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THE PROBABILITY THAT A SLIGHTLY PERTURBED
NUMERICAL ANALYSIS PROBLEM IS DIFFICULT

PETER BÜRGISSER, FELIPE CUCKER, AND MARTIN LOTZ

Abstract. We prove a general theorem providing smoothed analysis esti-
mates for conic condition numbers of problems of numerical analysis. Our
probability estimates depend only on geometric invariants of the corresponding
sets of ill-posed inputs. Several applications to linear and polynomial equation
solving show that the estimates obtained in this way are easy to derive and
quite accurate. The main theorem is based on a volume estimate of ε-tubular
neighborhoods around a real algebraic subvariety of a sphere, intersected with
a spherical disk of radius σ. Besides ε and σ, this bound depends only on the
dimension of the sphere and on the degree of the defining equations.

1. Introduction

In a seminal article [13] J. Demmel suggested that “to investigate the probability
that a numerical analysis problem is difficult, we need to do three things:

(1) Choose a measure of difficulty,
(2) Choose a probability distribution on the set of problems,
(3) Compute the distribution of the measure of difficulty induced by the dis-

tribution on the set of problems.”
Then, for the measure of difficulty, Demmel proposed the condition number. This is
a positive number which, roughly speaking, measures the sensitivity of the output
to small perturbations of the input. It depends only on the input data and the
function being computed. Condition numbers occur in endless instances of round-
off analysis. They also appear as a parameter in complexity bounds for a variety
of iterative algorithms.

The main results in [13] carry out an analysis as sketched in (1)–(3) above for
the condition number C of several problems. This analysis exhibits bounds on
the tail of the distribution of C (a), showing that it is unlikely that C (a) will be
large. From these bounds one can obtain, using standard methods in probability
theory, bounds on the expected value of ln(C (a)), estimating the average loss of
precision and average running time for algorithms solving the considered problem.
Demmel’s results thus yield prime instances of average-case analysis of algorithms
in numerical analysis.
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While average-case analysis undoubtedly has advantages over worst-case analy-
sis, it is not itself without shortcomings, the most noticeable being the arbitrariness
of the selected probability distribution on the set of inputs. To find a way out of
these shortcomings, D. Spielman and S.-H. Teng [31, §3] proposed a new form of
analysis that arguably blends the best of both worst-case and average-case. The
idea is to replace showing that

“it is unlikely that C (a) will be large”
by showing that

“for all a and all slight random perturbations ∆a, it is unlikely that
C (a + ∆a) will be large.”

A survey of this approach, called smoothed analysis, can be found in [31, 34]. If
D(c, σ) denotes a probability distribution centered at c ∈ Rp+1 with covariance
matrix σ2idp+1, and E denotes mathematical expectation, we may summarize the
objects of study of worst-case, average-case, and smoothed analyses, for a function
ψ : Rp+1 → R, in the following table.

worst-case analysis average-case analysis smoothed analysis

sup
a∈Rp+1

ψ(a) E
a∈D(0,σ)

ψ(a) sup
a∈Rp+1

E
z∈D(a,σ)

ψ(z)

A remarkable feature of [13] is that the average-case analysis performed there for
a variety of problems is not done with ad-hoc arguments adapted to the problem
considered. Instead, these applications are all derived from a single result bounding
the tail of the distribution of C (a) in terms of geometric invariants (degree and
dimension) of the set of ill-posed inputs of the problem for which C is a condition
number.

A first goal of this paper is to extend the results of [13] from average-case to
smoothed analysis. We will, however, also prove average-case bounds. Demmel’s
paper dealt with both complex and real problems. For complex problems he pro-
vided complete proofs. For real problems, Demmel’s bounds rely on an unpublished
(and apparently unavailable) result by A. Ocneanu on the volumes of tubes around
real algebraic varieties. A second goal of this paper is to prove a result akin to
Ocneanu’s (Theorem 1.2). We are not the first to do so. In [45], R. Wongkew
gave a bound for the volume of tubes around real algebraic varieties. A number
of constants in his bounds, however, are not explicit and the only thing we know
about them is that they are independent of the variety.

1.1. Statement of the main result. We assume our data space is R
p+1, endowed

with a scalar product 〈 , 〉. By a semi-algebraic cone Σ ⊆ Rp+1 we understand a
semi-algebraic set Σ �= {0} that is closed under multiplication with positive scalars.
We say that C is a conic condition number if there exists a semi-algebraic cone
Σ ⊆ Rp+1, the set of ill-posed inputs, such that, for all data a ∈ Rp+1 \ {0},

C (a) =
‖a‖

dist(a, Σ)
,

where ‖ ‖ and dist are the norm and distance induced by 〈 , 〉.
The best known condition number is that used for matrix inversion and linear

equation solving. For a square matrix A it takes the form κ(A) = ‖A‖‖A−1‖
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Figure 1. Three distances

and was independently introduced by H. Goldstine and J. von Neumann [41] and
A. Turing [40]. Strictly speaking, κ(A) is not conic since the operator norm ‖ ‖
is not induced by a scalar product. Replacing this norm by the Frobenius norm
‖ ‖F yields the (commonly considered) version κF (A) := ‖A‖F ‖A−1‖ of κ(A). The
Condition Number Theorem of C. Eckart and G. Young [15] then states that κF (A)
is conic, with Σ the set of singular matrices. Other examples can be found in [10],
where a certain property (related with the so-called level-2 condition numbers) is
proved for conic condition numbers. Furthermore, it is argued by Demmel in [12]
that the condition numbers for many problems can be bounded by conic ones.

Note that, since Σ is a cone, for all λ > 0, C (a) = C (λa). Hence, we may restrict
to data a lying in the sphere Sp := {x ∈ R

p+1 | ‖x‖ = 1}. If we set Σs := Σ∪ (−Σ),
then the conic condition number C can be estimated as

(1) C (a) ≤ ‖a‖
dist(a, Σs)

=
1

dP(a, Σs ∩ Sp)
,

where dP denotes the projective distance in Sp, which is defined as dP(x, y) =
sin dR(x, y) with dR being the Riemannian (or angular) distance in Sp (cf. Figure 1).

Let BP(a, σ) denote the open ball of radius σ, with respect to dP, around a in
Sp. Note that

BP(a, σ) = BR(a, arcsin σ) ∪ BR(−a, arcsinσ),

where BR denotes a ball with respect to the angular distance. We will endow
BP(a, σ) with the uniform probability measure. Moreover, let

Op := volp(Sp) =
2π

p+1
2

Γ
(

p+1
2

)
denote the p-dimensional volume of the sphere Sp. Our main result is the following.

Theorem 1.1. Let C be a conic condition number with a set of ill-posed inputs
Σ. Assume that Σ ∩ Sp ⊆ W where W ⊆ Sp is the zero set in Sp of homogeneous
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polynomials of degree at most d ≥ 1 and W �= Sp. Then, for all a ∈ Sp, all
σ ∈ (0, 1], and all t ≥ 1,

Prob
z∈BP(a,σ)

{C (z) ≥ t} ≤ 2
p−1∑
k=1

p

k
(2d)k

(
1 +

1
tσ

)p−k (
1
tσ

)k

+
pOp

Op−1
(2d)p

(
1
tσ

)p

and, for all σ ∈ (0, 1],

sup
a∈Sp

E
z∈BP(a,σ)

(lnC (z)) ≤ 2 ln p + 2 ln d + 2 ln
1
σ

+ 4.7.

In particular, for all t ≥ 1 (take σ = 1),

Prob
z∈Sp

{C (z) ≥ t} ≤ 2
p−1∑
k=1

p

k
(2d)k

(
1 +

1
t

)p−k 1
tk

+
pOp

Op−1
(2d)p 1

tp

and
E

z∈Sp
(lnC (z)) ≤ 2 ln p + 2 ln d + 4.7.

The main idea towards the proof of Theorem 1.1 is to reformulate the probability
distribution of a conic condition number as a geometric problem in a sphere. We
next see how. For a measurable subset V of Sp we denote by volp(V ) the p-
dimensional volume of V . If −V = V we define the ε-neighborhood around V in Sp

by
TP(V, ε) := {x ∈ Sp | dP(x, V ) < ε}.

With this notation, using Σs∩Sp ⊆ W , we obtain from (1) for a ∈ Sp and σ ∈ (0, 1]

Prob
z∈BP(a,σ)

{
C (z) ≥ 1

ε

}
≤ Prob

z∈BP(a,σ)
{dP(z, Σs ∩ Sp) ≤ ε} ≤ Prob

z∈BP(a,σ)
{dP(z, W ) ≤ ε}

=
volp(TP(W, ε) ∩ BP(a, σ))

volp(BP(a, σ))
.

The tail bounds in Theorem 1.1 will thus follow from the following purely geometric
statement.

Theorem 1.2. Let W ⊆ Sp be a real algebraic variety defined by homogeneous
polynomials of degree at most d ≥ 1 such that W �= Sp. Then we have for a ∈ Sp

and 0 < ε, σ ≤ 1

volp (TP(W, ε) ∩ BP(a, σ))
volpBP(a, σ)

≤ 2
p−1∑
k=1

p

k
(2d)k

(
1 +

ε

σ

)p−k ( ε

σ

)k

+
pOp

Op−1
(2d)p

( ε

σ

)p

.

In particular (take σ = 1),

volpTP(W, ε)
Op

≤ 2
p−1∑
k=1

p

k
(2d)k (1 + ε)p−k

εk +
pOp

Op−1
(2d)p εp.

Here is a brief outline of the proof of Theorem 1.2: The first step is an upper
bound on the volume of an ε-neighborhood of a smooth hypersurface in terms of
integrals of absolute curvature (Proposition 3.1). This is a variation of H. Weyl’s [42]
exact formula for the volume of tubes, a formula which, however, only holds for
sufficiently small ε. Then (Proposition 3.2) we derive a degree bound on these
integrals of absolute curvature based on the kinematic formula of integral geometry
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and Bézout’s theorem. Finally we get rid of the smoothness assumption by some
perturbation argument.

We will devote Section 4 to derive applications of Theorem 1.1 to several condi-
tion numbers occuring in the literature, namely, those for linear equation solving,
eigenvalue computation, polynomial system zero finding, and zero counting.

Remark 1.3. Theorem 1.2 could be stated for real projective space Pp with the same
bounds. While such a statement is the most natural over the complex numbers
(cf. [1] and [7, Theorem 1.3]) it does not follow the tradition over the reals (cf. [13,
42, 45]) and it is not a natural ambient space for real conic condition numbers.
Note that Σ is not necessarily symmetrical around the coordinate origin and that
the use of a symmetric W (an algebraic cone containing the semi-algebraic cone Σ)
is just an artifice of our proofs.

Theorem 1.1 was announced in [6] (in the projective setting and with slightly
worse constants).

1.2. Relation to previous work. Consider a symmetric function ψ : Rp+1 → R

(i.e., satisfying ψ(x) = ψ(−x)). In most instances of smoothed analysis (e.g.,
[11, 14, 31, 32, 33, 46]) one studies the behaviour of

(2) sup
a∈Rp+1

E
z∈Np+1(a,σ2)

ψ(z)

(possibly for sufficiently small σ) where Np+1(a, σ2) denotes the p + 1-dimensional
Gaussian distribution over R with mean a and variance σ2. It has been argued that
smoothed analysis interpolates between worst and average cases since it amounts
to the first for σ = 0 and it approaches the second for large σ.

When ψ(λx) = ψ(x) for all λ > 0 —e.g., a conic condition number— it makes
sense to restrict ψ to the sphere Sp. In this case, it also makes sense to replace
the distribution Np+1(a, σ2) by the uniform distribution supported on the disk
BP(a, σ) ⊆ Sp and to consider, instead of (2), the following quantity:

(3) sup
a∈Sp

E
z∈BP(a,σ)

ψ(z).

Note that in this case, the interpolation mentioned above is transparent. When
σ = 0 the expected value amounts to ψ(a) and we obtain worst-case analysis, while
if σ = 1 the expected value is independent of a and we obtain average-case analysis.

It is this version of smoothed analysis, introduced in [7], which we deal with in
this paper. Note that while, technically, this “uniform smoothed analysis” differs
from the Gaussian one considered so far, both share the viewpoint described above.

We have already mentioned the references [11, 14, 31, 32, 33, 46] as instances on
previous work in smoothed analysis. In all these cases, an ad hoc argument is used
to obtain the desired bounds. This is in contrast with the goal of this paper which
is to provide general estimates which can be applied to a large class of condition
numbers. We believe the applications in Section 4 give substance to this goal.

We finish this section with a brief overview of previous work on the relations be-
tween complexity, conditioning and probabilistic analysis. In [3], L. Blum suggested
a complexity theory for numerical algorithms parameterized by a condition number
C (a) for the input data (in addition to input size). S. Smale [30, §1] extended
this suggestion by proposing to obtain estimates on the probability distribution
of C (a). Combining both ideas, he argued, one can give probabilistic bounds on
the complexity of numerical algorithms.
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The idea of reformulating probability distributions as quotients of volumes in
projective spaces (or spheres) to estimate condition measures goes back at least to
Smale [29] and Renegar [21]. In particular, J. Renegar [21] uses this idea to show
bounds on the probability distribution of a certain random variable in the average-
case analysis of the complexity of Newton’s method. Central to his argument is the
fact that this random variable can be bounded by a conic condition number. The
set of ill-posed inputs in [21] is a hypersurface. An extension of these results to the
case of codimension greater than one was done by Demmel [13] where, in addition,
an average-case analysis of several conic condition numbers is performed. Most of
these results are for problems over the complex numbers. An extension in another
direction, namely, to possibly singular ambient spaces, was done by C. Beltrán and
L.M. Pardo [1]. Another extension of Demmel’s result, now to smoothed analysis
for complex problems, was achieved in [7]. At this point we want to emphasize
that the mentioned work in [1, 7, 21], in contrast with the contents of this paper,
is over the complex numbers (and the work over the reals in [13] rely on unproved
results). That is, problem data are assumed to be vectors in C

p (an assumption
that excludes a large number of problems in numerical analysis). We will return
to this issue in Remark 4.2(i). Furthermore, these works make use of properties of
complex varieties which do not hold in the real case.

The remainder of the paper is organized as follows. In Section 2 we provide the
preliminary notations and results needed to prove Theorem 1.2. These are mostly
taken from differential and integral geometry. In Section 3 we prove Theorem 1.2
and Theorem 1.1. Section 4 is devoted to several applications of our main result.
Finally, the precise value of some constants —whose existence is well-documented
in the literature but whose magnitude is not—is derived in the Appendix.

2. Preliminaries

2.1. Distances, volumes, and tubes on the sphere. The p-dimensional sphere
Sp carries the structure of a compact Riemannian manifold. Correspondingly, there
is a Riemannian distance dR(x, y) ∈ [0, π] between two points x, y ∈ Sp, which is
just the angle between these points. We denote by BR(a, α) = {x ∈ Sp | dR(a, x) <
α} the open ball of radius α centered at a ∈ Sp.

It will be more natural for us to work with the related notion of projective
distance, which is defined as dP(x, y) := sin dR(x, y) ∈ [0, 1] (cf. Figure 1). We note
that dP satisfies all the axioms of a metric, except that dP(x, y) = 0 iff x ∈ {−y, y}.
In fact, dP induces a metric on the real projective space Pp (obtained from Sp by
identifying antipodal points). However, we prefer to work on the sphere, which
seems more intuitive to us.

Let V be a subset of Sp. For 0 < ε ≤ 1 we define the ε-neighborhood around V
by

TP(V, ε) := {x ∈ Sp | dP(x, V ) < ε},

where dP(x, V ) := infy∈V dP(x, y). This equals the α-neighborhood of V ∪ −V
defined with respect to dR, where α = arcsin ε.

For a measurable subset A ⊆ Sp we write volpA =
∫

A
dSp for the p-dimensional

volume, where dSp denotes the volume form induced by the Riemannian metric.
In order to compute volumes of balls and tubes around subspheres, the following
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functions Jp,k(α) are relevant:

Jp,k(α) :=
∫ α

0

(sin ρ)k−1 (cos ρ)p−k dρ (1 ≤ k ≤ p).

Lemma 2.1. For 1 ≤ k ≤ p, 0 < α ≤ π/2, and ε = sin α, we have

volpTP(Sp−k, ε) = Op−kOk−1Jp,k(α), volpBR(a, α) = Op−1Jp,p(α).

Proof. This follows from [42] or by straightforward calculation. �

The quantity Jp,k(α) can be easily bounded. Recall that Op denotes the p-
dimensional volume of Sp.

Lemma 2.2. The following estimates hold ( 1 ≤ k ≤ p, 0 < α ≤ π/2, ε = sin α):

Jp,k(α) ≤ εk

k
if k < p,

εp

p
≤ Jp,p(α) ≤ Op

2Op−1
εp

with equality when α = π/2 in the last upper bound.

Proof. To settle the first inequality note that for k < p

Jp,k(α) ≤
∫ α

0

(sin ρ)k−1 (cos ρ) dρ =
∫ ε

0

uk−1 du =
εk

k
.

Similarly,

Jp,p(α) =
∫ α

0

(sin ρ)p−1 dρ ≥
∫ α

0

(sin ρ)p−1 cos ρ dρ =
εp

p
.

It is easy to check that α → Jp,p(α)(sinα)−p is monotonically increasing on [0, π/2]
by computing the derivative of this function. Hence, Jp(α)(sinα)−p ≤ Jp,p(π/2).
From Lemma 2.1 we get 1

2Op = volpBR(a, π/2) = Op−1Jp,p(π/2) from which it
follows that Jp,p(π/2) = Op

2Op−1
. �

In this paper, the notions of manifold and differentiability always refer to C∞-
differentiability. For a submanifold M of Sp and 0 < α ≤ π/2 we define the α-tube
T⊥

R (M, α) around M by (compare with [17, p. 34])

T⊥
R (M, α) := {x ∈ Sp | there is a great circle segment in Sp of length < α

from x to M that intersects M orthogonally}.
Here we used the Riemannian distance. Sometimes, when thinking in terms of the
projective distance and M = −M , it will be convient to use the notation of ε-tube
T⊥

P
(M, ε) := T⊥

R (M, arcsin ε) defined for 0 < ε ≤ 1. Clearly, T⊥
P

(M, ε) can be
characterized in a way similar to T⊥

R (M, α). We note that T⊥
P

(M, ε) ⊆ TP(M, ε)
and the inclusion is in general strict. It can be shown, however, that if M is a
compact submanifold, then equality holds.

We also need the notion of the m-dimensional volume (Hausdorff measure) of
subsets T of Sp. For simplicity, we restrict ourselves to semialgebraic sets; cf. [5].
Let T be an m-dimensional semialgebraic subset of Sp. The Zariski closure W of T
in Sp is a real algebraic variety of dimension m, and its regular locus Reg(W ) is
an m-dimensional submanifold of Sp. We define the m-dimensional volume of T by
volmT := volm(T ∩ Reg(W )). This makes sense since T \ Reg(W ) has dimension
strictly less than m. For k < m we set volkT := 0.
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2.2. A useful transformation formula. We will repeatedly use the following
special case of the coarea formula. A proof can be found in [38, III§2, Folgerung 1]
or [18, Appendix].

Here and in what follows, #A denotes the cardinality of a set A (being ∞ if A
is infinite).

Proposition 2.3. Let M, N be Riemannian manifolds of the same dimension and
ϕ : M → N be differentiable. Suppose that

∫
M

| detDϕ| dM is finite. Then the fiber
ϕ−1(y) is finite for almost all y ∈ N and we have∫

M

| det Dϕ| dM =
∫

y∈N

#ϕ−1(y) dN(y).

2.3. Some differential geometry of hypersurfaces on spheres. For the fol-
lowing material from differential geometry we refer to [36, 39].

In the following let M be a compact oriented smooth hypersurface of Sp inter-
preted as a Riemannian submanifold. The orientation corresponds to the choice of a
unit normal vector field ν : M → Rp+1 on M . The Weingarten map LM (x) : TxM →
TxM of M at x is the linear map defined by LM (x) := −Dν(x) (it is easy to verify
that this is a well-defined map). The second fundamental form of M at x ∈ M is the
corresponding bilinear map IIM (x) : TxM × TxM → R, defined by IIM (x)(Y, Z) =
〈LM (x)Y, Z〉 for all Y, Z ∈ TxM . We are going to describe these notions in terms of
local coordinates of M . Thus let v = (v1, . . . , vp−1) 
→ x(v1, . . . , vp−1) ∈ M ⊂ Rp+1

be a local parametrization of M . Then

IIM (x)
(

∂

∂vi
,

∂

∂vj

)
= −

〈
∂ν

∂vi
,

∂x

∂vj

〉
=

〈
ν,

∂2x

∂vi∂vj

〉
,

where the last equality follows from deriving 〈∂x/∂vj , ν〉 = 0. In particular, IIM (x)
and LM (x) are symmetric. The eigenvalues κ1(x), . . . , κp−1(x) of LM (x) are called
principal curvatures at x of the hypersurface M .

Example 2.4. Consider the case of M = Sp−1, the subsphere of Sp given by the
equation xp = 0. Then it easy to see that IIM (x) = 0 for all x ∈ M . Hence
all the principal curvatures of M are zero. This example makes clear that the
principal curvatures are relative to the ambient space Sp. (Of course, Sp−1 is
curved; however, its “curvature relative to the ambient sphere” is zero.)

For 1 ≤ i < p we define the ith curvature KM,i(x) of M at x as the ith ele-
mentary symmetric polynomial in κ1(x), . . . , κp−1(x), and put KM,0(x) := 1. In
particular, KM,p−1(x) = detLM (x). Note that the ith curvatures are essentially
the coefficients of the characteristic polynomial of the Weingarten map:

(4) det(idp−1 + tLM (x)) =
p−1∑
i=0

ti KM,i(x).

Definition 2.5. Let M be a compact oriented smooth hypersurface M of Sp and
U be an open subset of M . The integral µi(U) of the ith curvature and the integral
|µi|(U) of the ith absolute curvature over U , with respect to the ambient space M ,
are defined as (0 ≤ i ≤ p − 1)

µi(U) :=
∫

U

KM,i dM and |µi|(U) :=
∫

U

|KM,i| dM.
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Figure 2. The manifold Mα

A few remarks: |µi| is monotone in the sense that |µi|(U1) ≤ |µi|(U2) for U1 ⊆ U2.
Also, note that |µi(U)| ≤ |µi|(U) and µi(∅) = |µi|(∅) = 0. Moreover, µ0(U) =
|µ0(U)| = volp−1(U). By Example 2.4, |µi|(Sp−1) = 0 for i > 0.

Example 2.6. Consider the boundary Mα of the ball BR(q, α) in Sp of radius
0 < α ≤ π/2 centered at q. Clearly, Mα is a (p − 1)-dimensional sphere of radius
sin α that is described by the equations

x0 = cos α, x2
1 + · · · + x2

p = sin2 α

if q = (1, 0, . . . , 0). We orient Mα by the unit normal vector field on Sp pointing
towards q. It is straightforward to see that the second fundamental form of Mα

satisfies IIMα
(x) = (cotα) idp−1 for all x ∈ Mα. Hence all the principal curvatures of

Mα at x are equal to cotα. Therefore the ith curvature of Mα satisfies KMα,i(x) =
p−1

i (cot α)i, a quantity independent of x ∈ Mα. For the integral of the ith curvature
we obtain

(5) µi(Mα) = KMα,i volp−1Mα =
p − 1

i
Op−1(sin α)p−i−1(cos α)i,

using that volp−1Mα = Op−1(sin α)p−1. In particular, note that µp−1(Mα) =
Op−1(cos α)p−1. Finally note that µi(U) = |µi|(U) for all open subsets U of Mα,
since all the principal curvatures are nonnegative.

2.4. A kinematic formula from integral geometry for spheres. Here we
recall a basic formula of integral geometry. The orthogonal group G = O(p + 1)
operates on Sp in the natural way. We will denote by dG the volume element on
the compact Lie group G normalized such that the volume of G equals one. We
will interpret Si as a submanifold of Sp for i ≤ p, e.g., given by the equations
xi+1 = · · · = xp = 0.

Let M be a compact oriented smooth hypersurface of Sp. It follows by standard
methods from Sard’s lemma [35] that gM intersects Si+1 transversally for almost
all g ∈ G. Hence, for almost all g ∈ G, the intersection gM ∩ Si+1 is either
empty or is a smooth hypersurface of Si+1. Moreover, this intersection inherits

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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an orientation from M in a natural way as follows: let ν be the distinguished unit
normal vector field of M . Then we require that the distinguished unit normal vector
of the hypersurface gM ∩ Si+1 in Si+1 at x lies in the positive halfspace of TxM
determined by ν.

Therefore, for almost all g ∈ G, the integral of the ith curvature µi(gM ∩ Si+1)
of gM ∩ Si+1, considered as a submanifold of Si+1, is well defined, and this is also
the case for µi(gU ∩ Si+1) when U denotes an open subset of M .

We will need the following special case of the principal kinematic formula of
integral geometry for spheres. A proof can be found in [18]. For Euclidean space a
corresponding result was stated by Chern [9].

Theorem 2.7. Let U be an open subset of a compact oriented smooth hypersur-
face M of Sp and 0 ≤ i < p − 1. Then we have

µi(U) = C(p, i)
∫

g∈G

µi(gU ∩ Si+1) dG(g),

where C(p, i) = (p − i − 1)p−1
i

Op−1Op

OiOi+1Op−i−2
. �

While the existence of the constants C(p, i) follows from [9, 18], it is quite cum-
bersome to extract explicit formulas for C(p, i) from these sources. This is partly
due to the fact that the quantities µi (and even Oi) have slightly different meanings
in the literature. For the convenience of the reader, we have therefore included a
short derivation of these constants in the Appendix.

For future reference, we state the case i = 0 of Theorem 2.7 in a slightly more
general form.

Corollary 2.8. For any semialgebraic subset T of Sp such that dimT ≤ p − 1 we
have

volp−1T =
Op−1

2

∫
g∈G

#(T ∩ gS1) dG(g).

Proof. Using the comments given at the end of Section 2.1, it is easy to reduce to
the case where T is an open subset of a hypersurface of Sp. Now apply Theorem 2.7
for i = 0, taking into account that neither the compactness nor the orientability
assumption are necessary in that case; cf. [22, §15.2]. �

3. On the volume of tubes around real algebraic sets

The goal of this section is to provide the proof of Theorem 1.2.

3.1. Bounding the volume of tubes of smooth hypersurfaces. In an impor-
tant paper, Weyl [42] derived a formula for the volume of tubes around a compact
submanifold of a Euclidean space or a sphere. However, this formula only holds for
a sufficiently small radius. The following proposition gives an upper bound on the
volume of tubes around a hypersurface that holds for any radius. Compare also
Gray [17, Theorem 8.4, (8.6), p. 162].

Proposition 3.1. Let M be a compact oriented smooth hypersurface of Sp and U
be an open subset of M . Then we have for all 0 < α ≤ π/2

volpT
⊥
R (U, α) ≤ 2

p−1∑
i=0

Jp,i+1(α) |µi|(U).
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Figure 3. The point ϕx(t) and the magnitudes t and ρ

Proof. Let ν : M → Sp be the unit normal vector field on M corresponding to its
orientation. For x ∈ M consider the following parametrization:

ϕx : R → Sp, ϕx(t) =
x + tν(x)
‖x + tν(x)‖ =

x + tν(x)

(1 + t2)
1
2

of the half great circle intersecting M at x orthogonally. Note that if we denote
ρ = dR(x, ϕx(t)), then ρ = arctan t.

Consider the following differentiable map of Riemannian manifolds:

ϕ : M × R → Sp, (x, t) 
→ ϕx(t).

Let U be an open subset of M , 0 < α ≤ π/2, and put τ = tanα. We denote by
T+

R (U, α) and T−
R (U, α) the images of U × (0, τ ) and U × (−τ, 0) under the map ϕ,

respectively. Clearly, T⊥
R (U, α) = U ∪ T+

R (U, α) ∪ T−
R (U, α).

We apply the transformation formula of Proposition 2.3 to the surjective differ-
entiable map ϕ : U × (0, τ ) → T+

R (U, α) of Riemannian manifolds. This yields∫
U×(0,τ)

| detDϕ| d(M × R) =
∫

y∈T+
R (U,α)

#ϕ−1(y) dSp ≥ volpT
+
R (U, α).

By Fubini,
∫

U×(0,τ)
| detDϕ|d(M × R) =

∫ τ

0
g(t) dt, where

g(t) :=
∫

x∈U

| detDϕ|(x, t) dM(x).

Claim A. The determinant of the derivative Dϕ(x, t) of ϕ at (x, t) ∈ M×R satisfies

(6) | detDϕ(x, t)| =
1

(1 + t2)(p+1)/2

∣∣det(idTxM − tLM (x))
∣∣.

Using this claim, whose proof is postponed to the end, we obtain

g(t) =
∫

x∈U

1

(1 + t2)
p+1
2

| det(idTxM − tLM (x))| dM(x) (by Claim A)

≤
p−1∑
i=0

|t|i

(1 + t2)
p+1
2

∫
U

|KM,i| dM (by (4))

=
p−1∑
i=0

|t|i

(1 + t2)
p+1
2

|µi|(U).
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By making the substitution t = tan ρ (recall τ = tanα) we get∫ τ

0

ti

(1 + t2)(p+1)/2
dt =

∫ α

0

(cos ρ)p−i−1(sin ρ)i dρ = Jp,i+1(α).

Altogether we conclude that

volpT
+
R (U, α) ≤

∫ τ

0

g(t) dt ≤
p−1∑
i=0

Jp,i+1(α)|µi|(U).

The same estimate can be shown for volpT
−
R (U, α), which implies the desired esti-

mate of volpT
⊥
R (U, α).

It remains to prove Claim A. Choose a local parametrization x = x(v) ∈ Rp+1

of M in terms of coordinates v1, . . . , vp−1 defined in a neighborhood of 0. We assume
that ∂v1x, . . . , ∂vp−1x are orthonormal at 0. Abusing notation we will interpret
ν = ν(v) as a function of v. The matrix (λij) of LM with respect to the basis ∂vj

x
of TxM is given by −∂vi

ν =
∑

j λij∂vj
x.

Consider the map (v, t) 
→ R(v, t) := x(v) + tν(v) ∈ Rp+1. Then

(v, t) 
→ ψ(v, t) := ϕ(x(v), t) =
R(v, t)

(1 + t2)
1
2

is a local parametrization of Sp. In the following let [R, ∂tR, ∂v1R, . . . , ∂vp−1R]
denote the square matrix of size p + 1 whose rows are R and the partial derivatives
of R. Using the multilinearity of the determinant and the fact that

∂tψ = (1 + t2)−1/2∂tR − t(1 + t2)−3/2R

we obtain by a short calculation that

| detDψ(v, t)| = | det[ψ, ∂tψ, ∂v1ψ, . . . , ∂vp−1ψ]|

=
1

(1 + t2)(p+1)/2

∣∣det[R, ∂tR, ∂v1R, . . . , ∂vp−1R]
∣∣.(7)

Computing partial derivatives we get ∂vi
R = ∂vi

x + t∂vi
ν and ∂tR = ν. Using

∂vi
ν = −

∑
j λij∂vj

x, we get

∂vi
R =

∑
j(δij − tλij)∂vj

x.

Hence we obtain

det[R, ∂tR, ∂v1R, . . . , ∂vp−1R] = det[x + tν, ν, ∂v1R, . . . , ∂vp−1R]
= det[x, ν, ∂v1R, . . . , ∂vp−1R](8)
= det(δij − tλij) det[x, ν, ∂v1x, . . . , ∂vp−1x].

Since we assume that ∂v1x, . . . , ∂vp−1x are orthonormal at v = 0 (and also orthog-
onal to x and ν since TM (x) is so) we conclude (using the chain rule Dψ = DϕDx,
together with (7) and (8)) that

| detDϕ(x, t)| = | det Dψ(0, t)| =
1

(1 + t2)(p+1)/2
| det(δij − tλij)|,

which shows Claim A. �
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3.2. Bounding integrals of absolute curvature in terms of degree. In this
section let f ∈ R[X0, . . . , Xp] be homogeneous of degree d > 0 with a nonempty
zero set V ⊆ Sp such that the derivative of the restriction of f to Sp does not
vanish on V . Then V is a compact smooth hypersurface of Sp. We orient V by the
following unit normal vector field (Gauss map):

ν : V → Sp, ν(x) = ‖grad f(x)‖−1 grad f(x).

The goal of this section is to bound the integrals of absolute curvature on patches
of V .

Proposition 3.2. For a ∈ Sp, 0 < σ ≤ 1, and 0 ≤ i < p we have

|µi|(V ∩ BP(a, σ)) ≤ 2
p − 1

i
Op−1 di+1 σp−i−1.

The proof is based on the following lemma.

Lemma 3.3. We have |µp−1|(V ) ≤ Op−1d
p.

Proof. Recall that the determinant of the linear map LV (x) = −Dν(x) : TxV →
TxV equals KV,p−1 (cf. Section 2.3). We may assume without loss of generality that
the open subset U := {x ∈ V | rank(Dν(x)) = p − 1} of V is nonempty (otherwise
µp−1(V ) = 0). We would like to apply Proposition 2.3 to the restriction of ν to U ,
but face the problem that ν is only an immersion. Hence ν(U) might not be a
submanifold of Sp. In order to circumvent this, we use some standard facts of real
algebraic geometry [5].

Consider the Zariski closure W of ν(U) in Sp, which is a real algebraic variety
of dimension p − 1. Its regular locus W1 is a submanifold of Sp of dimension
p − 1. Consider the open subset V1 := U ∩ ν−1(W1) of V and the restriction
ν1 : V1 → W1 of ν. The singular locus Sing(W ) = W \ W1 is an algebraic subset
of dimension strictly less than dimW . Since ν1 is an immersion, we conclude that
U \V1 = ν−1

1 (Sing(W )) has dimension strictly less than p− 1. We therefore obtain

|µp−1(V )| = |µp−1(U)| = |µp−1(V1)|.
Applying the transformation formula of Proposition 2.3 to ν1 we get

|µp−1(V )| =
∫

V1

| detDν1| dV =
∫

y∈W1

#ν−1
1 (y) dW1(y).

Consider for � ∈ N ∪ {∞} the semialgebraic sets F� := {y ∈ W1 | |ν−1
1 (y)| = �}.

Since the above integral is finite, volp−1F∞ = 0, and therefore dim F∞ < p− 1. We
obtain ∫

y∈W1

#ν−1
1 (y) dW1(y) =

∑
�≥0

� volp−1 F�.

Corollary 2.8 applied to F� yields the following:

volp−1F� =
Op−1

2

∫
g∈G

#(F� ∩ gS1) dG(g).

Combining these findings we get

|µp−1|(V ) =
Op−1

2

∫
g∈G

∑
�≥0

� #(F� ∩ gS1) dG(g) =
Op−1

2

∫
g∈G

#ν−1
1 (gS1) dG(g).

(In order to see the last equality use the fact that gS1 does not intersect F∞ almost
surely.)
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It is now sufficient to prove that #ν−1(gS1) ≤ 2dp for almost all g ∈ G. To sim-
plify notation suppose first that g = id. Let y0, . . . , yp denote coordinate functions
on R

p+1 and S1 = {y ∈ Sp | y2 = · · · = yp = 0}. A point x ∈ R
p+1 lies in ν−1(S1)

iff it satisfies the following system of equations:∑
i

x2
i − 1 = 0, f(x) = 0, ∂2f(x) = · · · = ∂pf(x) = 0.

If all real solutions of this system of equations are nondegenerated, then they are
isolated in Cp+1. By Bézout’s theorem [23] the number of these solutions is bounded
by 2 d (d − 1)p−1 ≤ 2dp. Furthermore, one can show along the lines in [20] that
the nondegeneracy condition is satisfied for almost all g ∈ G. This finishes the
proof. �

Proof of Proposition 3.2. Put U := V ∩ BP(a, σ). The case i = p − 1 is already
settled by Lemma 3.3, as |µi|(U) ≤ |µi|(V ). So we may assume i < p − 1.

Let U+ be the set of points of U where KV,i is positive, and similarly define U−
where KV,i is negative. Then |µi|(U) = |µi(U+)| + |µi(U−)|.

Fix a subsphere Si+1 ⊂ Sp. Let g ∈ G = O(p + 1) such that V intersects gSi+1

transversally and such that the intersection is nonempty. Then V ∩ gSi+1 is the
zero set in gSi+1 of the homogeneous polynomial f of degree d. By transversality,
the derivative of the restriction of f to gSi+1 does not vanish on V ∩ gSi+1. Hence
we may apply Lemma 3.3 (now refering to the hypersurface V ∩ gSi+1 of gSi+1)
which gives the estimate

|µi|(V ∩ gSi+1) ≤ Oid
i+1.

By the monotonicity of |µi|, we have

|µi(U+ ∩ gSi+1)| ≤ |µi|(U+ ∩ gSi+1) ≤ |µi|(V ∩ gSi+1) ≤ Oid
i+1.

The Kinematic Formula of Theorem 2.7 implies that

|µi(U+)| ≤ C(p, i)
∫

g∈G

|µi(gU+ ∩ Si+1)| dG(g).

Therefore, using the fact that µi(gU+ ∩ Si+1) = µi(U+ ∩ g−1Si+1), we obtain

|µi(U+)| ≤ C(p, i) Oid
i+1 Prob

g∈G
{gU+ ∩ Si+1 �= ∅},

where the probability is taken with respect to the uniform distribution in G. We
may estimate this probability as follows (put α = arcsin σ and note that gU+ ⊆
BP(ga, σ)):

Prob
g∈G

{BP(ga, σ) ∩ Si+1 �= ∅} = Prob
a′∈Sp

{BP(a′, σ) ∩ Si+1 �= ∅}

=
1
Op

volpTP(Si+1, σ) =
Oi+1Op−i−2

Op
Jp,p−i−1(α) ≤ Oi+1Op−i−2

Op

σp−i−1

p − i − 1
,

where we used Lemmas 2.1 and 2.2 for the last two steps. Multiplying this with
the formula for C(p, i), the expression miraculously simplifies and we get

|µi|(U+) ≤ p − 1
i

Op−1 di+1 σp−i−1.

The same estimate can be shown for |µi|(U−), which proves the proposition. �
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3.3. Extension to the nonsmooth case: proof of Theorem 1.2. The fol-
lowing proposition estimates the volume of the tube around a patch of a smooth
hypersurface in the sphere.

Proposition 3.4. Let f ∈ R[X0, . . . , Xp] be homogeneous of degree d > 0 with
zero set V = Z(f) in Sp. Assume that the derivative of the restriction of f to Sp

does not vanish on V . (Thus V is a smooth hypersurface in Sp.) Let a ∈ Sp and
0 < ε, σ ≤ 1. Then

volpT
⊥
P (V ∩ BP(a, σ), ε) ≤ 4Op−1

p

p−1∑
k=1

p

k
dk εk σp−k + 2Op dp εp.

Proof. Put U := V ∩ BP(a, σ). Take 0 < α ≤ π/2 such that ε = sin α. Proposi-
tion 3.1 and the symmetry of U imply

volpT
⊥
P (U, ε) = volpT

⊥
R (U, α) ≤ 2

p−1∑
i=0

Jp,i+1(α) |µi|(U).

Combining this with Proposition 3.2 we obtain

volpT
⊥
P (U, ε) ≤ 4

p−1∑
i=0

p − 1
i

Op−1d
i+1σp−i−1Jp,i+1(α).

Using the estimates of Lemma 2.2 we obtain (put k = i+1 and consider separately
the term for k = p)

volpT
⊥
P (U, ε) ≤ 4

p−1∑
k=1

p − 1
k − 1

Op−1 dk σp−k εk

k
+ 4Op−1 dp Op

2Op−1
εp.

Now use p−1
k−1 = k

p
p
k to get the desired upper bound on volpT

⊥
P

(U, ε). �

Proof of Theorem 1.2. We have to remove the smoothness assumption in Proposi-
tion 3.4 and to estimate the volume of the ε-neighborhood instead of the ε-tube.

Assume W = Z(f1, . . . , fr) with homogeneous polynomials fi of degree di. Then
W is the zero set in Sp of the polynomial

f(X) :=
r∑

i=1

fi(X)2‖X‖2d−2di ,

which is homogeneous of degree 2d. Our assumption W �= Sp implies dim W < p.
Let δ > 0 be smaller than any positive critical value of the restriction f̃ : Sp → R

of f to Sp. Then Dδ := {ξ ∈ Sp | f̃(ξ) ≤ δ} is a compact domain in Sp with smooth
boundary

∂Dδ = {ξ ∈ Sp | f̃(ξ) = δ}.
Indeed, the derivative of f̃ − δ does not vanish on ∂Dδ (use

∑
i xi∂if(x) = 2df(x)).

Moreover, note that W =
⋂

δ>0 Dδ and hence limδ→0 volpDδ = volp(W ) = 0, since
dim W < p.

Claim B. We have TP(W, ε) ⊆ Dδ ∪ TP(∂Dδ, ε) for 0 < ε ≤ 1.

In order to see this, let x ∈ TP(W, ε) \ Dδ and γ : [0, 1] → Sp be a segment of
Riemannian length less than arcsin ε such that γ(1) = x and γ(0) ∈ W . Consider
F : [0, 1] → R, F (t) := f̃(γ(t)). By assumption F (1)= f̃(x) > δ and F (0)=0. Hence
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Figure 4. The shaded area is TP(∂Dδ, ε) ∩ BP(a, σ)

there exists τ ∈ (0, 1) such that F (τ ) = δ. Thus γ(τ ) ∈ ∂Dδ and dP(x, ∂Dδ) ≤
dP(x, γ(τ )) < ε, which shows the claim.

Using the triangle inequality for the projective distance, it is easy to see that
(cf. Figure 4)

(9) TP(∂Dδ, ε) ∩ BP(a, σ) ⊆ T⊥
P (∂Dδ ∩ BP(a, σ + ε), ε).

Combining (9) with Claim B we arrive at

TP(W, ε) ∩ BP(a, σ) ⊆ Dδ ∪ T⊥
P (∂Dδ ∩ BP(a, σ + ε), ε).

We apply Proposition 3.4 to V = ∂Dδ = Z(f − δ‖x‖2d) intersected with the ball
BP(a, σ + ε). This implies

volpT
⊥
P (∂Dδ ∩ BP(a, σ + ε), ε) ≤ 4Op−1

p

p−1∑
k=1

p

k
(2d)k εk (σ + ε)p−k + 2Op (2d)p εp.
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Taking into account that volpBP(a, σ) ≥ 2Op−1
σp

p (cf. Lemmas 2.2 and 2.1) we
obtain

volp (TP(W, ε) ∩ BP(a, σ))
volpBP(a, σ)

≤ volpDδ

volpBP(a, σ)
+

volpT
⊥
P

(∂Dδ ∩ BP(a, σ + ε), ε)
volpBP(a, σ)

≤ volpDδ

volpBP(a, σ)
+ 2

p−1∑
k=1

p

k
(2d)k

(
1 +

ε

σ

)p−k ( ε

σ

)k

+
pOp

Op−1
(2d)p

( ε

σ

)p

.

Taking the limit for δ → 0 the first term vanishes and the assertion follows. �

3.4. Estimating expected values: proof of Theorem 1.1. The tail bounds
in Theorem 1.1 follow from Theorem 1.2 as indicated in the Introduction. It thus
suffices to show how to derive the claim on expected values from the tail bounds.
This is achieved by the following proposition.

We use the inequality Op

2Op−1
− 1

p ≤ 1
2 , valid for p ≥ 2, which implies pOp

Op−1
≤ p+2.

Proposition 3.5. For 0 < σ ≤ 1 let Xσ ≥ 1 be a random variable satisfying, for
all 0 < ε ≤ 1 and p ≥ 2,

Prob{Xσ ≥ 1/ε} ≤ 2
p−1∑
k=1

p

k
(2d)k

(
1 +

ε

σ

)p−k ( ε

σ

)k

+ (p + 2) (2d)p
( ε

σ

)p

.

Then, for ε ≤ σ
(1+2d)(p−1) , we have Prob{Xσ ≥ 1/ε} ≤ (8e + 4)dp ε

σ and

E(lnXσ) ≤ 2 ln p + 2 ln d + 2 ln
1
σ

+ 4.7.

Proof. Prob{Xσ ≥ 1/ε} is bounded by

2

[
p∑

k=1

p

k
(2d)k

(
1 +

ε

σ

)p−k ( ε

σ

)k

+
p

2
(2d)p

( ε

σ

)p
]

= 4d
ε

σ

[
p∑

k=1

p

k
(2d)k−1

(
1 +

ε

σ

)p−k ( ε

σ

)k−1

+
p

2
(2d)p−1

( ε

σ

)p−1
]

≤ 4dpε

σ

[
p−1∑
k=0

p − 1
k

(2d)k
(
1 +

ε

σ

)p−1−k ( ε

σ

)k

+
1
2
(2d)p−1

( ε

σ

)p−1
]

.

Using that ε ≤ σ
(1+2d)(p−1) , this can be further bounded to obtain

Prob{Xσ ≥ 1/ε} ≤ 4dpε

σ

[(
1 +

1
p − 1

)p−1

+
1
2

]
≤ 4dp

σ
(e +

1
2
) ε.

For the bound on the expectation we use Proposition 2.4 in [7] which implies

E(lnXσ) ≤ ln
(

(1 + 2d)(p − 1)
σ

)
+ ln

(
4dp

σ
(e +

1
2
)
)

+ 1

≤ 2 ln p + 2 ln d + 2 ln
1
σ

+ ln(3 · 4(e +
1
2
)e) since 1 + 2d ≤ 3d

≤ 2 ln p + 2 ln d + 2 ln
1
σ

+ 4.7,

where we used ln(12e(e + 1
2 )) ≈ 4.7. �
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4. Applications

We give several applications of Theorem 1.1 to smooth analysis estimates for
the condition numbers of the following problems: linear equation solving, Moore-
Penrose inversion, eigenvalue computations, real polynomial equation solving, and
zero counting.

4.1. Linear equation solving. The first natural application of our result is for the
classical condition number κ(A). In [46], M. Wschebor showed (solving a conjecture
posed in [31]) that, for all n × n real matrices A with ‖A‖ ≤ 1, all 0 < σ ≤ 1 and
all t > 0,

Prob
Z∈Nn2 (A,σ2)

(κ(Z) ≥ t) ≤ Kn

σt
,

with K a universal constant. Hereby, ‖A‖ stands for the operator norm with respect
to euclidean norm. Note that, by Proposition 2.4 in [7], this implies

sup
‖A‖≤1

E
Z∈Nn2 (A,σ2)

(lnκ(Z)) ≤ ln n + ln
1
σ

+ lnK + 1.

We next compare Wschebor’s result with what can be obtained from Theorem 1.1.
Let ‖A‖F denote the Frobenius norm of a matrix A ∈ Rn×n, which is induced by
the inner product (A, B) 
→ trace(ABT ). We have

κ(A) = ‖A‖‖A−1‖ ≤ ‖A‖F ‖A−1‖ =: κF (A).

The Condition Number Theorem of Eckart and Young [15] states that ‖A−1‖ =
dF (A, Σ)−1 where Σ ⊆ Rn×n denotes the set of singular matrices and dF is the
distance induced by the Frobenius norm (see also [4, Thm. 1, Ch. 11]). It follows
that κF is a conic condition number. We can thus give upper bounds for κF (A)
and they will hold as well for κ(A).

Corollary 4.1. For all n ≥ 1, 0 < σ ≤ 1, we have

sup
Z∈Sn2−1

E
Z∈BP(A,σ)

(lnκF (Z)) ≤ 6 ln n + 2 ln
1
σ

+ 4.7,

where the expectation is over all Z uniformly distributed in the disk of radius σ

centered at A in the sphere Sn2−1 endowed with the projective distance.

Proof. The variety Σ of singular matrices is the zero set of the determinant, which
is a homogeneous polynomial of degree n. We now apply Theorem 1.1 with p =
n2 − 1. �
Remark 4.2. (i) In [7] a bound is proved on

sup
Z∈Pn2−1(C)

E
Z∈BP(A,σ)

(lnκF (Z))

where Pn2−1(C) denotes the (n2 −1)-dimensional complex projective space
and ‖A‖F = trace(AA∗). While Corollary 4.1 is close to this result it does
not follow from it. Note that the balls BP(A, σ) over which one takes the
expected value E(lnκF (Z)) are different, and there is no obvious way to
bound the expected value for the real case in terms of that for the complex
one. For the converse, however, one may identify C with R

2 and do a
smoothed analysis for a complex problem using Theorem 1.1. We will see
instances of this in Sections 4.3 and 4.4 below.
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(ii) Note, the bound in Corollary 4.1 is of the same order of magnitude as
Wschebor’s, worse by just a constant factor. On the other hand, its deriva-
tion from Theorem 1.1 is rather immediate.

We next extend the bound in Corollary 4.1 to rectangular matrices.

4.2. Moore-Penrose inversion. Let � ≥ m and consider the space R
�×m of �×m

rectangular matrices. Denote by Σ ⊂ R�×m the subset of rank-deficient matrices.
For A �∈ Σ let A† denote its Moore-Penrose inverse (see, e.g., [2, 8]). The condition
number of A (for the computation of A†) is defined as

cond†(A) = lim
ε→0

sup
‖∆A‖≤ε

‖(A + ∆A)† − A†‖ · ‖A‖
‖A†‖ · ‖∆A‖ .

This is not a conic condition number but it happens to be close to one. One defines
κ†(A) = ‖A‖‖A†‖ and, since ‖A†‖ = dF (A, Σ)−1 [16], we obtain

κ†(A) =
‖A‖

dF (A, Σ)
.

In addition (see [37, §III.3]),

κ†(A) ≤ cond†(A) ≤ 1 +
√

5
2

κ†(A).

Thus, ln(cond†(A)) differs from ln(κ†(A)) by just a small additive constant. As for
square matrices, κ†(A) is not conic since the operator norm is not induced by an
inner product in R

�×m. But, again, we can bound κ†(A) by the conic condition
number κ†

F (A) := ‖A‖F ‖A†‖ ≥ κ†(A).

Corollary 4.3. For all � ≥ m ≥ 1 and 0 < σ ≤ 1 we have

sup
A∈S�m−1

E
Z∈BP(A,σ)

(lnκ†
F (Z)) ≤ 2 ln � + 4 lnm + 2 ln

1
σ

+ 4.7.

Proof. If a matrix A is rank deficient, then detA0 = 0 where A0 is the m × m
matrix obtained by removing all rows of A with index greater than m. Therefore
Σ ⊆ Σ0 = {A ∈ R

�×m | det A0 = 0}. This implies that κ†
F (A) ≤ 1

dF (A,Σ0)
for

‖A‖F = 1. Since Σ0 is the zero set of a homogeneous polynomial of degree m, an
immediate application of Theorem 1.1 with W = Σ0 yields the claimed bound. �

4.3. Eigenvalue computations. Let A ∈ Kn×n (K is either R or C) and consider
the problem of computing the eigenvalues of A. Even though these eigenvalues (and
A when K = C) may be complex, we can still consider the problem as being over
the reals by identifying C with R

2 (and hence, consider A ∈ R
2n2

when K = C).
Note that this is actually the way computers deal with complex numbers.

Let λ ∈ C be a simple eigenvalue of A. Suppose that x ∈ Cn and y ∈ Cn are right
and left eigenvectors associated to λ, respectively (i.e., nonzero and satisfying Ax =
λx and y∗A = λy∗ (here y∗ is the transpose conjugate of y)). From the fact that λ
is a simple eigenvalue one can deduce that y∗x = 〈x, y〉 �= 0; cf. Wilkinson [44].

For any sufficiently small perturbation ∆A ∈ Kn×n there exists a unique eigen-
value λ + ∆λ of A + ∆A close to λ. We thus have

(A + ∆A)(x + ∆x) = (λ + ∆λ)(x + ∆x),
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which implies up to second order terms ∆A x+A ∆x ≈ ∆λ x+λ ∆x. By multiplying
with y∗ from the left we get

∆λ =
1

〈x, y〉y
∗∆Ax + o(‖∆A‖).

Moreover, sup‖∆A‖F ≤1 |y∗∆Ax| = ‖x‖ ‖y‖.
It therefore makes sense to define the condition number of A for the computation

of λ as follows:

(10) κ(A, λ) :=
‖x‖ ‖y‖
|〈x, y〉|

and to set κ(A, λ) := ∞ if λ is a multiple eigenvalue of A. Then, one takes

κeigen(A) := max
λ

κ(A, λ)

where the maximum is over all eigenvalues λ of A.
Let Σ ⊆ Kn×n be the set of matrices having multiple eigenvalues. A result by

Wilkinson [44] shows that

(11) κeigen(A) ≤
√

2‖A‖F

dist(A, Σ)
.

In [13], Demmel used the fact that the right-hand side of (11) is conic in order to
obtain bounds on the tail of κeigen(A) for random A. We next use this same fact to
obtain smoothed analysis estimates.

Proposition 4.4. For all n ≥ 1 and 0 < σ ≤ 1 we have
(i) For real matrices A,

sup
A∈Sn2−1

E
Z∈B(A,σ)

(lnκeigen(Z)) ≤ 8 lnn + 2 ln
1
σ

+ 5.1.

(ii) For complex matrices A,

sup
A∈S2n2−1

E
Z∈B(A,σ)

(lnκeigen(Z)) ≤ 8 ln n + 2 ln
1
σ

+ 6.5.

Proof. (i) It is well known that Σ is the zero set of the discriminant of the charac-
teristic polynomial of A, which is a homogeneous polynomial of degree n2−n in the
entries of A (compare [7, Prop. 3.4]). Theorem 1.1 applied to the conic condition
number ‖A‖F

dist(A,Σ) implies the stated bound.

(ii) Note that Σ, as a subset of R2n2
, is the zero set of the real and imaginary

parts of the discriminant polynomial, which both have degree n2 − n. Then apply
Theorem 1.1 with p = 2n2. �

4.4. Solving polynomial systems. Let d1, . . . , dn ∈ N \ {0}. We denote by Hd

the vector space of polynomial systems f = (f1, . . . , fn) with fi ∈ R[X0, . . . , Xn]
homogeneous of degree di. For f, g ∈ Hd we write

fi(x) =
∑
α

ai
αXα, gi(x) =

∑
α

bi
αXα,

where α = (α0, . . . , αn) is assumed to range over all multi-indices such that |α| =∑n
k=0 αk = di and Xα := Xα0

0 Xα1
1 · · ·Xαn

n . We endow the space Hd with the inner
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product 〈f, g〉 :=
∑n

i=1〈fi, gi〉, where

〈fi, gi〉 =
∑

|α|=di

di

α

−1

ai
α bi

α.

Hereby, the multinomial coefficients are defined as
di

α
=

di!
α0!α1! · · ·αn!

.

This inner product has the beautiful property of being invariant under the natural
action of the orthogonal group O(n + 1) on Hd. In the case of one variable, it was
introduced by Weyl [43]. Its use in computational mathematics goes back at least
to Kostlan [19].

Throughout this section, let ‖f‖ denote the corresponding norm of f ∈ Hd.
The Weyl inner product defines a Riemannian structure on the sphere S(Hd) :=
{f ∈ Hd | ‖f‖ = 1}. As in the previous sections, we endow this sphere with the
corresponding projective distance dP.

In a seminal series of papers, M. Shub and S. Smale [24, 25, 26, 28, 27] studied
the problem of, given f ∈ Hd⊗R C, computing an approximation of a complex zero
of f . They proposed an algorithm and studied its complexity in terms of, among
other parameters, a condition number µnorm(f) for f . In the following we will recall
the definition of µnorm(f) adapted to the case of real systems and real zeros (see [4,
Chapter 12] for details).

For a simple zero ζ ∈ Sn of f ∈ Hd one defines

µnorm(f, ζ) := ‖f‖
∥∥∥(Df(ζ)|Tζ

)−1diag(
√

d1, . . . ,
√

dn)
∥∥∥ ,

where Df(ζ)|Tζ
denotes the restriction of the derivative of f : Rn+1 → Rn at ζ to

the tangent space TζS
n = {v ∈ Rn+1 | 〈v, ζ〉 = 0} of Sn at ζ. (The norm on the

right is the operator norm with respect to the Euclidean norm.) If ζ is not a simple
root of f we set µnorm(f) = ∞. Note that µnorm(f, ζ) is homogeneous of degree 0
in f and ζ.

Shub and Smale [25] proved a condition number theorem for the condition num-
ber µnorm(f, ζ) for complex polynomial systems f and complex roots ζ. To describe
a corresponding result in the real situation, consider for ζ ∈ Sn

Σζ := {g ∈ Hd | ζ is a multiple zero of g}.

Theorem 4.5. For a zero ζ ∈ Sn of f ∈ S(Hd) we have

µnorm(f, ζ) =
1

dP(f, Σζ ∩ S(Hd))
.

Proof. The proof of [25] (see also [4, §12.4]) carries over immediately to the real
situation. �

Let Σ ⊆ Hd be the set of systems f ∈ Hd having a real multiple zero. Note that
Σζ ⊆ Σ. Therefore, by Theorem 4.5,

µnorm(f, ζ) ≤ 1
dP(f, Σ ∩ S(Hd))

.

We define the condition number for real polynomial solving as the right-hand side:

µnorm,R (f) :=
1

dP(f, Σ ∩ S(Hd))
.
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This is by definition a conic condition number: it varies continuously with f and
takes the value ∞ when f ∈ Σ.

Proposition 4.6. For all d1, . . . , dn ∈ N \ {0} and all σ ∈ (0, 1] we have

sup
f∈S(Hd)

E
g∈B(f,σ)

(lnµnorm,R (g)) ≤ 2 ln N + 4 lnD + 2 lnn + 2 ln
1
σ

+ 6.1,

where N = dimHd − 1 and D = d1 · · · dn is the Bézout number.

Proof. Let W be the discriminant variety consisting of the systems f ∈ Hd having
a complex multiple zero. Then Σ ⊆ W . In addition, it is well known that W is the
zero set of a multihomogeneous polynomial of total degree bounded by 2nD2, where
D = d1 · · · dn is the Bézout number (see, e.g., [7, Lemma 3.6]). The statement now
follows immediately from Theorem 1.1. �

Remark 4.7. (i) By the results in [24], the condition number µnorm(f) not only
measures the maximum sensitivity of complex solutions to the input f , but
it is also a crucial complexity parameter for algorithms approximating such
solutions. While µnorm,R (f) shares with µnorm(f) the first property, it is
not clear whether this is also the case for the second one.

(ii) By considering complex numbers as pairs of real numbers one can see the
problem of, given f ∈ Hd (or in Hd ⊗ C), computing an approximation of
a complex zero of f (studied by Shub and Smale [24, 25, 26, 28, 27]) as a
problem over the reals. Proceeding as in Section 4.3, one can find bounds for
the smoothed analysis of this problem similar to those in Proposition 4.6.

4.5. Real zero counting. Consider the problem of, given f ∈ Hd, counting the
number of real zeros of f in Sn. Unlike the problems considered so far, this is a
problem with a discrete output. This means that sensitivity considerations as de-
scribed in the previous problems do not apply here. Yet, finite precision algorithms
will require more precision to give a reliable output when the input f is close to the
set Σ of systems with multiple real zeros, and will not give any such reliable output
when f ∈ Σ (since in this case, arbitrarilly small perturbations of f will change the
output). It therefore makes sense to define the condition number for the counting
problem

cond(f) =
‖f‖

dist(f, Σ)
.

Since cond(f) = µnorm,R (f) for f ∈ S(Hd), the bounds of Proposition 4.6 hold
for cond(f) as well. We note, however, that in Section 4.4 we assumed a specific
inner product on Hd (whose properties are crucial in the proof of Theorem 4.5). In
contrast, for the smoothed analysis of cond(f), any inner product on Hd would do.

Appendix

The constants C(p, i) appearing in Theorem 2.7 depend only on p and i and
are independent of the manifold M . We derive the expression for C(p, i) stated in
Theorem 2.7 by selecting a simple enough M . Consider the boundary Mα = Mα(q)
of the ball BR(q, α) in Sp of radius 0 < α ≤ π/2 centered at q (recall Example 2.6).
According to Theorem 2.7 we have for 0 ≤ i < p − 1

µi(Mα) = C(p, i)
1
Op

∫
Sp

µi(Mα(z) ∩ Si+1)dSp(z).
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Let ρ(z) denote the Riemannian distance from z ∈ Sp to Si+1. If ρ(z) < α, then
the intersection Mα(z)∩Si+1 is the boundary of a ball in Si+1. The radius δ(z) of
the sphere Mα(z)∩Si+1 satisfies cosα = cos ρ(z) · cos δ(z) by a well known formula
of spherical trigonometry. From Example 2.6 we know that µi(Mα(z) ∩ Si+1) =
Oi (cos δ(z))i. On the other hand, Mα(z) does not intersect Si+1 if ρ(z) > α.

From these reasonings we obtain

1
Op

∫
Sp

µi(Mα(z) ∩ Si+1)dSp(z) =
Oi

Op

∫ α

0

(
cos α

cos ρ

)i
d

dρ
volpTP(Si+1, ρ) dρ.

From Lemma 2.1 and the definition of Jp,p−i−1(ρ) it follows that

d

dρ
volpTR(Si+1, ρ) = Oi+1Op−i−2(sin ρ)p−i−2 (cos ρ)i+1.

We obtain
1
Op

∫
Sp

µi(Mα(z) ∩ Si+1)dSp(z) =
OiOi+1Op−i−2

Op

∫ α

0

(cosα)i(sin ρ)p−i−2 cos ρ dρ.

=
OiOi+1Op−i−2

Op
(cos α)i (sin α)p−i−1

p − i − 1
.

On the other hand, by equation (5),

µi(Mα) =
p − 1

i
Op−1(sin α)p−i−1(cosα)i.

By comparing the last two equations, the asserted form of C(p, i) follows. �
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