν| < 3/2 and ν �= ±1/2,

P (τ
(ν)
a,b � t) =

(
b

a

)ν+|ν| ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds

−
(
b

a

)ν ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s

[∫ ∞

0

L|ν|,a/b(x)

x
e
− x(a−b)

√
t

b
√

s dx

]
ds.

(3) If ν − 1/2 is an integer and ν �= ±1/2,

P (τ
(ν)
a,b � t) =

(
b

a

)ν+|ν| ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds

−
(
b

a

)ν N(ν)∑
j=1

Kν(azν,j/b)

zν,jKν+1(zν,j)

∫ t

0

a− b√
2πs3

e
− (a−b)2

2s +
zν,j(a−b)

√
t

b
√

s ds.
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(4) If ν − 1/2 is not an integer and |ν| > 3/2,

P (τ
(ν)
a,b � t) =

(
b

a

)ν+|ν| ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds

−
(
b

a

)ν N(ν)∑
j=1

Kν(azν,j/b)

zν,jKν+1(zν,j)

∫ t

0

a− b√
2πs3

e
− (a−b)2

2s +
zν,j(a−b)

√
t

b
√

s ds

−
(
b

a

)ν ∫ t

0

a− b√
2πs3

e−
(a−b)2

2s

[∫ ∞

0

L|ν|,a/b(x)

x
e
− x(a−b)

√
t

b
√

s dx

]
ds.

From this theorem we can deduce the asymptotic behavior of P (τ
(ν)
a,b > t) for

0 < b < a, which will be discussed in Section 4. It should be mentioned that, when
ν = 0, it is obtained from (2.5). In fact, we have∫ ∞

0

e−λtP (τ
(ν)
a,b > t)dt =

1

λ

K0(b
√
2λ)−K0(a

√
2λ)

K0(b
√
2λ)

=
2 log(a/b)

λ log(1/λ)
{1 + o(1)}

(2.10)

as λ → 0. The Tauberian theorem of the exponential type immediately yields

(2.11) P (τ
(ν)
a,b > t) =

2 log(a/b)

log t
+ o

(
1

log t

)
as t → ∞ (cf. [6], p. 446). In order to derive the second equality of (2.10), we
have applied the asymptotic behavior of K0(x) as x ↓ 0 (cf. (3.15)). We can
directly deduce (2.11) from Theorem 2.2 without the Tauberian theorem, however,
the calculation is left to the reader.

In the case of ν �= 0, we cannot obtain a convenient formula such as (2.10) which
allows us to apply the Tauberian theorem in a straightforward way.

3. The distribution function of the first hitting time

From now on, for a suitable function f , the notation L[f ] implies the Laplace
transform of f and the inverse Laplace transform of f is denoted by L−1[f ]. All
formulae concerning Laplace and inverse Laplace transforms can be found in [16].

This section is devoted to a proof of Theorem 2.2. For t > 0 and ν ∈ R let

F
(ν)
a,b (t) = P (τ

(ν)
a,b � t).

A standard formula shows that

L[F (ν)
a,b ](λ) =

1

λ
E[eλτ

(ν)
a,b ]

for λ > 0. For simplicity we put G
(ν)
a,b(t) = F

(ν)
a,b (2b

2t). Then we have

L[G(ν)
a,b ](λ) =

1

2b2
L[F (ν)

a,b ]

(
λ

2b2

)
.

Set α = a/b > 1. It follows from (2.5) that, for λ > 0,

L[G(ν)
a,b ](λ) =

1

αν

Kν(α
√
λ)

λKν(
√
λ)

.

Since Kν = K−ν for ν � 0, it is sufficient to consider the case where ν � 0.
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Let ν � 0 and c > 1. We first assume that ν − 1/2 is an integer. In this case,
there is a suitable polynomial ψν of order ν − 1/2 on C such that ψν(0) �= 0 and

(3.1) zνKν(z) =

√
π

2
e−zψν(z)

for z ∈ D (cf. [15], [18]). Here the notation D has been used to denote the set of
points z ∈ C \ {0} with | arg z| < π. For example,

ψ1/2(z) = 1, ψ3/2(z) = 1 + z, ψ5/2(z) = 3 + 3z + z2.

The function zνKν(z) is extended to an entire function and all zeros of ψν are the
same as those of Kν . For z ∈ C let

ψν,c(z) =
e−(c−1)zψν(cz)

cνψν(z)
.

Then ψν,c is a single-valued meromorphic function on C and it holds that

ψν,c(z) =
Kν(cz)

Kν(z)

for z ∈ D. Therefore, if z ∈ C is not a zero of Kν , we have

ψν,c(z) = lim
v→z

Kν(cv)

Kν(v)
,

which implies that Kν(cx)/Kν(x) can be determined uniquely for x < 0 if x is not
a zero of Kν .

Recall our notation zν,1, . . . , zν,N(ν) for the zeros of Kν . Let w be a point in D
with Kν(w) �= 0. We take R so large that w and all the zeros of Kν are inside
C(R), a circle whose center is the origin and radius R.

We set

(3.2) Θ(R) =
1

2πi

∫
C(R)

gwν,c(z)dz,

where

gwν,c(z) =
we(c−1)zψν,c(z)

z(z − w)

for z ∈ C. The singular points of gwν,c are 0, w and the zeros of Kν , which are all
poles of order 1. The residue theorem yields that, if N(ν) = 0,

Θ(R) = Res(0; gwν,c) + Res(w; gwν,c)

and that, if N(ν) � 1,

Θ(R) = Res(0; gwν,c) + Res(w; gwν,c) +

N(ν)∑
j=1

Res(zν,j ; g
w
ν,c),

where Res(v; f) is the residue of a function f at a pole v. By definition of the
function gwν,c, we have

Res(0; gwν,c) = −ψν,c(0) = − 1

cν

and

Res(w; gwν,c) = e(c−1)wψν,c(w) = e(c−1)wKν(cw)

Kν(w)
.
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If N(ν) � 1, the residue of gwν,c at zν,j is equal to

lim
z→zν,j

wψν(cz)

cνz(z − w)

z − zν.j
ψν(z)

=
wψν(czν,j)

cνzν,j(zν,j − w)ψ′
ν(zν,j)

for 1 � j � N(ν). Since Lemma 3.1 in [10] gives us that, if ψν(z0) = 0,

ψν+1(z0) = −z0ψ
′
ν(z0),

we obtain

(3.3) Res(zν,j ; g
w
ν,c) = − wψν(czν,j)

cν(zν,j − w)ψν+1(zν,j)
.

If z ∈ D, it follows from (3.1) that

(3.4)
Kν(cz)

Kν+1(z)
=

ze−(c−1)zψν(cz)

cνψν+1(z)
.

Then Kν(cz)/Kν+1(z) is extended to a meromorphic function on C. This implies
that Kν(cx)/Kν+1(x) can be determined uniquely for x < 0 with Kν+1(x) �= 0.
From (3.3) and (3.4) we deduce

Res(zν,j ; g
w
ν,c) = − we(c−1)zν,j

zν,j(zν,j − w)

Kν(czν,j)

Kν+1(zν,j)

and

Θ(R) = − 1

cν
+ e(c−1)wKν(cw)

Kν(w)
−

N(ν)∑
j=1

we(c−1)zν,j

zν,j(zν,j − w)

Kν(czν,j)

Kν+1(zν,j)
.

Θ(R) tends to 0 as R → ∞ since gwν,c(z) = O(|z|−2). Hence we obtain

(3.5)
Kν(cw)

Kν(w)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−(c−1)w

cν
if ν =

1

2
,

e−(c−1)w

cν
+

N(ν)∑
j=1

we(c−1)(zν,j−w)

zν,j(zν,j − w)

Kν(czν,j)

Kν+1(zν,j)
if ν �= 1

2

in the case where ν − 1/2 is a non-negative integer.
We next consider the case where ν − 1/2 is not an integer and look for a nice

expression for Kν(cw)/Kν(w) as in (3.5). If ν is not an integer, it is well known
(cf. [18], p. 80) that

Kν(ze
imπ) = e−imπνKν(z)− iπ

sin(mπν)

sin(πν)
Iν(z)

for z ∈ D and m ∈ Z. When ν is an integer, we also have

Kν(ze
imπ) = e−imπνKν(z)− iπm(−1)(m−1)νIν(z)

for z ∈ D and m ∈ Z, which is easily seen from

lim
μ→n

Kμ(z) = Kn(z)

for each integer n. Especially, for z ∈ D, we have

Kν(ze
iπ) = e−iπνKν(z)− iπIν(z),(3.6)

Kν(ze
−iπ) = eiπνKν(z) + iπIν(z).(3.7)
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It follows from these identities that the function Kν(cz)/Kν(z) cannot be extended
to a meromorphic function on C. For z ∈ D let

hw
ν,c(z) =

we(c−1)z

z(z − w)

Kν(cz)

Kν(z)
.

In order to give a formula for Kν(cw)/Kν(w) similar to (3.5), we consider the
integral of hw

ν,c on a suitable contour. However we cannot adopt a circle as the
contour as in (3.2) since hw

ν,c cannot extend to a meromorphic function on C.
Let ε and R be positive numbers with 2ε < R. We set

θR,ε = Arcsin
ε

R
.

As a contour, we take the curve γ defined by

γ0 : z = Reiθ, −π + θR,ε � θ � π − θR,ε,

γ1 : z = x+ iε, −R cos θR,ε � x � 0,

γ2 : z = εeiθ, −π/2 � θ � π/2,

γ3 : z = x− iε, −R cos θR,ε � x � 0,

γ = γ0 + γ1 − γ2 − γ3.

We take R so large and ε so small that w and all zeros of Kν are inside γ. Then,
setting

Π(R, ε) =
1

2πi

∫
γ

hw
ν,c(z)dz, Π	 =

1

2πi

∫
γ�

hw
ν,c(z)dz

for 0 � � � 3, we have

Π(R, ε) = Π0 +Π1 −Π2 −Π3.

The residue theorem yields that, if N(ν) = 0,

(3.8) Π(R, ε) = Res(w;hw
ν,c)

and that, if N(ν) � 1,

(3.9) Π(R, ε) = Res(w;hw
ν,c) +

N(ν)∑
j=1

Res(zν,j ;h
w
ν,c).

It is obvious that

Res(w;hw
ν,c) = e(c−1)wKν(cw)

Kν(w)
.

When N(ν) � 1, by using the formula

zK ′
ν(z)− νKν(z) = −zKν+1(z)

(cf. [18], p. 29), we can show

Res(zν,j ;h
w
ν,c) =

we(c−1)zν,j

zν,j(zν,j − w)

Kν(czν,j)

K ′
ν(zν,j)

= − we(c−1)zν,j

zν,j(zν,j − w)

Kν(czν,j)

Kν+1(zν,j)
.

It follows from (3.8) and (3.9) that, if N(ν) = 0,

Π(R, ε) = e(c−1)wKν(cw)

Kν(w)
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and that, if N(ν) � 1,

Π(R, ε) = e(c−1)wKν(cw)

Kν(w)
−

N(ν)∑
j=1

we(c−1)zν,j

zν,j(zν,j − w)

Kν(czν,j)

Kν+1(zν,j)
.

In order to consider the asymptotic behavior of Π(R, ε) as R → ∞, we need the
asymptotic behavior of Kν(z) as |z| → ∞. It is known that, if | arg z| < 3π/2,

(3.10) Kν(z) =

√
π

2z
e−z{1 +O(|z|−1)}

(cf. [18], p. 202). However it is not sufficient since the error term may not be
uniform for arg z. We can improve (3.10) in the following way.

Lemma 3.1. Let δ > 0 be given. We have that, for | arg z| � 3π/2− δ,

Kν(z) =

√
π

2z
e−z{1 + E1(z)},

where |E1(z)| � C1/|z| and C1 is a positive constant independent of z.

Proof. It is known that, for −π + δ � argw � 2π − δ,

H(1)
ν (w) =

√
2

πw
ei(w−πν/2−π/4){1 + E2(w)}

holds for the Hankel function H
(1)
ν , where |E2(z)| � C2/|z| and C2 is a positive

constant which is independent of z; see [15], p. 121 and [18], p. 197.
Let | arg z| � 3π/2− δ. Then we have −π + δ � arg(zeiπ/2) � 2π − δ, and thus

the formula

Kν(z) =
1

2
iπeiπν/2H(1)

ν (zeiπ/2)

(cf. [18], p. 77) immediately yields the assertion of this lemma. �

By virtue of Lemma 3.1, we get

|hw
ν,c(z)| �

|w|√
c|z| · |z − w|

1 + C1/c|z|
1− C1/|z|

if z = Reiθ ∈ D and

|Π0| �
1

2π

∫ π−θR,ε

−π+θR,ε

|hw
ν,c(Reiθ)|Rdθ � |w|√

c(R− |w|)
1 + C1/cR

1− C1/R
,

which tends to 0 as R → ∞.
For the integral Π1, we have

Π1 =
w

2πi

∫ 0

−R cos θR,ε

e(c−1)(x+iε)

(x+ iε)(x+ iε− w)

Kν(c(x+ iε))

Kν(x+ iε)
dx

=
w

2πi

∫ R cos θR,ε

0

e(c−1)(−x+iε)

(x− iε)(x− iε+ w)

Kν(c(−x+ iε))

Kν(−x+ iε)
dx.

Then, using (3.6) and writing the right hand side by ξν ,

ξν(z) = e−iπνKν(z)− iπIν(z),
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we get

Π1 =
w

2πi

∫ R cos θR,ε

0

e−(c−1)(x−iε)

(x− iε)(x− iε+ w)

ξν(c(x− iε))

ξν(x− iε)
dx.

Hence, letting γ0
1 be the line in D defined by

γ0
1 : z = x− iε, 0 � x � R cos θR,ε,

it holds that

Π1 =
w

2πi

∫
γ0
1

e−(c−1)z

z(z + w)

ξν(cz)

ξν(z)
dz.

Here we define three paths as follows:

γ1
1 : z = εeiθ, −π/2 � θ � 0,

γ2
1 : z = x, ε � x � R,

γ3
1 : z = Reiθ, −θR,ε � θ � 0.

Since w is inside γ, we have that | Im(w)| > ε if Re(w) < 0. Recall that there is no
zero of Kν on the real axis. Then we may apply the Cauchy integral theorem for
the integral on the contour consisting of γ0

1 , γ
1
1 , γ

2
1and γ3

1 to obtain

Π1 = Π1
1 +Π2

1 −Π3
1 ,

where

Π1
1 =

w

2π

∫ 0

−π/2

e−(c−1)εeiθ

εeiθ + w

ξν(cεe
iθ)

ξν(εeiθ)
dθ,

Π2
1 =

w

2πi

∫ R

ε

e−(c−1)x

x(x+ w)

ξν(cx)

ξν(x)
dx,

Π3
1 =

w

2π

∫ 0

−θR,ε

e−(c−1)Reiθ

Reiθ + w

ξν(cReiθ)

ξν(Reiθ)
dθ.

Π3
1 tends to 0 as R → ∞. In fact, noting that ξν(xe

iθ) = Kν(xe
i(θ+π)) holds for

x > 0, we obtain from Lemma 3.1,

ξν(cReiθ)

ξν(Reθ)
=

1√
c
e−(c−1)Rei(θ+π) 1 + E1(cRei(θ+π))

1 + E1(Rei(θ+π))

for |θ| < π/6, which yields

(3.11)

∣∣∣∣e−(c−1)Reiθ ξν(cReiθ)

ξν(Reθ)

∣∣∣∣ � 1√
c

1 + C1/cR

1− C1/R
� C3

for large R and a positive constant C3 which is independent of R and θ. Since
0 < θR,ε < π/6, we see Π3

1 → 0 as R → ∞.

Furthermore (3.11) shows that the function e−(c−1)xξν(cx)/ξν(x) is bounded on
[ε,∞) and that Π2

1 converges as R → ∞. Therefore it holds that

lim
R→∞

Π1 =
w

2π

∫ 0

−π/2

e−(c−1)εeiθ

εeiθ + w

ξν(cεe
iθ)

ξν(εeiθ)
dθ +

w

2πi

∫ ∞

ε

e−(c−1)x

x(x+ w)

ξν(cx)

ξν(x)
dx.

In the same way, we can show that

lim
R→∞

(−Π3) =
w

2π

∫ π/2

0

e−(c−1)εeiθ

εeiθ + w

ζν(cεe
iθ)

ζν(εeiθ)
dθ − w

2πi

∫ ∞

ε

e−(c−1)x

x(x+ w)

ζν(cx)

ζν(x)
dx,
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where
ζν(z) = Kν(ze

−iπ) = eiπνKν(z) + iπIν(z)

for z ∈ D (cf. (3.7)). Note that

1

2πi

{
ζν(cx)

ζν(x)
− ξν(cx)

ξν(x)

}
=

cos(πν){Iν(cx)Kν(x)− Iν(x)Kν(cx)}
{Kν(x)}2 + π2{Iν(x)}2 + 2π sin(πν)Kν(x)Iν(x)

and recall that the right hand side is Lν,c(x). Then we get

lim
R→∞

Π(R, ε) =
w

2π

∫ 0

−π/2

e−(c−1)εeiθ

εeiθ + w

ξν(cεe
iθ)

ξν(εeiθ)
dθ

+
w

2π

∫ π/2

0

e−(c−1)εeiθ

εeiθ + w

ζν(cεe
iθ)

ζν(εeiθ)
dθ

− w

2π

∫ π/2

−π/2

e(c−1)εeiθ

εeiθ − w

Kν(cεe
iθ)

Kν(εeiθ)
dθ

−
∫ ∞

ε

we−(c−1)xLν,c(x)

x(x+ w)
dx.

(3.12)

We will calculate the limit of each term of (3.12) as ε ↓ 0.

Lemma 3.2. Let c > 0, ν � 0 and |θ| < π. We have that

lim
ε↓0

Kν(cεe
iθ)

Kν(εeiθ)
= lim

ε↓0

ξν(cεe
iθ)

ξν(εeiθ)
= lim

ε↓0

ζν(cεe
iθ)

ζν(εeiθ)
=

1

cν
.

Proof. It is known that

(3.13) Kν(z) =

⎧⎪⎪⎨⎪⎪⎩
log

(
2

z

)
{1 + o(1)} if ν = 0,

Γ (ν)

2

(
2

z

)ν

{1 + o(1)} if ν > 0,

as |z| → 0 in D; see [15], p. 111 and [18], p. 512. Then, it follows from (3.13) that

Kν(cεe
iθ)

Kν(εeiθ)
=

⎧⎪⎪⎨⎪⎪⎩
log(2/cε)− iθ

log(2/ε)− iθ

1 + o(1)

1 + o(1)
if ν = 0,

1

cν
1 + o(1)

1 + o(1)
if ν > 0,

which converges to 1/cν as ε ↓ 0. Recall the formula

(3.14) Iν(z) =
∞∑

n=0

(z/2)ν+2n

n!Γ (n+ ν + 1)

for z ∈ D (cf. [18], p. 77). From (3.13) and (3.14) we deduce that Iν(xe
iθ) converges

and Kν(xe
iθ) tends to infinity as x ↓ 0. This yields that

ξν(cεe
iθ)

ξν(εeiθ)
=

Kν(cεe
iθ) +O(1)

Kν(εeiθ) +O(1)
=

1

cν
{1 + o(1)}

as ε ↓ 0.
We can show

ζν(cεe
iθ)

ζν(εeiθ)
=

1

cν
{1 + o(1)}

in the same fashion. �
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The first three terms of the right hand side of (3.12) can be calculated easily.
Indeed, Lemma 3.2 yields that the first and the second terms converge to 1/4cν

and that the third term converges to 1/2cν . By (3.13) and (3.14), we can easily see

(3.15)
Lν,c(x)

cos(πν)
=

⎧⎪⎪⎨⎪⎪⎩
log c

(log x)2
{1 + o(1)} if ν = 0,

cν(1− c−2ν)x2ν

22ν−1Γ (ν)Γ (ν + 1)
{1 + o(1)} if ν > 0,

as x ↓ 0, which has been noted in [3], p. 29. Hence the last term of the right hand
side of (3.12) converges as ε ↓ 0. Therefore we can conclude

lim
ε↓0

lim
R→∞

Π(R, ε) =
1

cν
−
∫ ∞

0

we−(c−1)xLν,c(x)

x(x+ w)
dx.

Since Kμ = K−μ for μ � 0, we have that Kν+1(z) = K|ν|+1(z) if z is a zero of Kν .
Moreover, we can regard z−ν,j as zν,j for 1 � j � N(ν). Therefore we have proven
the following.

Theorem 3.3. Let c > 1, ν ∈ R and w be a point in D with Kν(w) �= 0.
(1) If ν = ±1/2, we have

Kν(cw)

Kν(w)
=

e−(c−1)w

c|ν|
.

(2) If |ν| < 3/2 and ν �= ±1/2, we have

Kν(cw)

Kν(w)
=

e−(c−1)w

c|ν|
− e−(c−1)w

∫ ∞

0

we−(c−1)xL|ν|,c(x)

x(x+ w)
dx.

(3) If ν − 1/2 is an integer and ν �= ±1/2,

Kν(cw)

Kν(w)
=

e−(c−1)w

c|ν|
− e−(c−1)w

N(ν)∑
j=1

we(c−1)zν,j

zν,j(w − zν,j)

Kν(czν,j)

Kν+1(zν,j)
.

(4) If ν − 1/2 is not an integer and |ν| > 3/2,

Kν(cw)

Kν(w)
=

e−(c−1)w

c|ν|
− e−(c−1)w

N(ν)∑
j=1

we(c−1)zν,j

zν,j(w − zν,j)

Kν(czν,j)

Kν+1(zν,j)

− e−(c−1)w

∫ ∞

0

we−(c−1)xL|ν|,c(x)

x(x+ w)
dx.

We are ready to complete our proof of Theorem 2.2. We have

L[G(ν)
a,b ](λ) =

1

αν

Kν(α
√
λ)

λKν(
√
λ)

, α =
a

b
> 1.

We need to derive the inverse Laplace transforms of the following functions:

p1(λ) =
1

λ
e−(α−1)

√
λ,

p2(λ; z) =
1√

λ(
√
λ− z)

e−(α−1)
√
λ, z ∈ C.
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The results may be well known (cf. [16]), but we deduce them from the formula

(3.16)

∫ ∞

0

e−
x2

u2 − v2

x2 dx =
u
√
π

2
e−

2v
u , u, v > 0.

At first, put

q1(t) =
1

2
√
πt3

∫ ∞

α−1

ξ{ξ − (α− 1)}e−
ξ2

4t dξ =
1√
πt

∫ ∞

α−1

e−
ξ2

4t dξ.

Then we get by (3.16)∫ ∞

0

e−λtq1(t)dt =
1

2
√
π

∫ ∞

α−1

ξ{ξ − (α− 1)}
[∫ ∞

0

e−λt− ξ2

4t t−
3
2 dt

]
dξ

=
1√
π

∫ ∞

α−1

ξ{ξ − (α− 1)}
[∫ ∞

0

e−
ξ2x2

4 − λ
x2 dx

]
dξ

=

∫ ∞

α−1

{ξ − (α− 1)}e−
√
λξdξ

=
1

λ
e−(α−1)

√
λ

and
L−1[p1](t) = q1(t).

Next we put

q2(t; z) =
1√
πt

∫ ∞

α−1

e−
ξ2

4t +z{ξ−(α−1)}dξ.

Then we obtain from (3.16)∫ ∞

0

e−λtq2(t; z)dt =
1√
π

∫ ∞

α−1

ez{ξ−(α−1)}
[∫ ∞

0

e−λt− ξ2

4t t−
1
2 dt

]
dξ

=
2√
π

∫ ∞

α−1

ez{ξ−(α−1)}
[∫ ∞

0

e−λx2− ξ2

4x2 dx

]
dξ

=
1√
λ

∫ ∞

α−1

ez{ξ−(α−1)}−
√
λξdξ

=
1√

λ(
√
λ− z)

e−(α−1)
√
λ.

Hence we get
L−1[p2](t) = q2(t; z).

Now we have shown, for example, for the fourth case where ν − 1/2 is not an
integer and |ν| > 3/2,

G
(ν)
a,b(t) =

1

αν+|ν|
1√
πt

∫ ∞

α−1

e−
ξ2

4t dξ

− 1

αν

1√
πt

N(ν)∑
j=1

Kν(αzν,j)

zν,jKν+1(zν,j)

∫ ∞

α−1

e−
ξ2

4t +zν,jξdξ

− 1

αν

1√
πt

∫ ∞

α−1

e−
ξ2

4t

[∫ ∞

0

L|ν|,α(x)

x
e−xξdx

]
dξ.

Finally, a simple change of variables from ξ to s given by ξ = (a − b)
√
2t/s gives

us the formula in Theorem 2.2(4). The other cases are simpler.
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4. The tail probability of the first hitting time

As an application of Theorem 2.2, we show the asymptotic behavior of P (τ
(ν)
a,b >

t) as t → ∞ when 0 < b < a. In Section 2 we showed when ν = 0 by the Tauberian
theorem. In [3], it is shown that, if ν < 0,

P (τ
(ν)
a,b > t) = cνt

ν{1 + o(1)}
holds for some constant cν . It should also be noted that, in [19], Yamazato has
discussed the tail probability in a general framework and that some classes of Bessel
processes were treated. We give an explicit expression for the constant cν .

To make the statement clear, we define two constants when ν−1/2 is an integer.
Put

σ
(ν)
1 =

(a− b)2|ν|

2|ν| .

Moreover we set σ
(ν)
2 = 0 if ν = ±1/2 and

σ
(ν)
2 = b2|ν|(2|ν| − 1)!

N(ν)∑
j=1

Kν(azν,j/b)

z
2|ν|+1
ν,j Kν+1(zν,j)

e
zν,j(a−b)

b

2|ν|−1∑
k=0

1

k!

{
−zν,j(a− b)

b

}k

,

if otherwise.

Theorem 4.1. Let 0 < b < a.
(1) If ν = 0,

P (τ
(0)
a,b > t) =

2 log(a/b)

log t
+ o

(
1

log t

)
.

(2) If ν > 0 and ν − 1/2 is an integer,

P (τ
(ν)
a,b > t) = 1−

(
b

a

)2ν

+

(
b

a

)2ν
√

2

π

(−1/2)ν−1/2

(ν − 1/2)!

{
σ
(ν)
1 +

(
a

b

)ν

σ
(ν)
2

}
1

tν

+O

(
1

tν+1

)
.

(3) If ν < 0 and ν − 1/2 is an integer,

P (τ
(ν)
a,b > t) =

√
2

π

(−1/2)−ν−1/2

(−ν − 1/2)!

{
σ
(ν)
1 +

(
b

a

)ν

σ
(ν)
2

}
tν +O(tν−1).

(4) If ν > 0 and ν − 1/2 is not an integer,

P (τ
(ν)
a,b > t) = 1−

(
b

a

)2ν

+

(
b3

2a

)ν{(
a

b

)ν

−
(
b

a

)ν}
1

Γ (1 + ν)tν
+ o

(
1

tν

)
.

(5) If ν < 0 and ν − 1/2 is not an integer,

P (τ
(ν)
a,b > t) =

(
2

ab

)ν{(
b

a

)ν

−
(
a

b

)ν}
tν

Γ (1− ν)
+ o(tν).

Remark 4.2. It seems that (4) and (5) also hold when ν − 1/2 is an integer, but we
do not pursue the identities.

Before proving this theorem, we give two lemmas. The following is the immediate
consequence of Lemma 4.3 as given in [3]. We let m(ν) be the greatest integer which
is not larger than |ν| − 1/2.
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Lemma 4.3. We assume that |ν| � 1/2. If ν − 1/2 is an integer, we have that,
for any 0 � m � m(ν)− 1,

(4.1) lim
t→∞

tm+1/2P (τ
(ν)
a,b > t) = 0.

If ν − 1/2 is not an integer, we have (4.1) for any 0 � m � m(ν).

For t > 0, ν �= 0 and z ∈ C− set

Ψ1(t) = 1−
∫ t

0

a− b√
2πs3

e−
(a−b)2

2s ds,

Ψ2(t; z) =

∫ t

0

a− b√
2πs3

e
− (a−b)2

2s + z(a−b)
√

t

b
√

s ds,

Ψ3(t; ν) =

∫ t

0

a− b√
2πs3

e−
(a−b)2

2s

[∫ ∞

0

L|ν|,a/b(x)

x
e
− x(a−b)

√
t

b
√

s dx

]
ds.

Theorem 2.2 implies that P (τ
(ν)
a,b > t) is represented by a linear combination of Ψi’s.

Changing variables from s to u by (a− b)/
√
s = u, we have

Ψ1(t) = 1−
√

2

π

∫ ∞

(a−b)/
√
t

e−
u2

2 du =

√
2

π

∫ (a−b)/
√
t

0

e−
u2

2 du,

Ψ2(t; z) =

√
2

π

∫ ∞

(a−b)/
√
t

e−
u2

2 + z
√

tu
b du,

Ψ3(t; ν) =

√
2

π
cos(πν)Ψ0

3 (t; ν),

where

Ψ0
3 (t; ν) =

∫ ∞

(a−b)/
√
t

e−
u2

2

[∫ ∞

0

L0
|ν|,a/b(x)

x
e−

x
√

tu
b dx

]
du

and L0
|ν|,a/b(x) = L|ν|,a/b(x)/ cos(πν). It is obvious that L0

|ν|,a/b is positive on

(0,∞) since Iν and Kν is increasing and decreasing on (0,∞), respectively. For an
integer m with 0 � m � m(ν), we set

β1(m) =
(a− b)2m+1

2m+ 1
,

β
(ν)
2 (m) =

N(ν)∑
j=1

Kν(azν,j/b)

zν,jKν+1(zν,j)
β(m; zν,j),

β
(ν)
3 (m) = (2m)! b2m+1

2m∑
k=0

1

k!

(
a− b

b

)k ∫ ∞

0

L|ν|,a/b(x)

x2m−k+2
e−

x(a−b)
b dx,

where

β(m; z) = −(2m)!

(
b

z

)2m+1

e
z(a−b)

b

2m∑
k=0

1

k!

{
−z(a− b)

b

}k

.

It follows from (3.7) and Lemma 3.1 that

L0
|ν|,a/b(x) = π

√
b

a
e(a/b−3)x{1 + o(1)}
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as x → ∞. Moreover, (3.15) yields that L0
|ν|,a/b(x)/x

2m−k+2 is asymptotically equal

to a constant multiple of 1/x2m−k+2−2|ν| for small x. Since

2m− k + 2− 2|ν| � 2m(ν) + 2− 2|ν| < 1,

we have that the following improper integral converges:∫ ∞

0

L|ν|,a/b(x)

x2m−k+2
e−

x(a−b)
b dx = cos(πν)

∫ ∞

0

L0
|ν|,a/b(x)

x2m−k+2
e−

x(a−b)
b dx.

Lemma 4.4. If |ν| � 1/2,

Ψ1(t) =

√
2

π

m(ν)∑
m=0

(−1/2)mβ1(m)

m!

1

tm+1/2
+O

(
1

tm(ν)+3/2

)
,(4.2)

Ψ2(t; z) =

√
2

π

m(ν)∑
m=0

(−1/2)mβ(m; z)

m!

1

tm+1/2
+O

(
1

tm(ν)+3/2

)
.(4.3)

If 0 < |ν| < 1/2,

(4.4) Ψ3(t; ν) =

(
b2

2

)|ν|{(
a

b

)|ν|
−
(
b

a

)|ν|}
1

Γ (1 + |ν|)t|ν| + o

(
1

t|ν|

)
.

If |ν| > 1/2 and ν − 1/2 is not an integer,

Ψ3(t; ν) =

√
2

π

m(ν)∑
m=0

(−1/2)mβ
(ν)
3 (m)

m!

1

tm+1/2

+

(
b2

2

)|ν|{(
a

b

)|ν|
−
(
b

a

)|ν|}
1

Γ (1 + |ν|)t|ν|

+ o

(
1

t|ν|

)
.

(4.5)

Proof. For x � 0 let

P (ν)(x) = e−x2/2 −
m(ν)∑
m=0

1

m!

(
−x2

2

)m

.

Note that

|P (ν)(x)| � x2m(ν)+2

2m(ν)+1{m(ν) + 1}! .

Hence we have

Ψ1(t) =

√
2

π

m(ν)∑
m=0

1

m!

(
−1

2

)m ∫ (a−b)/
√
t

0

u2mdu+

√
2

π

∫ (a−b)/
√
t

0

P (ν)(u)du,

which implies (4.2). Similarly, by the formula

(4.6)

∫ ∞

β

xne−μxdx = e−βμ
n∑

k=0

n!

k!

βk

μn−k+1

for β > 0 and Re(μ) > 0 (cf. [8], p. 340), we immediately get (4.3).
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For |ν| > 1/2 and if ν − 1/2 is not an integer, we have

Ψ0
3 (t; ν) =

m(ν)∑
m=0

1

m!

(
−1

2

)m ∫ ∞

(a−b)/
√
t

u2m

[∫ ∞

0

L0
|ν|,a/b(x)

x
e−

x
√

tu
b dx

]
du

+

∫ ∞

(a−b)/
√
t

P (ν)(u)

[∫ ∞

0

L0
|ν|,a/b(x)

x
e−

x
√

tu
b dx

]
du.

Then the first term of the right hand side is equal to

m(ν)∑
m=0

(−1/2)mβ
(ν)
3 (m)

cos(πν)m!

1

tm+1/2

since ∫ ∞

(a−b)/
√
t

u2m

[∫ ∞

0

L0
|ν|,a/b(x)

x
e−

x
√

tu
b dx

]
du =

β
(ν)
3 (m)

tm+1/2
,

which is obtained by the Fubini theorem and (4.6). We set

Ψ̃0
3 (t; ν) =

∫ ∞

(a−b)/
√
t

P (ν)(u)

[∫ ∞

0

L0
|ν|,a/b(x)

x
e−

x
√

tu
b dx

]
du.

Changing variables from x to y by x
√
tu/b = y, we have

Ψ̃0
3 (t; ν) =

∫ ∞

0

1[ a−b√
t
,∞

)(u)P (ν)(u)

[∫ ∞

0

L0
|ν|,a/b

(
by√
tu

)
e−y

y
dy

]
du,

where 1A is the indicator function of A. To see the convergence of t|ν|Ψ̃0
3 (t; ν) as

t → ∞, we need to dominate

(4.7) t|ν|1[ a−b√
t
,∞

)(u)|P (ν)(u)|L0
|ν|,a/b

(
by√
tu

)
e−y

y

by an integrable function which is independent of t. We have that (4.7) is equal to

(4.8) b2|ν|1[ a−b√
t
,∞

)(u)|P (ν)(u)|
L0
|ν|,a/b(by/

√
tu)

(by/
√
tu)2|ν|

y2|ν|−1u−2|ν|e−y.

Since
L0
|ν|,a/b(x)

x2|ν| e−(a/b−3)x

is bounded on (0,∞), we have that (4.8) is dominated by a constant multiple of

(4.9) 1[ a−b√
t
,∞

)(u)|P (ν)(u)|e
y(a−3b)√

tu
−y

y2|ν|−1u−2|ν|.

We have that, if a � 3b,

e
y(a−3b)√

tu
−y � e−y

and that, if a > 3b,

e
y(a−3b)√

tu
−y � e

y(a−3b)
a−b −y = e−

2b
a−by

for u � (a− b)/
√
t. Let

κ = min

{
1,

2b

a− b

}
and hence (4.9) is bounded by

(4.10) |P (ν)(u)|u−2|ν|y2|ν|−1e−κy.
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To see that |P (ν)(u)|u−2|ν| is integrable on (0,∞), we note that

|P (ν)(x)| � C4min{1, x2/2}x2m(ν)

for some constant C4. Then we get

|P (ν)(x)|u−2|ν| �
{
C4u

2m(ν)−2|ν|+2 if 0 < u �
√
2,

C4u
2m(ν)−2|ν| if u >

√
2.

Since

2m(ν)− 2|ν|+ 2 > 2

(
|ν| − 3

2

)
− 2|ν|+ 2 > −1,

2m(ν)− 2|ν| < 2

(
|ν| − 1

2

)
− 2|ν| < −1,

we see that the function given by (4.10) is integrable on (0,∞)× (0,∞). Applying
the dominated convergence theorem, the Fubini theorem and (3.15), we have that

t|ν|Ψ̃0
3 (t; ν) tends to

(4.11)
b2|ν|(a/b)|ν|{1− (a/b)−2|ν|}

22|ν|−1Γ (|ν|)Γ (|ν|+ 1)

∫ ∞

0

P (ν)(u)u−2|ν|du

∫ ∞

0

e−yy2|ν|−1dy

as t → ∞. Since∫ ∞

0

e−yy2|ν|−1dy = Γ (2|ν|) = 22|ν|−1

√
π

Γ (|ν|)Γ
(
1

2
+ |ν|

)
(cf. [15], p. 3), (4.11) coincides with

b2|ν|√
π

{(
a

b

)|ν|
−
(
a

b

)−|ν|}
1

Γ (1 + |ν|)Γ
(
1

2
+ |ν|

)∫ ∞

0

P (ν)(u)u−2|ν|du.

Changing variables from u to v by v = u2/2, we have∫ ∞

0

P (ν)(u)u−2|ν|du =
1

2|ν|+1/2

∫ ∞

0

1

v|ν|+1/2

{
e−v −

m(ν)∑
m=0

(−1)m

m!
vm

}
dv,

which is equal to

1

2|ν|+1/2
Γ

(
1

2
− |ν|

)
(cf. [8], p. 361). The formula

Γ

(
1

2
+ |ν|

)
Γ

(
1

2
− |ν|

)
=

π

cos(πν)

(cf. [15], p. 3) immediately yields

Ψ̃0
3 (t; ν) =

√
π

2

1

cos(πν)

(
b2

2

)|ν|{(
a

b

)|ν|
−
(
b

a

)|ν|}
1

Γ (1 + |ν|)t|ν| + o

(
1

t|ν|

)
and hence, we have (4.5).

When 0 < |ν| < 1/2, it is enough to consider Ψ0
3 (t; ν) directly. We can easily

deduce (4.4) in the same way as Ψ̃0
3 (t; ν) for |ν| > 1/2. The calculation is left to

the reader. �
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We are now ready to prove Theorem 4.1. We only need to show Theorem 4.1 in
the case of ν �= 0.

For simplicity we set c = b/a and

w
(ν)
j =

Kν(azν,j/b)

zν,jKν+1(zν,j)

for 1 � j � N(ν). We first consider the case when ν − 1/2 is not an integer and
ν < 0. In this case, if ν < −3/2, Theorem 2.2 gives

P (τ
(ν)
a,b > t) = Ψ1(t) + cν

N(ν)∑
j=1

w
(ν)
j Ψ2(t; zν,j) + cνΨ3(t; ν).

Note that m(ν) + 1/2 < |ν| < m(ν) + 3/2. It follows from Lemma 4.4 that

P (τ
(ν)
a,b > t) =

√
2

π

m(ν)∑
m=0

(−1/2)m

m! tm+1/2
{β1(m) + cνβ

(ν)
2 (m) + cνβ

(ν)
3 (m)}

+ cν
(
b2

2

)−ν

(cν − c−ν)
tν

Γ (1− ν)
+ o(tν).

By virtue of Lemma 4.3, we have that, for any 0 � m � m(ν),

(4.12) β1(m) + cνβ
(ν)
2 (m) + cνβ

(ν)
3 (m) = 0.

This immediately yields

(4.13) P (τ
(ν)
a,b > t) =

(
2

ab

)ν

(cν − c−ν)
tν

Γ (1− ν)
+ o(tν).

If −3/2 < ν < 0, Theorem 2.2 gives

P (τ
(ν)
a,b > t) = Ψ1(t) + cνΨ3(t; ν).

In the case of −3/2 < ν < −1/2, we have, by Lemma 4.4, that

P (τ
(ν)
a,b > t) =

√
2

πt
{β1(0) + cνβ

(ν)
3 (0)}+

(
2

ab

)ν

(cν − c−ν)
tν

Γ (1− ν)
+ o(tν).

Lemma 4.3 yields

β1(0) + cνβ
(ν)
3 (0) = 0,

and hence we have (4.13). In the case of −1/2 < ν < 0, Lemma 4.4 gives (4.13)
since Ψ1(t) is of order 1/

√
t. We therefore obtain Theorem 4.1(5).

We next consider the case when ν − 1/2 is not an integer and ν > 0. If ν > 3/2,
it follows from Theorem 2.2 that

P (τ
(ν)
a,b > t) = 1− c2ν + c2νΨ1(t) + cν

N(ν)∑
j=1

w
(ν)
j Ψ2(t; zν,j) + cνΨ3(t; ν),

which is equal to

1− c2ν +

√
2

π

m(ν)∑
m=0

(−1/2)mc2ν

m! tm+1/2
{β1(m) + c−νβ

(ν)
2 (m) + c−νβ

(ν)
3 (m)}

+ cν
(
b2

2

)ν

(c−ν − cν)
1

Γ (1 + ν)tν
+O

(
1

tν

)
.
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We have that (4.12) is equivalent to

β1(m) + c−νβ
(−ν)
2 (m) + c−νβ

(−ν)
3 (m) = 0

for 0 � m � m(ν). Since z−ν,j is regarded as zν,j and K−ν+1(z−ν,j) = Kν+1(zν,j)

for 1 � j � N(ν), we obtain that β
(ν)
2 (m) = β

(−ν)
2 (m). Moreover it is trivial that

β
(ν)
3 (m) = β

(−ν)
3 (m), and hence we have that, for 0 � m � m(ν),

β1(m) + c−νβ
(ν)
2 (m) + c−νβ

(ν)
3 (m) = 0.

This immediately yields

(4.14) P (τ
(ν)
a,b > t) = 1− c2ν +

(
b3

2a

)ν

(c−ν − cν)
1

Γ (1 + ν)tν
+O

(
1

tν

)
.

In the other cases, (4.14) can be derived in a similar way. We have proven Theorem
4.1(4).

We lastly consider the case when ν − 1/2 is an integer. As in the case when
ν − 1/2 is not an integer, we can deduce the asymptotic behavior for ν > 0 from
that for ν < 0. Hence we shall treat only the case of ν < 0. If ν �= −1/2, Theorem
2.2 and Lemma 4.4 give

P (τ
(ν)
a,b > t) = Ψ1(t) + cν

N(ν)∑
j=1

w
(ν)
j Ψ2(t; zν,j)

=

√
2

π

m(ν)∑
m=0

(−1/2)m

m! tm+1/2
{β1(m) + cνβ

(ν)
2 (m)}+O

(
1

tm(ν)+3/2

)
.

Note that m(ν) = −ν − 1/2 � 1. It follows from Lemma 4.3 that

P (τ
(ν)
a,b > t) =

√
2

π

(−1/2)m(ν)

{m(ν)}! tm(ν)+1/2
{β1(m(ν)) + cνβ

(ν)
2 (m(ν))}+O(tν−1)

=

√
2

π

(−1/2)−ν−1/2

(−ν − 1/2)!
{σ(ν)

1 + cνσ
(ν)
2 }tν +O(tν−1).

Since

P (τ
(ν)
a,b > t) = Ψ1(t) =

√
2

πt
(a− b) +O

(
1

t3/2

)
if ν = −1/2, we obtain Theorem 4.1(3). We have proven Theorem 4.1.
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2002. MR1912205 (2003g:60001)

[2] T. Byczkowski, P. Grazyk and A. Stós, Poisson kernels of half-spaces in real hyperbolic space,
Rev. Mat. Iberoam. 23 (2007), 85–126. MR2351127 (2008h:60315)

[3] T. Byczkowski and M. Ryznar, Hitting distribution of geometric Brownian motion, Studia
Math. 173 (2006), 19–38. MR2204460 (2007e:60082)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1912205
http://www.ams.org/mathscinet-getitem?mr=1912205
http://www.ams.org/mathscinet-getitem?mr=2351127
http://www.ams.org/mathscinet-getitem?mr=2351127
http://www.ams.org/mathscinet-getitem?mr=2204460
http://www.ams.org/mathscinet-getitem?mr=2204460


HITTING TIMES OF BESSEL PROCESSES 5257

[4] Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion
in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103
(1962), 434–450. MR0143257 (26:816)
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