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The Probability of a Subspace Swap In the SVD
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where

When constructing n from Re[n] and Irn[n], the only theoret
ical constraint is that R ll = Ri1 > 0, R 22 = Rf2 > 0, and
R 12 = Rf1' In our examples we shall assume

This is the standard complex white noise. That is, R y y = a 21.
The first step in modal analysis is to argue for the approxi

mate rank deficiency of the Hankel data matrix

II. ANALYSIS OF THRESHOLD

SVD methods are used to identify the "mode parameters,"
fl, in the signal plus noise model

(I)

(3)

Y = x(fl) + n.

a 2

R ll = R 22 =-1
2

R 12 = R 21 = 0.

R ll = E[Re[n]Re[nf]

R 12 = E[Re[n]Irn[n]T]

R 21 = Rf2

R 22 = E[Irn[n]Irn[n]T].

Each of the vectors Y,x, and n is an element of eNx1.
(Notation: en x m refers to a matrix of size n x m of complex
numbers.) For example, x(fl) = (X1,X2,X3, ... ,XN)T, with
Xn E e. The modal signal x(fl) can be modeled as a sum of
damped sinusoids. or equivalently as the deterministic impulse
response of an ARMA system. The ARMA system can in tum
be modeled by its AR and MA coefficients, its poles and zeros,
its poles and residues, and so on. Typically, the model for x(fl)
is the separable model x(fl) = H(fl1)fl2, where flT = (fl[fln·

The measurement Y = Y» + is, is complex, with Yr =
Re[x] + Re[n] and Y: = Im[x] + Im[n]. If the additive noise
is assumed to be zero mean, the first two moments of Y are

Ey = x = Re[x] + jIm[x]

R y y = E[y - x][y - x]* = R n n = E[nn*]

= E(Re[n] + jIrn[n]) (Re[n]T - jIrn[n]T)

= R ll + R 22 + j(R21 - R 12) (2)

I. INTRODUCTION

T HE singular value decomposition (SVD) is used exten
sively in high resolution parameter estimation methods.

The high resolution of SVD-based methods can be attributed
to the splitting of the measurement space into an estimated
signal subspace and an orthogonal subspace. However, the
performance of SVD methods degrades rapidly when the
signal-to-noise ratio (SNR) falls below a threshold SNR. The
catastrophic drop in performance is referred to as the threshold
effect. Tufts, Kot, and Vaccaro (TKV) [I], [2] associated the
threshold effect with the probability that the measured data is
better approximated by some components of the orthogonal
subspace than by some components of the signal subspace.
When this happens, we say a subspace swap has occurred.
Our key theoretical result is the characteristic function for a
random variable whose probability of exceeding zero bounds
the probability of threshold breakdown.

In this paper, we revisit the problem first posed by TKV,
namely, the analytical study of threshold effects in linear
prediction methods that use the SVD for rank reduction. We
improve the results of TKV in two ways:

I) We lower bound the probability of a subspace swap by
defining an event that is a subset of the event that a
subspace swap occurs. TKV approximated the event
that a subspace swap occurs.

2) We compute the exact characteristic function of the
random variable that determines our bounding event.
TKV approximated the random variable that determines
their approximating event by a normal random variable.

With these improvements, we are able to follow the philosophy
of TKV and more accurately predict threshold than was
previously possible.

Abstract- In this paper we extend the work of Tufts, Kot,
and Vaccaro (TKV) to improve the analytical characterization
of threshold breakdown in SVD methods. Our results sharpen
the TKV results by lower bounding the probability of a subspace
swap in the SVD. Our key theoretical result is the characteristic
function for a random variable whose probability of exceeding
zero bounds the probability of a threshold breakdown.

where the overfitting parameter m exceeds p, the dimension
of the subspace (X) that contains x(fl). The parameter M =
N - m+ I is the number of residuals generated from the
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equation Ya = u. The Hankel structure of Y produces the
representation <UO>

(5)

where D n is a matrix of zeros and ones, with the ones arrayed
on the nth super antidiagonal:

(6)

Fig. I. Signal and orthogonal subspaces.

Because the signal x is modal, its corresponding signal matrix
X has a rank deficient SVD

The Hankel data matrix Y contains the signal and noise

Y = X + N; X, N E eM x "'.

X = VL;sV*

(7)

(8)

£p and £0 are the energies resolved into the respective sub
spaces, and the £pi and £Oi are the energies resolved along the
components of (Vp ) and (Vo).

.In modal analysis, the projections Pup and P u 0 are
unknown, but the structure of the orthogonal subspace (Vo)
is known to be

(13)

A=

(14)

(12)(VO) = (A)

In the noise-free case, £p = tr XxX and £0 = 0, but as
the noise increases, £0 increases until a large fraction of the
resolved energy lies in (Vo). It was the insight of TKV to
recognize that at some point, one or more modes in (Vo)
will actually resolve more energy than one or more modes
in (Vp ) . When this happens, important modal information
will be swapped between subspaces, making it unavailable
for retrieval by a subspace method that uses either the orthog
onal subspace or the signal subspace. TKV argued that this

where A E eMx(M-p) is the prediction error matrix de
termined by the prediction error polynomial (PEP) A(z)
L:f=oaiz- i:

The zeros of A(z) are the mode parameters Zn. This observa
tion leads to a host of techniques for identifying the prediction
error polynomial (PEP) A(z) and its roots Zn [3]-[7]. In all
of these procedures, the objective is to identify a subspace
(A.) that is close enough to the subspace (A) such that the
corresponding PEP's A(z) and A(z) have nearly identical
roots. However, this will clearly be impossible if the noise
matrix N is so large that Y lies far from the true signal
subspace (Vp ) .

One way to measure the distance that Y lies from the
subspace (Vp ) is to compare its energy in (Vp ) and (Uu):

where the matrices V, L;s, V* are defined as follows:

V E e M xM: V*V = I; V E e mxm: V*V = I

" Ee M xm. L; = [L;p 0].
LJ s • s 0 0'

L;p=diag(0"1'0"2""'O"p); 0"1~0"2~"'~O"P' (9)

The unitary matrix V may be partitioned into V = [u, .. ,up I
up+! ... UMJ = [V p I V 0J, where the "signal subspace"
(Vp ) contains X and the "orthogonal subspace" completes
e M xM. This is illustrated in Fig. I. Now, of course, the data
matrix Y will not lie entirely within the signal subspace (Vp ) ,

because it consists of signal plus noise, as illustrated in Fig. I.
However, the projections onto (Vp) and (V0) resolve Y into
its "signal" and "orthogonal" components, as illustrated in the
figure. These are, in fact, least squares estimates of the signal
matrix X and the noise. matrix N:

x = PUpY = VpV;Y

N=PuoY=VoV~Y

Y = X + N = (Pup + PUo)Y. (10)

These projections resolve the energy of the data matrix Y
into two components:

p

e, = tr Y*PupY = L£pi; e; = U;YY*Ui, 1:S .-: p
i=1

M

£0 = tr Y*Pu oY = L £Oi; £Oi = u;YY*u;,
i=p+l

p+l:Si:SM

where

£ = tr Y*Y = tr Y*(Pu p + Puo)Y = £p +£0 (II)

[I
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situation characterizes the performance breakdown associated
with threshold effects in modal analysis.

We shall call the situation described above a subspace swap.
TKV approximated a swap as the event that £0, the total energy
in the orthogonal subspace, exceeds 2:f=p-q+l £pi, the total
energy in q of the a priori least dominant signal modes. But
this condition is neither necessary nor sufficient for a swap.
On the other hand, the event that the average energy in (Uo),
namely, £o/(M - p), exceeds the average energy in (Up),
namely, £plp, is sufficient (but not necessary). Therefore, the
event

characterizes a particular swap event. This event is a subset of
the event that one or more modes in (Uo) resolves more energy
than one or more modes in (Up). Why? Because at least one
mode in £0 resolves more energy than to and at least one
mode in £p resolves less energy than tp . That is, there exists
at least one pair (i, j) such that £Oi > £pi whenever condition
(15) holds. An alternative characterization of a subspace swap
is to > £PP' where £pp is the energy resolved into the a priori
least dominant mode up. This alternative characterization is
also a sufficient condition for a swap because if it holds then
there exists at least one mode u, in the orthogonal subspace
that resolves more energy than the a priori least dominant
mode up.

(20)

- £0 £p
£0= -- > -=£p

M-p p
(15)

By using our representation for Y, we may write tr Y*WY
(or tr y*WY) as

N N

tr Y*WY = L LYiYjtr DiWDj = y*Sy (18)
i=l j=l

where S = S* is the Hermitian matrix

S = {Sij} = {tr DiWDj} = A + jB = AT - jBT = S*

A = AT; B = _BT. (19)

The quadratic form y*Sy is fundamental to our analysis of
subspace swap. It can be further simplified by noting that
the real, Hermitian symmetric, quadratic form y*Sy may be
written as the real symmetric quadratic form

c = y*Sy = (Yr - jYif(A + jB)(Yr + jYi)

= (y; yf) [~ -:] (~:) = zTTz

where

z = (y; yf); T = [~ n: J.
This simplification allows us to analyze the Hermitian
quadratic form y*Sy as the real quadratic form zTTz. The

distribution of z = [~:] is multivariate normal N[m, R]

when y is multivariate normal. Its two moments are

where D is a diagonal matrix, not necessarily nonsingular, of
real values.

The determinant of the matrix (R -1 +2jwT) can be written
as

(24)

(23)

[R
- 1 . l> Det[pTR - 1p + 2jwpTTP]

Det + 2JwT - Det[PTP]

Det[I + 2jwD]
Det[PTP]

_ I1~:'~k(D) (1 + 2jwdid
- Det[pTp]

m = Ez = [Re[x]]
Im[x]

R = E [~~f:l] [Re[nf Im[n]T] =

IPc(jw) = E[exp( -jwc)]

IPc(jw) = Joo ~(det R)-1/2 exp{-jwzTTz
-00 (27r)'

- ~[(z - mfR-1(z - m)]}dz. (22)
2

Since R -1 is positive definite and T is a real symmetric ma
trix, we know from the simultaneous diagonalization theorem
[8] that there exits a nonsingular matrix P such that

p T R - 1P = I

pTTP = D

[
R ll R 12 ] . (21)
R 21 R 22

With this multivariate distribution, we may write the charac
teristic function of c = y*Sy = zTTz as

P[A] 2: P[C] = P[to > t pp ] = P[tr Y*WY > 0] (17)

where W = (M - p)-lPu o - PUp'

III. PROBABILITY BOUND

Let A be the event that a subspace swap occurs; B the event
that the average energy in the orthogonal subspace exceeds
the average energy in the signal subspace; and C the event
that the average energy in the orthogonal subspace exceeds
the energy resolved along the a priori least dominant signal
mode. Then, we know that A :J B and A :J C, and that
P[A] > P[B] and P[A] > P[C]. When the signal subspace
eigenvalues are clustered, it is unreasonable to associate a
subspace swap with the event C. Why? Because to isolate
£pp as the only component that can be exceeded is to ignore
the probability that one or more of many roughly equal signal
subspace energies can be exceeded, and the probability P[C]
underestimates P[A]. Therefore, when the eigenvalues of the
signal subspace are clustered, we choose the event B as the
better bounding event. The probability of a subspace swap is
bounded below by

P[A] 2: P[B] = P[to > t p ] = P[tr y*WY > 0] (16)

where W = (M - p)-lPu o - p-1Pup' On the other hand,
when the signal subspace eigenvalues are dispersed, it is
reasonable to associate a subspace swap with the event C.
Why? Because in this case it is more likely that the average
energy in the orthogonal subspace will exceed £pp than t p .

Therefore, we choose the event C as the better bounding event.
Then the probability of a subspace swap is bounded below by
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This constitutes an exact statistical characterization of the
subspace swap events Band C.

For numerical computation of probabilities, we simply in
verse Fourier-transform the characteristic function for c:

(32)

(33)f(c) = p-l[tPc(jw)].

and "Yi = (QTm}, is a coefficient of m in the orthogonal
coordinates Q.

The characteristic function for C tells the whole story: The
random variable c, whose threshold crossing of zero constitutes
a subspace swap, is distributed as the sum of 2N independent
random variables Ci. Each of these random variables, Ci, is
a chi-squared random variable with noncentrality parameter
2"Y1 / 0'2, scaled by x, ~. That is

2N 2N Ai0'2 I

c= LCi = L-2-ci
i=1 i=1

I 2 (2"Yl)Ci:Xl ~ .tP ( 'w) = [det[R-1 + 2jwTJ-1] 1/2
c J det[R]

x exp {-~mTR-lm+ ~mTR-l
2 2

x (R-1 + 2jWT)-IR-lm} (26)

This makes the integral of (22) a normal integral, meaning
that the characteristic function is

Since the dii are real, this determinant can never equal zero,
and therefore (R-1 + 2jwT) has an inverse. By completing
the square, we can write the exponent of (22) as

- ~ [z - (R-1 + 2jwT)-IR-lmf(R-1 + 2jwT)

1x [z - (R-1 + 2jwT)-IR-1m] - _mT R - lm

2

+ ~mTR-l(R-l + 2jwT)-IR- lm. (25)
2

where

or upon simplification

(34)

sk=ejfsk+ej4io~k, k=I,2, ... ,25.

The observation is a noisy version of Sk, namely Yk = sk+nk,
where the noise is assumed to be the standard normal complex
white noise with independent real and imaginary components
of respective variances 0'2/2. The signal-to-noise ratio is
computed from the ratio of the total signal power to the total
noise power:

In order to compute P [to > t p ] we simply replace W by W
in (17).

Then, we numerically integrate this density for C > 0 to obtain

IV. RESULTS

In this section, we apply the theoretical results derived above
to an example presented by TKV (Example 2, pg. 312 in
[2]). In this example, the modal signal is the sum of two
exponentials:

(29)

[
1 ] 1/2

tPc(jw) = det[1 + 2jwRT]

x exp {_~mTR-l[I - (I + 2jWRT)-I]m}.

(27)

When R y y = 0'
21 (see (3)), then R = ~ I. The characteristic

function is then

Let us suppose the symmetric matrix T has eigenvalue de
composition given by

Then, in the new coordinates, the characteristic function is

(
Total Signal power) ( 2 )

SNR = 10 log 10 N 0'2 = 10 IOg10 0'2 .

(35)

tPc(jw) = [2N 1. 2 ]1/2
Ili=1 (1 + JWO' Ai)

x exp {-jW~ AnI }£;r (1+ jw0'2 Ad
2N

= II tP C i (jw) (30)
i=1

where

[
1 ] 1/2 { A 2 }tPc(jw) = exp -jw ,"Y,

'(I+jw0'2'\i) (l+jw0'2 Ai)
(31)

This is also the per sample SNR or the input SNR.
We use an overfitting parameter, m = 7, to form the

necessary Hankel matrices of size 19 x 7. Since the sig
nal components are orthogonal with unit powers, the signal
subspace eigenvalues are clustered. Therefore, we use the
condition that to be greater than t; to bound the probability
of a subspace swap. Using (30), we generate samples of the
characteristic function at a sufficiently high sampling rate.
These samples are inverted using an FFf to get samples of the
probability density function. We then integrate the positive tail
of the probability density function to get the desired bounding
probability in accordance with (33).

In Fig. 2, we present the lower bound of the probability of a
subspace swap as a function of the SNR. For comparison, we
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Fig. 2, Comparison of swap probabilities computed using the exact density
and the normal approximation.

where

also present the approximate probability of a subspace swap,
which is computed by assuming that the quadratic form in
(20) is normally distributed. The mean and the variance of
the approximating normal random variable are computed by
noting that the random variable e (see 32) is the sum of 2N
random variables c.. The mean and variance of each of the
ei's is

O'} total variance

1802

0'5 variance when a swap has occurred = -3-

P, probability of a subspace swap

O'~R variance given by the Cramer-Rao Bound.

Using numerical experiments, TKV were able to show that
the relationship in (38) well models the threshold effect. That
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Fig. 4, Comparison of the sufficient conditions for a subspace swap: Event
B-average energy in orthogonal subspace exceeds average energy in signal
subspace; Event C-average energy in orthogonal subspace exceeds energy
in a priori least dominant signal mode,

result is presented in Fig. 3. We use the bounding probability
from our analysis in place of the approximate probability to
compute the total variance in (38), and the resulting curve
is presented in Fig. 3, superimposed on the results of TKV.
We note that the total variance computed using the bounding
probability can be used to predict the onset of threshold for
the identification of both modes.

We argued in Section III that the appropriate bounding event
for this problem is the one that compares the average energy
in the orthogonal subspace to the average energy in the signal
subspace (event B). In Fig. 4, we compare the probabilities
computed using event B and event C. We note that, as
expected, the probability computed using event B produces
a tighter bound than the probability computed using event C.

Changing the overfit parameter m has an impact on the
probability of a subspace swap. For example, if tti is decreased,

(37)

(36)

Therefore, the mean and variance of e are

2N 2

E[e] = LAn? + ~ Ai
;=1

1 2N

Var[e] = "2 L[0'2Ah? + 0'4 An
i=1

The normal approximation presented in Fig. 2 will be different
from the approximation obtained by TKV because they use an
approximate condition for a subspace swap, while we use a
sufficient condition. We note that the true density provides a
tighter lower bound than the normal approximation.

In their analysis, TKV defined the total variance, O'}, for
estimating the modal parameters in terms of the Cramer-Rao
bounds and swap probability as

O'} = 0'5 (Ps) + O'~R(1 - Ps) (38)
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that use the SVD for rank reduction. We have defined two
sufficient conditions for the onset of a subspace swap, as
opposed to an approximate condition, and demonstrated the
conditions under which each is applicable. We have computed
the exact distributions, as opposed to normal approximations,
for these sufficient conditions and as a result we have been
able to lower bound the probability of a subspace swap.
Finally, we have validated that the total variance, as defined
in (38)-though not a lower bound theoretically--ean be used
to explain the onset of threshold in subspace methods. Future
research is centered around using these results to study the
order selection problem.

r-
.5

~
'l!
]
l! loo
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.. Experimental

- 'Theoretical
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SNR

Fig. 7. Comparison of the square root of the total variance (38) with
experimental results.

Fig. 6. Comparison of the sufficient conditions for a subspace swap: Event
B-average energy in orthogonal subspace exceeds average energy in signal
subspace; Event C-average energy in orthogonal subspace exceeds energy
in a priori least dominant signal mode.

Fig. 5. Impact of changing the overfit parameter III.

In this case, the signal components are nearly colinear; there
fore the signal subspace resolves signal energy into a dominant
component along a principal eigenvector and a subdominant
component along a perpendicular eigenvector. Therefore, we
bound the probability of a subspace swap with the condition
to > Epp (event C). The observation is a noisy version of Sb

namely Yk = Sk +nk where the noise nk is assumed to be the
standard normal complex white noise with independent real
and imaginary components of respective variances (J2/2.

Once again, we use an overfitting parameter, m = 7, to form
the necessary Hankel matrices of size 19 x 7 and generate the
bounding probabilities as a function of SNR. These bounding
probabilities are plotted as a function of SNR in Fig. 6. We
conclude that, as claimed, event C produces a tighter-bounding
probability than is obtained using event B. Finally, the total
variance for estimating the angle of the mode was computed
using (38), and the resulting curve is presented in Fig. 7. We
also present, in Fig. 7, the standard deviation of the error in
experimentally estimating the angle of the mode. Note the
experimental results follow the theoretical curve, suggesting
that the bounding probabilities can be used to predict the onset
of threshold in performance.

then M = N - m + 1 is increased, and the energy in the
orthogonal subspace is distributed over a larger number of
modes. This distribution of energy tends to reduce the chance
of the energy in one of those modes exceeding the energy in
the signal subspace. We conclude that decreasing m tends to
reduce the probability of a subspace swap and this is illustrated
in Fig. 5.

Next, we analyze an example where the signal subspace
singular values are dispersed. In this example, the modal signal
is a sum of two exponentials and is given by

Sk = e j w(O.5)k + e j w(O.52)k, k = 1,2 ... ,25.

V. CONCLUSION

We have extended the work of Tufts, Kot, and Vaccaro for
the analysis of threshold effects in linear prediction methods
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