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THE PROBLEM OF AN INCLINED CRACK
IN AN ORTHOTROPIC STRIP

by

F. De]ale*, I, Bakirtas*, and F. Erdogan
Lehigh University, Bethlehem, Pa.

ABSTRACT

The elastostatic problem for an infinite orthotropic strip con-
taining a crack 1s consideved. It is assumed that the orthogonal
axes of material orthotropy may have an arbitrary angular orientation
with respect to the orthogdnal axes of geometric symmetry of the un-
cracked strip. The crack is located along an axis of orthotropy,
hence at an arbitrary angle with respect to the sides of the strip.
The general problem is formulated in terms of a system of singular
integral equations for arbitrary crack surface tractions. As ex-
amples Modes I and Il siress intensity factors are calculated for
the strip having an internal or an edge crack with various lengths
and angular orientations. In most calculations uniform tension or
uniform bending away from the crack region is used as the external
Joad. Limited results are also given for uniform normal or shear
tractions on the crack surface. '

*Permanent address:  Faculty of Engipeering and Architecture,
Technical University of Istanbul Macka, Istanbul, Turkey.
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1. INTRODUCTION

Because of the ever increasing use of fiber-reinforced compesites
in a great variety of engineering structures, in recent years the
problems regarding their structural integrity and faijure have been
studied quite extensively. In these studies the material is generally
assumed to be homogeneous and orthotropic if either the structure is
free from flaws which may be the cause of an eventual failure ipitia-
tion, or the structure may have a flaw but its size is large in com-
parison with the local microstructural length parameters such as the
fiber diameter and the distance between the neighboring fibers. Other-
wise, in failure initiation studies the material has to be treated as
a nonhomogeneous continuum containing local flaws with certain geome-
tries.  In composites, as well as in wood and certain metallic ma-

- terials, from the viewpoint of structural failure, a distinguishing
feature of material orthotropy is that the material is generally not
jsotropic with respect to its fracture resistance. Furthermore, in
most cases the planes of orthotropy are generally also the planes of
weak fracture resistance, Thus, in orthotropic materials regardless
of the overall geometry and 1oad1ng conditions, the fracture propa-
gation would be either along a plane of orthotropy or would have a

ziQQZag'path.' |

- Partly because of the fact that some of the most important.

structural applications of composites have been in sheet form, ahd
partly for anmalytical reasons, the crack prob]ems in orthotropic
materials have been studied mostly for the cases of plane stress or
plane strain.” In plane prohlems, if the medium is infinite con-
taining.a line crack or a series of collinear cracks, it was shown
that the stress intensity factor is 1dent1ca1 to that found for an
1sotr0p1c p1ane W1th the same crack geometry [1-4]. However, it
- was’ a]ao shown that if the medium is bounded the material. orthotropy

- would have an . influence on the stress intensity factors, and depend—

~ing on the nature of the orthotrOPy, the strass intensity factors
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may be greater or smaller than the corresponding isotropic values [5]:
In [5] a uniformly loaded orthotropic strip having cracks perpendicular
to the sides was considered and the plane of the crack was assumed to
be one of the planes of material orthotropy. This and similar solu-
tions would be adequate to study the fracture problems in sheet struc-
tures in which the stress-free boundary is parallel to one of the
planes of material orthotropy. On the other hand if the stress-free
boundary of the sheet does not coincide with a plane of orthotropy

and yet, as expeéted, {f the crack lies on a plane of orthotropy, then
the solution of the so-called inclined crack would be necessary to
study the related fracture problem. Such a problem is considered in
‘this paper for an infinite strip. The crack is assumed to have an
arbitrary Jocation and orientation in the strip (Figure 1), the only
restriction being that the plane of the crack is a plane of material
orthotropy. . The problem is formulated for arbitrary normal and shear
tractions on the crack surface and the cases of both internal and

edge cracks are considered. The corresponding internal crack problem
for an isotropic strip was considered in [6].

2. FORMULATION

The plane elastostatic problem under consideration is described
in Figure 1 where x1 and xp refef to the axos of thhotropy and the
crack is located on the line xq =0, a<xp<b. The solution of the
problem is expressed as the sum of two states of stress derived from
the. Airy stress functions Fi(xq,X) and Fa(x,y) where the coordinates
{(x7,%2) and (x ,y) are defined in Figure 1. Referred to (x75x2) axes,

in terms of the stress function Fy the stress companents are g1ven by

) R g () o (1)
M TG %2 TR %12 TR,

The stress function Fq must sat1sfy the fo110w1ng d1fferent1a1 equa-
“tion [71: S ' | |



h ]
2 F1 ! F] 2'F,

o] * 8o TxT9x2 EFERY t 4 0%g =0, (2)
where
a Za.,ta
11 12 " 66
By ==—— , By = —F7 . (3)
1 2 399

The elastic constants ajj are defined through the stress-strain rela-

tions as follows

€17 = 317917 T 31292+ fg2 T A°n1 T ¥22%2 o 2eyp = 3669y

(4)

In terms of the engineering constants they are given by

ayy = VEyy » g9 = VEpy » 315 = =vppfEyy = 85y 5 35 = VEpp
(5)

By using the Fourier transform in the var1ab1e X2 (2) gives the

fo110w1n9 character15t1c equat1on
mh - azmz +8,=0 . (6)

Let the roots of the characteristic equation (6) be

- The known constants wy and wp are real if 52>451 and are complex
conjugates if 32-:461 The solution of (2) may then be expressed 1n
terms of the fo110W1ng Fourier integrals: ' : :

F1(x],x2) ' 1 I”[é( Je -M]l |x1 B(S)efNZ!S‘*f]e-isxzdS'.= %20

-
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= oy |5 % wo|8]xy] -isx
F1(x,1,x2)=§1?] E1(s)e’ Vv g (s)e 2 ‘19 25 , xy<0

- (8)

where o, and u, are selected in such a way that they have positive
real parts. Observing that

F-l (+0:X2) = F-l("ost) ’ 'é%]' F'I (+0’x2) = '%' F](’_O’xz) 2 (9)

~equations (8) may be written as

® THEE -, |s|x; ] =isX
F](x],xz) = g I {E(s)e ! L B(s)e 2' f]e 24s . x1>0 ,

-1

Fl(x1,x2) = é%.fm-{[§1A(s) + czB(s:]ewllslxl

wolS|Xq| -Tsx
z 1].:- e 2cis‘.

+ [c3A(s) - cIB(s)JE' s x1<0 s (10)

where

¢ = -

] c ] c - . (]])
Wy =g 2 _ u.:]_-.mz | 3 w1 “uy o

If we nowdefine the discontinuity in the displacement derivatives by

., o)
u

1 (xp) =’33—-[ (+0,%,) - Uy (-0:%) &

1
fo(x) = 5= [”(2) (+0,x;) = U(;)-(-:O,xg)_] s (12).
and assume that

filxg) = 0 4 fplky) =0, =w<xpea 5 bexyee , - (13)
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after some mapnipulations the unknown functions A and B c¢aw be obtained
in terms of fy and f, and the stress components may be expressed as

(1) _ 1 b (t'Xa)fl(t)/m]+qxlf2(t)
o (XX = T (aTug) | [ GEmE:

a

(t=xn) FylwntunXy fol(t)
2- 1 22 1221 2 dt (14)
(t XZ) +m231

: Ib E.} (b-xp ) t) -y (£)

(1) .
12X %) * Tty | [T (e i

waXq fy (t) 'mg(t"xg)fa.(t)
A s s)
(M k) = ] Ib oy (£-Xp) Fy (£) 4y £ ()
T2 ¥ 1%2) = Trag,(ut-ud) ), (E-Xp 1 2HuTRE
) oy (=g F (£ by By (8] )

( .t-xa) “+mé)¢ f ) o _I

Refarring now to the second solution in which the stress function
Fo' is expressed in coordinates X,y (see Figure ), it can be shown
that the compatibility condition reduces the following differential
equation: '

F, atF B4F, 3", a4F, ,
Xt N ey T Y2 Tx%yE T Y3 Tayd T Y4 oyE o an
where
2K 2H,+H 2H H
O S UiV T (18)
1 B R, 3° "W, V4 H, M



S-SR P—

= a11cos“a + azzsin”e + (2a12+a66)51n26c0529 ,

H1 =

Hy = a]lsin“e + 250510 + (2&12+a55)51n29c0529 )

Hy = a66(c0529-51n2a)2 + 4(a]1+a22-2312)sin29c0525 ,

H4 = a]a(cosﬁg+51nﬂg) 4 (a]]+a22—a56)s1nzacosza ;

Hg = [(a66+2a12)(COs2e-sinza) - 2(a1100523-a2251n20)]sinecose ,

Hg = [-(a56+2a12)(cosze-sinze) - 2(a11sinze-azzcosﬁe)]sinecosa

| (19)
Let the solution of (17) be expressed by the following Fourier
integral
1 4 rys ~iXs
k) = g [ Deyls)e e Tds (20)
-0

Then, sUbstitutihg'ffom {20) into {17), after some analysis the charac-

‘teristic equation giving rq,...,r, is obtained as

YTt - dygrd - ypr2 ke 120 (21)

The roots ri,...,rq_of (21) are complex and satisfy(*)

For the second solution the stress compopents are found to be

2 w4 ri8y -ixs
(2) % kS ,

I?‘)One may also note that for g=0 the roots are real, and if ry,..5¥y
are .the roots corresponding to the angle 87, then for the ang]g
g=814n/2 the roots are ry,..,rq. R
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(2

} 32F2 ® 4 . rLSY =ixs
wxy(x.y) ® - Ty C %,—f 1)3 s°rCpe ke ds , (24)
2 32F = 4 1Sy -ixs
65;%3,Y) = -5§£i = - é&-[m ¥ sacke K e ds , (25)
]

It will now be assumed that at a given point in the cracked
orthotropic stria shown in Figure 1 the stress state can be expressed
by the sum of the stresses given by equations (14-16) and (23-25),

namely

c‘r”(x]-,'xz) = 0'(.[1‘])(3(] s.xa) + U(‘];’:j)(x]’xz) ’ (13j=]’2) ’ (26) _
or |

oupli) = auglins) + ) L (o) = ) . o

In applying to the boundary conditions, (26) and (27) should be used
With the following transformations:

u-‘p‘](x] ,xa) = n%u(:x) + ngug;,) - En]nac(:y) ,
;122(.‘(] ,xa). = (n-f-ng)u(;y) +."I"2(Jx2x}"°fy?y)) , (28a,b)
and.
| q(x;)(-“_'y )= "12"(111)* ”Eﬂga)' * 2“1-“2"(112) ’
U(XL)(X,,Y) = (nf'-nzz)o(]xé) - "1"2(”(111)'.'.“(212)) . (29a,b)

where the direction cosines are given by

o MpEcose , ony=sing . L (30)




3. THE INTEGRAL EQUATIONS?

The formulation of the problem given in the previous section
contains siX unknown functions, Ck(s), (k=1,..,4) dnt fj(t). (§=1,2),
‘Referring to Figure 1, these unknowns can be determined by using the
following boundary conditions:

0y (%,0) = 0, (1,0) = 0y (Xsh) = 0y (x,0) =0, -mexem , (31)
511(0,x2) = pI(xa) , o]e(o,xa) = pz(xz) y as<xg<h (32)

where the crack surface.tractiuns Py and p, are known functions and

are assumed to be the only external loads applied to the strip.

Solutions to other types of loading may be obtained by using the

standard superposition technique. Substituting from equations (14-

186, 24, 25, 27, 29) into (31), we obtain the following system of
‘algebraic equations expressing Ck(x)s k=1,..4, in terms of fy and
fz: : '

4 4 |
'IZ Ck(S) = R](S) ’ g‘ Pka(s) = RZ(S) ’
4 resh ' 4 rysh /
% C (s)e = Ryls) % r.Cy(s)e = Rgls) (33a-d)

where the functions Rj(s), i=1,..,4, as well ag the solution af the
algebraic system (33) are given in the Appendix A.

Substituting now from equations (14, 15, 23-26, 28) into (32)
and using the appropriate expressions for Ck(s) found in Appendix A,
the following system of singular integral equations are obtained for
the functions fy and fp:

b 2 . : :
_ 'E o i . .
o14{0:xp) = "Di-ja ; [:iXZ +-kij(x2’tilfj(t)dt"pj(xg) , i=1,2
- o a<xp<h (34)

-8-



where

D] = Zazawlmz(w]+m2) » Dz s 2322(M1+m2) * (35)

and the expressions of the kernels kij' (1,3=1,2) are given in the
Appendix B. Referring to the definition of f| and f5 given by equa-
tion (12} and the assumptions (13), it is clear that, in addition

to (34) fy and fp must satisfy the following single-valuedness con-
ditions;

b
[ Filthe=0 , §=1,2 . (36)
a

From the results given in Appendix B, the kernels kyj(xa,t), (i,§=1,2)
appear to be compiex valued functions. However, by using the proper-
ties of the roots wy, (§#1,2) and ry, (k=1,..,4) of the characteristic
equations, it «an be shown that, as expected, kyj are indeed real

functions.

Note that the index of the singular integral equations (34) is
+1, Therefore, the solution is of the following form:

%1(t) = C.H(t)[(t—a)(b-t)i’5 , asted , i=1,2 {37)

where the functions gq and g are bounded and continqous in [a,b].

1t may also be noted that equations (34) give the stress components
011(0sx2) and 012{0,%p) outside as well as inside the region

(%1 =0, a<xp<b). Therefore, from (34) one may easily obtain the
stress intensity factors in termc of the unknown functions gy and gp.
The stress intensity factors are defined by

.kl(a) = .]im V2ia‘xzj 01](0,XZ) )

: x2+a

-9-
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kz(a) = 1im /zia-xzi u12(0,x2) )

x2+a

2+b

kz(b) = 1im Y2<X2"bs 612(0,){2) . (38a—d)
X2+b

Since the kernels k1j(xz,t), (1,351,2) are bounded in the closed
interval [a,b], from (37) it follows that the functions

b 2
ky(xg) = %.fa ; kys(Ra8IF4(E)dE  (4=1,2) , (Osupsh/cose) (39)

are also byuided. Thus, defining the fundamental function

X(z) = /z-b){z-a) , (z=x2-bixé) (40)

from (34) and (37) we obtain

b g.(t)dt .
Dy014(0:xp) = %'Ia IE%;;;;?(;; + kj(xa) y  (3=1,2) . (41)

Defining now the sectionally holomorphic functions

b gj(t)dt

= 'lP S =1,
) = 3 |, T 9 e

and observing that ¢ and 9, are holomorphic outside the cut (a<xp<b,
x5=0), we find

Dj“lj("Z’o) s - ‘3’3(32) + kj(xz) ,  (3=1,2, Xz"i‘a: X2>b) . (43)

On the other hand, following [8] from (42) it can he shown that

-10-
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¢j(z)=%1é§l-i’j(z) y =2, (44)

where Pj(z) is the principal part of g;/X at infinity. Thus, it is
seen that’

9.{x,)
Dyortxgs0) = = frdr + Pylag) + kilxg) » (xpma, wppb) . (45)

Finally, from (38), (45), and

X(xz).=./1x2-b)(x2~a) =.--/(b-x2)(a-x2)- y (46)
we find
k](a) = g](.a)/"(b"a)/z s kz(a) = '—92 /"(b a)/

)/ AB-2TZ 5 kylb) = - 3 ga(b)//(b_)‘-a 7z
(47a-d)

o
—
—
o
—
n

4. NUMER?FAL SOLUTION AND RESULTS

The system of singular integral equations (34) is solved numeric-
ally by-ffist normalizing the interval (a,b) to (-1,1).-and then using
the Gauss-Chebyshey integration formulas [9]. The important problem
in the numerical analysis is the evaluation of the kernels k13( ,j=1,2).
To do this a highly accurate and relatively simple technique for the
calculation of the roots rj, (i=1,..,4) of the characteristic equation
(21) was needed. An.outline of such a technique may be found in [10].
Even though complex algebra had to be used throughout the numerical
calculations, values of the kernels were, of course; a]ﬁays real.
First, changing the material constants or the-geometry, the isotropic
results given in [6] and the results of the symmetric crack geometry
for the orthotropic strip found in [6] were verified. The numerical

N _'I.'l_




results are then obtained for the following two basic loading condi-
tions (see Figure 1);

p1(x2) & - umcosaa , pz(xaj % - omsinaéose , (48a,b)
which correspond to uniform (membrane) Toading axx(y, Yo} = g, and

2Xy
p] (Kz) = Ub(T €0s0~] )_(.‘.0520 s

- 2%y
Pz(xg) = ob(—ﬁg cos0-1)sinecoso : (49a,b)

which correspond to "pure bending.” Here af, 1s the surface stress in
the strip under bending away from the crack region. Some results are
also obtained for uniform normal or shear tractions on the crack
surface in order to explain certain anomaiies arising from the in-
clined crack solution. As an example a boron-epoxy composite sheet
with the following material constants js considered (see equations

4 and 5): ”

]

Eqp = 24.75 x 105psi (170.65 x 10° N/m?)

E

"

op = B X 106 psi (55.6 x 109 N/m?) ,

Gyp = 0.7 X 105 psi (4.83 x 10° ¥/m2)

Vip 0.1114

For this material the roots my or wj, (J=1,2) of the characteristic
equation {6) turn out to be real.

_ The results for the strip containing an internal crack are given |
in Tables 1-4. The stress intensity factors given in the tables are

defined by equations (38a-d) and are normalized with respect to

) -]'2- ..
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cmVE or obJE, ¢=(b-a)/2. Table 1 shows the results for a symmetric-
ally located internal crack (i.e., for a=(h/coso) ~b) and ¢or vari-
ous vajues of the angle 6. Table 2 shows the results for an excentrice
ally located internal crack. In this case the crack tip Xp=a and the
crack angle 0 are fixed (a=0.2h/cose, 0=q1) and the crack length

b-a is varied. The stress intensity ratios kj and ké shown in this
table are defined in Table 1. The general rule for an excentric crack
perpendicular to thé sides of the strip is that ky(a) is always greater
than k(b) if a<h-b, This result is also expected for an inclined crack
- provided the external load is either uniform pressure or uniform shear
traction on the crack surface. However, in the inclined crack case

~under more general loading conditions this rule may not always be valid.
For example, from Table 2 it is seen that for b=0.4h/cose, k1(b)>k](a).

- Even though this result appears to be somewhat unexpected, it can
easily be exp1ained by the coupling effect between the shear and nor-
mal crack surface loadings arising from the inclined crack geometry.
The stress intensity factors due to only normal or shear traction on
the crack surface are shown in Tabis 3. Note that for the primary
stress intensity factors (i.e., ky for normal Joading and kp for shear
Joading) the general rule mentioned above remains to be valid. How-
~ ever, since the coupling effects (i.e., ky for shear loading and ko
for normal loading) can be positive or negative, the type of anomalous
results observed in Table 2 should not be entirely unexpected.

In reference [5] it was shown that in an infinite orthotropic
strip containing cracks perpendicuiar to the sides the stress state
in the plane of the crack in general and the stress intensity factors
at the crack tips in particular are not affected hy a 90° rotation of
the axes of material orthotropy. From the proof given in [6] it can
be seen that this rather general result will not remain valid for an
inclined crack. Table 4 shows the vesult of an example regarding the
“yotation of material axes. In the strip labeled by 30° the stiffer
material axis Eyy wakes 30° with the x-axis, and in that labeled

- -13-
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Table 4. Comparison of the stress intensity factors for 1sotrop1c
and orthotropic str1ps with a symmetr1ca11y Tocated internal
crack., Tension: o E Y bend1ng Oy = op(1-2y/h),
(b=a)/{h/cose) = 0. @ c¥(b-a)/2, a h/coseﬁ

8=0 o = /6
Tension Tension " Bending
Isotropic 1.303 1.080 0.504 0.248 4.137
Ortho. (30°) [ 1.226 | 1.420 | 0.553 | 0.288 | 0.14
Ortho. (120°) 1.226 1.172 0.518 0.258 0.138

by 120° Efq axis makes 120° with the x-axis, i.e., in the latter case
the material has been votated by 90° (see Figure 1). The isotropic
results are also given in the table. The table shows that in the in-
clined crack problem not enly the material orthotropy but also the

orientation of the axes of orthotropy may have a significant effect

on the stress intensitv factors.

In the case of an edge crack, i.e , for a=0, b<h/cos8, the in--
tegral equations (34) remain unchanged. H:iwever, the unknown functions
f1(t) and f2(t) are bounded at t=0 and the conditions (36) are no |
longer valid. In this case the integral equat1ons can be solved nu~

 merically by first normalizing the interval (0,b) to (-1,1) through

the change in variables .

“405

B (r) L k=B (sM) L delsna , (50)

“and then using again a Gauss-Chebyshev integration formula. A conven-

jent technique in this problem is defining the unknown functions by
iv”

Rt - sicr)/w1-rz ,:'i=1,2 3'_ B - (51)

16



and using the collocation pofuts sj obtained from Uy.i(sy) =0,
{J=1,..,n=1) and the condition G;(~1) =0 (to account for boundedness
of fi(t) at t=0) to calculate Gi{rk), (k=1,..,n) Tp(rk) =0, where

Ty and U, are Chebyshev polynomials. Table 5 shows the calculated
resuits for the edge crack. In this problem too the external load

is either a uniform tension or a uniform bending applied to the strip

away from the crack region.
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APPENDIX A

Expressions of the functions Rj(s) and the solutiou of equations
(33):
2 2

Ry(s) = aqtlwnd - GEIE + (o -nduy )14 + (ndud - ngu; )}
+ (ngup = njug)dy + 2ngnplug Ky - wpky - wyli +wpl3l}

(S)-—T{n} 2[("‘""‘" ]) (1

+ (Nz"“lﬂ%)dé] + (n%'né)[m] K'i “meké "(J-)-IL1l +w2[—é]} »

ng nj
T+ (-—--n1w1)12 + (nfwi - nzw])J]

+ (nJuy - nfwd)og + 2nynolug KT - w3 - wy L3 +w,l 21} -
4 (1 2 (] . )02
Ra(s) = 5 Innpl-lgr+ )1 + (4 p) 13 = ()]

+ lughuz) gl + (nf-nd) [y Kf-upki-mLitupl 32t 5 (A1-A4)

by = 2na22(w‘-m§)5‘ ? | | o - (A3)
n . ’ rb
kigy = [0 gk
IJ.(s) = . J(s t)f1(t)dt s
aK(s) = ° k(s t)fp(thdt
J Ja
.-b k _
‘a
T LI PO , (AB-A9
s = | e nde L (=0.2) -~ (A6-9)



-|s]tnyA INAL PAGW 1%
E}(s,t) = fe 1 d[n])\dcos eyt + cjsinlalcjt %%‘IGPO()R QUALITY

: 8
+ 3 TET‘CJCQS CJSt - 1n]l351n stt] ’

- ~|$|x;(hen, t |
E?(s,t‘) = e o 3( ! ){—n]AJcos[cjs(t-n]h+n]w§h)]

+ c&sin[{slcj(t-n1h+n1w§h)]
E: . + 1::-J -I-%l- cos [scj-(t—n]h*hu;n]h)]
] SR in]AJsih [scy(t-mhtwin )1} , 3=1,2 ;  (A10,A11)

e

: c
Fi{s,t) —1cos €58t + mbysin c, | |t

“j

Gy vt

¢
+ 1 -|—|-n1 J(:r:)&'. c.5t + i mg—.sin CjSt] »

"lSl}tj h'n-lt)

c
Fg(s,t) =fne {‘UT;- COS[SC‘j(t"n]hm‘?n]h)]

+ n1bjs1‘n[|-s|cj(t~'n1h+m§n]h)]'

+ i —]—rn1b cos[sc (t- n]h+m n1h)]

- - e

Aj = wg/(nfuind) by = 1/{nfud+nd) , ¢y = -ny/(nfutimd)
S Js1,2 5 o (M4-A1y)

Solution of equations (33):
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4
: .
Cy(s) = ETET-% ka(s)Rj(s) y k=1,...4 (A17)

rish  rosh  r,sh rosh
A(s) = (ry-r3)(ry-ry)(e e 2 ) et -

rash  rash r.sh r sﬁ
- (rrg) (e © e T e T -t

rosh  r,sh rysh r,sh
AR Y AL

(rotra,)sh (rptr,)sh
mIT(s) = r4(r3-r2)e A ra(rz—r4)e 24
{ratry)sh
{rotraish (ro+r,)sh _ (rotr, )sh
myols) = (ry-rgle er3nm. (ro-ryle 274 - (rq-r3)¢ 34 '
rzsh _ rash : r4sh
m]S(S) = re(r4-r3)e + r‘3(7‘2-r‘4)e + l"4(r‘3'-r‘2)e ]
rosh | r35h' | . ¥gsh
Mig(s) = (rg-ryle + (ry-rple + (ro-rale )
o (ri+r,)sh (rytr )sh
ma1(s) = r4(r]-r3)e 173 - r3(r1-r4)e ! _4
{ratr,)sh
| | (r +r )Sﬁ (ry+r;)sh
mzz(s) = (r1-r3 e 1 37, ry-rgle 14
' (r.*r,)sh
+ (r4-ra)e 34 ,
Sh | | f35h _T4Sh



Mag(s) = (r4'r3)er15h + (r1‘“4)er35h - (r1'r3)er45h ;
gy (s) = rz(r1wr4)@(r]+r4)5h R r](r4-r2)e(r2+v4)sh
- r4(r]-r2)e(r1+rz)5h ,
M3p(s) = (r1'r4)e(r1+r4)5h + (r1-r2)e(r1+r2)5h
T: +_(r4_r1)e(r]+r4)sh ’
| m33ls) = r1(r4'”2)er . rz(r1-r4)er25h - r4(r1-r2)er o ,
q;_; Mag(s) = (rz_r4)er,sh _ (r]-r4)er'5h:+ (r1-r2)er45h ’
Mgq(s) r3(r1¥r2)e(r trp)sh - v, ,.]_,,3)9(‘”1*"'3)Sh
)79 * r1(r2f”3)e(r2+ré)5h ,
” Myp(s) = - (r]_rz)e(r1+rz)sh b {ryors e(”l*”g)sh
| + (rs—r?)e(r3+r2)5h ,
Ta3(s) r1(r2'r3)er ¥ - rg(r1"ra)er25h +rq P]'Pz)er o ’
| Mgq(s) = (’"3“‘2)8r " (r1-r3)er25h - (r1-rg)er3s (A19-A34)
| =
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Expressions of the kernels kij(‘Z't)- (1,§=1,2):

k‘lj(IZ't) . di .'l [Gij("Z't'S) v G”(lz.t.-S)]dS , (1,3) = (1,2) 3

(B1)

0

mlwq 1

ST R AR 8]

-1n2xzs
s & 1 1 2 2 1
Gyq(xts8) = *—3T5T ["151*"252*“351*“452”}5“’1‘1
i 1 2. 2
hguaFa*hgan Py "s‘*’ze] '
=inyxos
- _ 1 1. 2 2
6y plnpetss) = S—pray |- rMsE] s g  Meret2
2 Bl bawdh B2 2
Bas(%aits8) # e_inzxzs'[; ElevaEle E2ev,Ed+veunF)
21 (xgetas) = =gy [ME1*VRERY SF1TYAR2TTSMI
1 2 2|

-1“2X2$ )

s 3 = 1 1, 2
GZZ(xZ't‘s) 0T [u]v5E1m2v552 "1v6E1m2V652
2. elan  Elewdv Flawdv.F2| J
+ w]v]FI-i-wz.3F2+w1v3F1+w2v4F2] 3 (B4-27)

where the functions Eg(x.t) and F?(s.t). (j,k=1,2) are given by equa-
tions (A10-A13), &(s) is given oy (A18), and
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hy(x,.5) = “k(“Z’s)[°1mkl+1‘2mk2] ’

hy(xpes) = ) oy (agm ,+agm )

hy(xge8) = ) a (aym +iam,)
hy(xpes) = ) o (agmy +iagm,,) o

hs(xpss) = T ay[2nynomq=1(n{-n3)m,1

b e B o Bt T e B I e Bl o B

hs(xz.s) = ak[Zn]nzmka-i(n{-né)mk4] : (B8-B13)

r.NyX,5
3 (xpe8) = (ndriady-2ingnor e X1 2, (k=1,..,4) (£14)

v](xz.s) = BJ(a]mj]+ia2mj2)

Volxy,8) =

Bj(a3mJ]+1a4mj2)

V3(xp,8) = Bj(a]mJ3+1azmj4) ;

v4(x2.s) = Bj(a3mj3+1a4mj4)

vs(xz,s) = BJ[Zn]nsz]-i(nf-né)mjz] . (B15-620)

—rels P g s s s P

vg(Xy,s) = Bj[2n1n2mj3-1(nf-n5)mj4]

g Bt Py Xps
Bj(xZ's) = [n]nzrj+n]n2+i(n]-nz)rj]e R P (B21)

25«



"
hoom -5 0 R M

=
™~ =

n2 nyn

2 2 .
‘3 s 'nfu)z + q . ‘“ 8- _ulz_" - n1n2032 ) (322'325)

and the functions mkj(’)' (k,j=1,..,4) are given by equations (A19-A34).
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