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The Problem of Conservation Laws and
the Poincaré Quasigroup in
General Relativity

Gennady Gorelik

1. Introduction

The role played by conservation laws in physics is well known. One can
hardly imagine a physics text that makes no use, one way or the other, of
the concepts of energy, momentum, and angular momentum engendered by
the respective conservation laws. (I will also use the term moment for the
total 4-moment of momentum, i.e., the angular momentum and the velocity
of the center of inertia.)

The physico-mathematical essence of conservation laws, as conse-
quences of a theory’s symmetries, was clarified in the second decade of the
twentieth century by Felix Klein, David Hilbert, and Emmy Noether on the
basis of the special theory of relativity (SR). This approach was intended
to be used in the general theory of relativity (GR). Ironically, it so
happened that the status of conservation laws was soon questioned in GR
itself (see Vizgin 1972, 1981).

In creating his general theory of relativity, Einstein used the law of
conservation of energy-momentum as one of his main tools. In the final
theory, however, conservation laws became a problem, rather than a
consequence of the theory. The problem arose from the idea, fundamental
to GR, of geometrizing physical interactions, the idea that led to the notion
of space-time with variable curvature. After short but heated debates,
Einstein found a solution to this problem in a very important, albeit special
case of an “island configuration,” an isolated system where the geometry
is noticeably curved only in a finite region, whereas at infinity, it is
asymptotically flat (Einstein 1918). Einstein’s solution is based on the so-
called pseudotensor of the gravitational field’s energy-momentum. Most
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specialists in gravitation still believe that the pseudotensor approach is the
best possible one (see, e.g., Faddeev 1982).

Such a limited solution has, however, been unable to satisfy everyone.
Some theorists believe that the situation with conservation laws in GR is so
unsatisfactory that they reject Einstein’s theory of gravitation as a whole
(Logunov 1998). The criticism of such views has so far avoided the
problem of conservation laws in the general formulation, that is, in the case
of arbitrary geometries admitted by GR. Yet the existence of the problem
is clearly revealed when one attempts to establish a correspondence
between SR and GR using conserved quantities as a “bridge.” Those
specialists who do not question GR have also evinced dissatisfaction with
this situation. Penrose (1982), for one, put the energy-momentum-moment
problem at the very top of his list of unsolved problems in classical GR.

Below we suggest a novel analysis of the problem of conservation laws
in GR.

We take the field theory in SR as our point of departure. The situation
with conservation laws in this case is well known and quite clear. But the
special relativistic case is “degenerate” from the point of view of GR.
Curved space-time “splits” various properties that are equivalent in SR,
making some of them independent and rendering some others meaningless.
Therefore, not just any formulation of conservation laws that is “natural”
and customary in SR can be taken as basic if one’s target is GR.

The Noether theorem (the so-called first theorem), which completed the
theory of conservation laws, affords the deepest explanation of them in SR,
and this theorem will be used as a basis for the analysis of the problem in
GR. (The so-called second Noether theorem is irrelevant to conservation
laws in SR and will not be discussed in this paper.)

The key question of this paper is whether there is a connection, in the
sense of the correspondence principle, between the inferior (pseudo-)
conservation laws in GR and the ten absolutely clear conservation laws in
SR. More specifically, is there a formal construction, definable on a generic
space-time of GR, that corresponds to the ten-parameter Poincaré group in
SR?

After a brief account of the history of the pseudotensor approach we
undertake a Noether-type approach to the general problem of conservation
laws in GR, based on the concept of the Poincaré quasigroup (Gorelik
1988).
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2. The Noether Theorem and Conservation Laws in Special
Relativity

The soundest foundation for discussing conservation laws in a sufficiently
developed theory is provided by the Noether theorem (see Bogolyubov and
Shirkov 1980, Vizgin 1972). This theorem establishes a link between the
theory’s symmetries (the invariance of its action) and its conservation laws:

Each one-parameter symmetry (a one-parameter set of transformations
of the theory’s variables keeping the action invariant) corresponds to
a separate conservation law.

Let us briefly recall the Noether-type formulation leading to conserva-
tion laws for the field ua(x

i), where a is an index or a set of indices, xi are
coordinates in space-time, and i = 1, . . . , n (for generality, let us allow an
arbitrary number n of dimensions of space-time). The field dynamics is
described by the Lagrangian m [u] and the corresponding action, the
integral of the Lagrangian over the space-time region 
:

        (1)A 
 P



m [u] d nx.

The principle of stationary action, /A = 0, then gives the field equations

        (2)/m //ua 
 0.

Let the theory have an s-parameter symmetry *s; that is, transforma-
tions of coordinates xi � x1 i and of the field variables ua � u1a, corres-
ponding to this symmetry, do not change the action:

        (3)A(x1,u1 ) 
 A(x,u).

For infinitesimal symmetry parameters û
A (A = 1, . . . , s), the action is

invariant with regard to the transformations xi � xi + /xi, ua � ua + /ua,
where

                     (3a)/x i

 X i

A û
A,

      (3b)/ua 
 �aAû
A,
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Q0


,
i
A d1i 
 0 , (6)

CA(V,t2) 	 CA(V,t1) 
 P
t2

t1

QAdt , (7)

and XA
i and �aA are definite quantities reflecting the structure of the

symmetry *s and the properties of the field variables ua. Then, according
to the Noether theorem, m, ua, X, and � give rise to the quantities

        (4),
i
A 
 ,

i
A (m ,u,X,� ) ,

which yield, via the field laws (2), s equations of the form

        (5)0i,
i
A 
 0 , A 
 1, . . . , s; 0i � 0 /0x i .

Equations (5) are the conservation laws in differential form. The name is
appropriate because integrating (5) over some space-time region 
 limited
by the hypersurface 0
 leads, by Gauss’s theorem, to the relations

which are sometimes called integrated balance equations. And these, in
turn, entail conservation laws in the conventional sense. To see this,
consider Minkowski (or Newtonian) space-time, and, as the hypersurface
0
, choose a four-dimensional cylinder with the lower and upper bases
corresponding to the three-dimensional volume V at the times t1 and t2.
Then Equations (6) take the form of the balance relations

where

      (7a)CA(V,t ) � P
V

,
0
AdV,

      (7b)QA(0V,t ) � Q
0V

,
.

Ads
.
, . 
 1,2,3,

that is, the change of the quantity ,A in the volume V is equal to the flow
of that quantity through the surface 0V bounding the volume.
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CA( t2) 
 CA( t1) , (8)

If we move the surface 0V to spatial infinity and assume that the fields
ua(x) (as well as ,A) vanish on the surface (the assumption of a closed
system), we obtain a conservation law in its pure form:

with the integration in (7a) performed over the entire three-dimensional
space. It is Equations (7) and (8) that justify the name, “conservation laws,”
for Equations (5), from which they follow.

The energy-momentum-moment conservation laws in classical mechan-
ics and in SR can be obtained in the manner just described, and they turn
out to correspond to the space-time symmetries—the invariance of the
action with respect to translations and rotations of the reference system
(that is, to the space-time homogeneity and isotropy).

The Noether theorem indicates that these laws are grounded precisely
in the properties of space-time itself, rather than in the specific properties
of any physical systems (though, of course, the particular expressions of the
conserved quantities ,A are also determined by the Lagrangian, m, that is,
by the properties of the system in question). Hence the general character of
conservation laws in classical mechanics and SR. This is also the reason for
regarding the energy-momentum-moment conservation laws as space-time
conservation laws. We will talk, henceforth, only about such conservation
laws, and therefore the adjective will be omitted. (The Noether theorem
also gives rise to other conservation laws (e.g., of electric charge),
corresponding to transformations that do not involve the space-time
coordinates and are characterized by X = 0, � g 0.)

The central symmetry of SR is the invariance with respect to
transformations from one inertial reference system to another. This
symmetry is described by the ten-parameter Poincaré group, �

10, and,
therefore, generates ten “conserved” quantities ,A

i:

        (9)0i,
i
A 
 0, A 
 1, . . . ,10.

The quotation marks here are meant to stress a simple, albeit important
point that conservation laws depend on the assumption about the behavior
of the field at infinity.

The number of conservation laws in SR is equal to the dimensionality
of the Poincaré group and is determined by the number of space-time
dimensions, n:
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,
i
A 
 �Tik , M i

lm! .

      (10)s 
 n(n � 1) /2 
 10 for n 
 4.

At first glance, the quantities ,A
i (Equation (9)) look somewhat

unusual, since the two indices have quite different characters: index i
ranges over four space-time coordinates, whereas index A ranges over ten
independent symmetries. Usually, however, one deals with the energy-
momentum tensor Tik, symmetric in the indices ik, and—not that
usually—the tensor of moment Ml

i
m, which is anti-symmetric in the indices

lm. Nevertheless, the set of all such quantities T and M constitutes precisely
the ,a

i:

The possibility of such a division is grounded in the specific symmetry
properties of Minkowski space-time, but for the Noether scheme itself,
these are just additional conditions.

3. Conservation Laws at the Time of the Creation of
General Relativity

The history of conservation laws in GR began even before the creation of
this theory (Vizgin 1972, 1981). While thinking about the construction of
a relativistic theory of gravitation in 1907, Einstein identified, in the
principle of equivalence, the seed from which the theory grew over the next
eight years. It was not until 1913, however, that an adequate mathematical
expression of this principle emerged: a Riemannian geometrization of
gravitational interaction. In Einstein’s strenuous and tormenting efforts
from 1913 to 1915 to build a theory of gravitation on this basis, a major
role was played by the energy-momentum conservation law borrowed from
electrodynamics and SR, in the form

      (11)0i,
ik

 0.

Speaking about the postulates that should figure in the foundations of a
relativistic theory of gravitation, Einstein mentioned, first and foremost, the
“satisfaction of the laws of conservation of momentum and energy”
(Einstein 1913, p. 1250). It was just then that Einstein discovered the crux
of the problem of conservation laws in GR: the apparent incompatibility of
general covariance with the energy-momentum conservation law (or, more
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exactly, with the equation that Einstein referred to as a conservation law).
At first, because of his inadequate knowledge of Riemannian geometry,
Einstein decided to sacrifice general covariance in favor of the conservation
law. But after two years of painful search for noncovariant field equations,
Einstein decided to place his trust in the power of Riemannian geometry
and to jettison the universal validity of conservation laws.

4. Einstein’s Attitude toward Conservation Laws

Einstein’s attitude toward conservation laws was shaped by his primarily
physical (rather than mathematical) approach to formulating GR. And the
law of energy conservation was undoubtedly something to be respected by
him, due to its historical merits in physics and its general validity. More-
over, Einstein had, in fact, no other tool for constructing a theory that could
match the power of the law of energy conservation.

Guided by the idea that the relativistic gravitation theory should be a
generalization of the special principle of relativity (asserting the admissibil-
ity of any, not only inertial, reference systems), Einstein arrived, fairly
early in the process, at the conclusion that space-time coordinates in GR
could not be assigned an operational or objective metrical significance.
Hence the motto of general covariance.

At the start of the path towards GR, energy conservation was for
Einstein one of the main arguments against the general covariance of the
field equations. But even after completing GR, when Einstein returned to
generally covariant field equations, he was not inclined to abandon the
conservation law. He sought to import the relationship (11) from electrody-
namics and SR into gravitation theory, generalizing this relationship or
deducing it from the field equations. This effort led to the introduction of
the so-called energy-momentum pseudotensor of the gravitational field tik.
A relation somewhat similar to (11) was introduced for the sum of this
pseudotensor with the energy-momentum tensor of matter

      (12)0i [(	g) (Tik
� t ik )] 
 0.

This equation was derived from the fundamental property of covariant field
equations

      (13)Di T
ik

 0
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or (which is equivalent, given Einstein’s equations Rik � (½)gikR = �Tik)
from the general property of Riemannian geometry:

      (14)Di (R
ik
	

1
2

gikR) 
 0.

The covariant derivative Di = 0i + +i , being a characteristic feature of
a generally covariant theory, differs from the ordinary one by the compo-
nent +i , inevitable in a curved geometry. Yet because of this addition,
Gauss’s theorem cannot be used to turn Equation (13), which seems to be
a natural covariant generalization of the differential conservation law of SR
(11), into a balance equation similar to (6) and a conservation law similar
to (8).

Einstein worked out his compromise pseudotensor solution (12) under
the influence of two essentially methodological principles: confidence in
the law of energy conservation and confidence in general covariance. The
starting point was the covariantly formulated equation (13). By a formal
transformation, it was turned into Equation (12) expressing the fact of
vanishing of the ordinary divergence, yet the energy-momentum of the
gravitational field was to be described by the quantity tik made up of the
gravitational potentials (the metric) gik. But this quantity depends on the
choice of the coordinate system in a noncovariant and nontensorial manner:
hence the name, the tik pseudotensor.

The noncovariant character of the tik was immediately demonstrated in
the examples adduced by Schrödinger and Bauer, where, in certain coordi-
nates, the tik become zero for a definitely non-zero field but do not vanish
in empty Minkowski space-time. In combination with the motto of GR (all
coordinate systems are permissible), these examples appeared to be fatal to
the pseudotensor approach (see Cattani and De Maria 1993).

 The way out of this difficult situation suggested by Einstein in 1918
was as follows: The ambiguity in the energy-momentum of the gravitational
field should be resolved for the integrated values ,tikdVi by limiting the
domain of applicability of the pseudotensor approach. Attention was
restricted to island situations, where all matter is concentrated in a certain
finite spatial volume, and, outside this volume, Cartesian coordinates
(Galilean, in Einstein’s words) were employed. Since Einstein’s approach
to conservation laws in GR (worked out by him in 1918) continues to be
accepted, let us have a closer look at this work.

Einstein begins his 1918 paper with this dramatic statement: “Although
the general theory of relativity has found acceptance among the majority of
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theoretical physicists and mathematicians, almost all of my colleagues
object to my formulation of the law of conservation of energy-momentum”
(Einstein 1918, p. 448). But this circumstance did not undermine Einstein’s
confidence in the viability and importance of the conservation law. In
defending his point of view, Einstein begins thus:

Just like the law of conservation of momentum, which is formed out of three
similar conservation equations, the law [of conservation of energy] was, in its
original formulation, an integral law. The special theory of relativity blended
all four conservation laws into a unified differential law, which asserts the
vanishing of the divergence of the “energy tensor.” This differential law is
equivalent to the integral laws abstracted from experience; it is here, alone,
that its significance lies. (Einstein 1918, p. 448)

And somewhat later he says: “Experience clearly compels us to seek a
differential law that is equivalent to the integral laws of conservation of
momentum and energy” (Einstein 1918, p. 449).

Einstein points out that his pseudotensor formulation runs into his
colleagues’ “objections because . . . they expect all physically significant
quantities to be capable of being conceived as scalars or components of
tensors” (Einstein 1918, p. 449). In refuting this objection, Einstein wanted
to show that, with the aid of the pseudotensor equation (12),

the concepts of energy and momentum are established just as strictly as we are
accustomed to demand in classical mechanics. The energy and momentum of
a closed system are completely determined, independently of the choice of the
coordinate system, if only the state of motion of the system (considered as a
whole) is given relative to the coordinate system. (Einstein 1918, pp. 449–450)

In support of the limitation to the island situations (closed systems),
Einstein says: “In order for us to be able to speak of the energy and momen-
tum of a system, the density of energy and momentum must vanish outside
a certain region” (Einstein 1918, p. 450). And he goes on to show that if,
outside this region, only Cartesian coordinates are used, then the integral
values of energy and momentum (throughout the occupied region) do not
depend on the choice of the coordinate system inside the region: “Thus,
contrary to what is now our customary way of thinking, we come to ascribe
more reality to an integral than to its differentials” (Einstein 1918, p. 452).

Yet restriction to an island situation could not satisfy Einstein himself
(who, by 1918, had already established relativistic cosmology), and more
than half of his paper is devoted to integral conservation laws for a closed
universe.
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There is no indication in Einstein’s works that he was aware of the
connection between symmetry and conservation principles. (He discussed
the importation into GR, not of all ten conservation laws of SR, but only of
those pertaining to energy and momentum). This is not surprising. It was
only in 1911 that Gustav Herglotz established, for the first time, a link
between ten conservation laws and ten symmetries of the Poincaré group
in the context of the mechanics of continuous media in SR (Vizgin 1972),
which was rather remote from Einstein’s domain of interest. And Noether’s
work, in which the symmetry-conservation link was elaborated in a general
form, appeared only in 1918, when Einstein had already worked out his
pseudotensor solution.

Had Einstein realized the Noether nature of any conservation law  when
he was thinking about the problem of conservation laws in GR, he would
have had to look for some ten-parameter symmetry in general Riemannian
space. According to contemporary experts (Trautman 1962; Schmutzer
1970, 1979), such a strategy is doomed to failure. This pessimistic view
presupposes, however, that in GR the symmetries suitable for the Noether
theorem can only be the symmetries of the movement of space itself (those
associated with the Killing vectors). And such symmetries indeed single out
only very special geometries and are nonexistent in the generic Riemannian
space.

Another way of understanding symmetries in GR, the approach
applicable to the generic Riemannian case—the ten-parameter symmetry of
description—will be discussed in §9.

5. Conservation Laws in General Relativity after 1918

After Einstein’s work of 1918, discussion of the problem of conservation
laws in GR faded for nearly forty years. It looked as though the absence of
a general solution to the problem and the absence of a Noether inter-
pretation did not worry theorists. Moreover, when conservation laws were
going through hard times in the domain of relativistic quantum mechanics
in  the 1920s and 1930s, “theoretical” aid was proffered from GR (Gorelik
and Frenkel 1994).

Interest in the problem of conservation laws in GR flared up again in
the late 1950s, giving rise to an abundant literature and diverse physico-
mathematical treatments, with the Noether theorem now taking the central
place in the ensuing discussions (Trautman 1962, Schmutzer 1970). A solu-
tion that could satisfy specialists did not come forth, however. Over the
past seventy years, the pseudotensor approach has not undergone any
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Tik

 /m //gik .

fundamental changes. The ambiguity in the expression for Einstein’s
pseudotensor was identified and other versions were suggested; the law of
conservation of angular momentum was introduced on the same pseudoten-
sor basis (Landau and Lifshitz 1973, Trautman 1962, Schmutzer 1970);
conditions at “Galilean” infinity were specified for the island system
(Faddeev 1982), and some general verbal arguments for the non-
localizability of gravitational energy were set forth.

Yet many questions remain unanswered. There is no explanation for
why, in a generally covariant theory, the asymptotically flat space outside
the island system must necessarily be described in Cartesian coordinates
(and not, say, in spherical coordinates). No explanation has been given yet
why conservation laws can be applied only to two extreme situations in
GR: the island system in empty (flat) space and the universe as a whole.
After all, the differential conservation law in SR (5) produces an integral
conservation law (8) only in a degenerate, idealized situation, and, in the
generic case, it gives a balance equation (7): The change of the quantity ,A

in the volume V equals the flow of that quantity through the boundary of V.
And finally, there are two other unanswered questions related to the

concepts that are central to this essay. First, how can one establish a
connection, in terms of the correspondence principle, between the inferior
pseudotensor conservation laws of GR and the ten absolutely clear
conservation laws of SR? And, second, what does the Noether theorem, the
most general and fundamental basis for conservation laws, have to do with
the pseudotensor laws?

6. The Pseudotensor Approach from the Noether
Point of View

Instead of repeating the arguments pro and con, let us have a look at the
pseudotensor proposal from the Noether point of view. One would think
that Equation (11), 0i,

ik = 0, is beyond doubt as a point of departure. Both
the quantities ,ik and Equation (11) itself can be obtained in SR by the
Noether procedure. But matters stand quite differently with regard to
Equation (13), DiT

ik = 0. The tensor Tik is obtained in GR, not from a
Noether formulation, but from the variation of the Lagrangian of matter for
the metric tensor:
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This variation is, in fact, part of the derivation of the equations of motion
for the system consisting of the gravitational field and matter, that is,
Einstein’s equations (Landau and Lifshitz 1973). Tensor Tik plays the role
of the source in these equations. The reason for calling Tik the energy-
momentum tensor for matter consists in the fact that, in a flat geometry, the
expression for Tik turns into a (spatially symmetrized) energy-momentum
tensor ,ik (obtained by the Noether procedure applied to the group of
translations of Minkowski space), whereas Equation (13) for GR turns into
a differential form of the conservation law of SR.

But even though Equation (13) seems to be a general relativistic
generalization of (11), it cannot be called a conservation law, since it has
no Noether interpretation. Besides, from the Noether point of view, the two
indices in the special relativistic tensor ,

ik are not quite equivalent. Their
seeming equivalence is a consequence of the “accidental” fact that the
Poincaré group contains a subgroup of translations, which can be parame-
terized by a 4-vector. Strictly speaking, the quantity ,

ik should be
designated ,iA, where A = 1, . . . , 4 (see Equations (9), with only a subset
of them forming (11)). Rotations, which the Noether approach associates
with the 4-moment of momentum, cannot be parameterized by a 4-vector,
but they can be parameterized by the antisymmetric tensor &

kl (the Lorentz
rotations in the xt-planes, i.e., relative motions of reference systems, are
also included among the rotations). This is why the moment is described,
in SR, by the quantities ,iA, (where A = (kl), 1�k<l�4), or by the third-rank
tensor Mk

i
l, which is anti-symmetrical in the indices kl. All of the quantities

conserved in SR can be expressed in the form ,
iA, where A = 1, . . . , 10.

Translations and rotations are independent symmetries of the space-time
description in SR, therefore energy-momentum and the moment of
momentum are independent (and equal in their status) quantities.

This makes it hard to understand the desire to solve the energy-
momentum problem in GR separately from and independently of the
problem of angular momentum. In fact, there is a unified problem of
energy-momentum-moment in GR, and therefore, it is necessary, in this
theory, to look for the quantities ,

iA, where A = 1, . . . , 10. However, it is
impossible to identify any asymmetry of the indices (in order to turn one
index into A = 1, . . . , 10) in the tensor Tik, the right part of the Einstein
equations. Due to their nature, the indices in Tik are absolutely symmetrical.

Division of the quantities ,iA into two sets (the energy-momentum
tensor and the moment tensor), covariant with respect to the Poincaré
group, reflects precisely the composition of that group. The impossibility
of such a division in GR in the generic situation should not be surprising.
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The transition from Newtonian mechanics to SR led to the unification
of the concepts of energy and momentum into that of energy-momentum;
the concepts of angular momentum and the velocity of the center of inertia
have also been united. The transition from SR to GR leads to the unifica-
tion of all of these quantities (see §§9–11).

The desire to interpret the equation DiT
ik = 0 as a conservation law in

GR must surprise one no less than, say, the desire to attach some special
meaning in general Riemannian space to the lines xi = �i

2, �i = const. (and
to call these lines “straight”) in an arbitrary system of coordinates, only
because it holds true for Cartesian coordinates in Minkowski space.

7. The Problem of Conservation Laws in General Relativity
and the Correspondence Principle

The concepts of energy, momentum and angular momentum, and the
appropriate conservation laws are indispensable to the rest of “nongravi-
tational” physics, providing the most general, basic means of description.
At the same time, there exist quite different opinions about the importance
of conservation laws in GR.

The most common view simply denies that there is any problem here,
the argument being that, because of the special character of the gravita-
tional field, energy-type concepts and the appropriate conservation laws
lose their meaning in most situations admitted by GR. At the same time, the
Einstein equations are held to give a complete description of any situation.

In the opinion of other specialists, the problem of conservation laws in
GR remains unresolved and presents a challenge for the theory (Penrose
1982, Trautman 1962, Schmutzer 1970).

One of the simple arguments used by the advocates of the first position
consists in the following: The equivalence principle underlying GR
allegedly dooms to failure any attempt to introduce a concept of the
gravitational field energy. Any gravitational field is meant to disappear for
the observer who steps into Einstein’s elevator, a freely-falling reference
system; in that case, the field energy must disappear, too.

Does this argument point to the impossibility of introducing the notion
of gravitational energy in GR? No more so than in classical mechanics,
where a transition to the reference system moving with a given body, thus
“eliminating” the motion of this body, does not prevent the introduction of
the concept of kinetic energy. Such an argument, however, indicates quite



30     Gennady Gorelik

clearly that, in GR, the question of conservation laws is intimately linked
to the concept of reference systems; see §8.

The role played by the equivalence principle in GR has been exten-
sively debated (see, e.g., Synge 1960, Fock 1979, Ginzburg 1979). The
differing attitudes to the principle are prompted mainly by the different
frameworks in which it is considered. Within the framework of Newtonian
mechanics, the equivalence principle has a quite definite meaning, and,
from the viewpoint that “reveals” GR’s links with classical physics and
experiment, the equivalence principle is really a fundamental property of
gravitation. If it is viewed from within GR, however, it appears meaning-
less, at least if the concept of an accelerated reference system has not yet
been introduced. Within the theoretical framework of GR the equivalence
principle “dissolves” into the very notion of geometrizing gravity.

This situation can be compared with the discussion of the principle of
spatial isotropy between a supporter of Aristotle’s doctrine of space and an
advocate of the Newtonian conception of space, in which the principle of
isotropy is similarly “dissolved.”

Those who say that energy-type concepts lose all meaning in GR
sometimes point to the tendency for long-standing notions to die off in the
course of scientific progress. Thus, the transition from classical mechanics
to quantum mechanics, for example, led to the extinction of the notion of
(observable) particle trajectories. In quantum mechanics, however, it is
shown how and when (in terms of the correspondence principle) the
concept of a trajectory may become justified.

In the case of conservation laws in GR the situation is different. It is
not known how to effect a transition (in the sense of correspondence) to
conservation laws in the case of small deviations of geometry from the flat
case; isolated distributions of matter do not exhaust all possibilities, for the
curvature may be globally small but without Euclidean properties at infinity
as, for example, in the case of constant large-radius curvature.

What are the general concepts and structures of GR that transform into
conservation laws in SR? An answer to this question is necessary irrespec-
tive of one’s attitude to the problem of conservation laws in GR.

Since the situation with conservation laws in SR is quite clear, and
since SR is (logically and historically) a natural starting point and a limiting
case for GR, it is useful to resort to the correspondence principle in
analyzing the issue of conservation laws. One ought to clarify in this
context what can or should be called a conservation law in GR; that is to
say, what quantities, properties, and facts known in SR can be generalized
in GR.
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The connection between a theory’s symmetries and its conservation
laws established by the Noether theorem greatly facilitates understanding
the essence of the problem. In classical mechanics and in SR, there are ten
space-time conservation laws: of energy (1), of momentum (3), of angular
momentum (3), and of the velocity of the center of inertia (3). In accor-
dance with the Noether theorem, the number of conservation laws is
directly determined by the fact that classical mechanics is based on the ten-
parameter Galilean group, while SR rests on the ten-parameter Poincaré
group.

In classical mechanics, the laws of nature or, more to the point, the
action is invariant with regard to the following transformations of the
Cartesian system of spatial coordinates and time (t, x, y, z) � (t1, x1, y1, z1):
displacement of the origin of time (one parameter, ût), rectilinear displace-
ment of spatial coordinates (three parameters, ûx), rotations of the system
of coordinates (three parameters; e.g., three Euler angles), and transforma-
tion to another inertial system (three parameters, the components of relative
velocity).

In SR, a similar role is played by the Poincaré group, which includes
four space-time translations and six rotations (three purely spatial and three
Lorentz “rotations”). In each case, the breakdown of the number of
conserved quantities, 10 = 1+3+3+3 and 10 = 4+6, reflects the structure of
the corresponding  group, and their total number, 10, is determined by the
number of space-time dimensions (see §§9, 10).

In terms of the correspondence principle and the Noether theorem, the
question may now be posed as follows: What kind of structure in GR
corresponds to the ten-parameter Poincaré group describing the geometry
of Minkowski space? Sure enough, this is not the group of all continuous
coordinate transformations: not only because it is an infinite-parameter
group (though this, by itself, is sufficient to dismiss such a proposal), but
also because such a group can be easily introduced even in Minkowski
space-time.

The locally flat character of the geometry of space-time in GR is
usually not connected with the understanding of the Poincaré group as the
limit of a certain structure defined in general Riemannian space (see, for
example, Misner, Thorne, and Wheeler 1973). At the same time, the
description of the geometry of Minkowski space-time based on the
properties of the Poincaré group proved very fruitful in physics. It is
believed that in a generic Riemannian space (lacking movement symme-
tries), there is no natural way of defining a “natural” finite-parameter
family of transformations of coordinates (Trautman 1962) and that it makes
sense to speak only of the infinite-parameter group of all smooth
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transformations of coordinates. Yet, as the subsequent analysis will show,
the space-time symmetries can be linked not only to motions in space, but
also to the observer’s displacements, that is, to the displacements of an
appropriately defined reference system.

In the case of a homogenous space, and in particular in SR, we know
of two equivalent interpretations of spatial transformations: active and
passive. According to the active interpretation, the system of coordinates
does not change, while the geometrical or physical system under consider-
ation, for example, the region in which the field variables do not vanish, is
transformed. The active viewpoint may alternatively be characterized as
follows: The observer (reference system) stands still, whereas the entire
space moves “dragging” all objects along with it. According to the passive
viewpoint, space and the objects stand motionless while the observer
(reference system) moves. As a result of each of these procedures, the
coordinates in the spatial region under consideration undergo change, but
the difference between the active and passive approaches cannot even be
expressed in “internal” terms, that is, not supposing some embedding space.

In a generic Riemannian (arbitrarily curved) space, the active approach
is impossible: In the general situation, space cannot be shifted along itself,
and a complex enough system (for example, of n+2 points in n-dimensional
space) cannot be appropriately displaced without internal changes (in the
above example, without changing the distances between the points).
However, the passive approach—the “movement” of an observer, that is,
of a properly defined reference system—leads, as we shall see, for n-
dimensional Riemann space, to an n(n+1)/2-parameter set of coordinate
transformations, the set possessing a quasigroup structure generalizing the
structure of the Poincaré group (§9).

But before considering this suggestion in detail, let us discuss the
connection between conservation laws and the concept of reference system.

8. Conservation Laws and the Concept of Reference System

The problem of conservation laws in GR is inseparable from the issue of
space-time reference systems. The fairly common neglect of the concept of
reference system in GR could be justified if physicists were only interested
in scalar quantities, which do not depend on the reference system; but
energy, at any rate, does not belong among such quantities. There is a clear
connection between conservation laws and reference systems in SR, where
the conserved quantities are defined by the invariance of the action with
regard to Poincaré transformations connecting various inertial reference
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systems. From a mathematical point of view, one selects  a set of standard
coordinate systems in Minkowski space (those that allow a physical
interpretation in terms of reference systems), and the coordinates are
generated by a quite rigorous procedure.

The mixing of the concepts of reference system and coordinate system
in general relativity—which is justly criticized—has nevertheless a
reasonable foundation. After all, a reference system in physics is, first and
foremost, a concrete way of establishing coordinates for space-time points.
Such a physical incarnation of a coordinate system is called below a
coordinate reference system.

It is true that such clarifications may seem pointless in GR, since there
is an opinion, traceable to Einstein, that, in the Riemannian geometry of
GR, it is not possible to impart a metrical (measurable, physical)
significance to coordinates. Yet, for all the heuristic importance of this idea
for Einstein, it is wrong. Suffice it to recall that the very first coordinate
system introduced into Riemannian geometry by Riemann himself (1854)
had a quite definite metrical significance and was applicable to arbitrary
Riemannian spaces. Other similar ways of introducing coordinates are also
known. One of these—perhaps logically the simplest—will be used in the
next section to characterize the symmetries of general Riemannian space.

In SR, inertial reference systems are typically described in Cartesian
coordinate systems in Minkowski space. Space-time in SR can surely be
described by means of any coordinates (spherical, cylindrical, etc.), but as
far as conservation laws are concerned, only Cartesian coordinates are
usually considered.

Is such a restriction necessary? A restriction to the class of standard
coordinate systems is certainly necessary; this much is required to bring out
the ten-parameter (10 = n(n+1)/2, with n = 4) transformations describing
the space-time symmetry in SR (homogeneity and isotropy). But restriction
just to Cartesian coordinates is not necessary. For example, one may
employ spherical coordinates or any other class of standard, that is,
equivalently defined, coordinates. Each of these classes of coordinates is
fit for describing the space-time symmetry in SR.

In SR, the inertial coordinate reference systems are called “privileged,”
and not without reason. The notion of a privileged class of coordinate
systems in GR will be linked here only to the possibility of a general,
standard, and constructively described (physically realizable) way of
introducing coordinates. In this sense, there may be many classes of
“privileged” coordinates.

The need for a preliminary restriction and standardization in the way
of describing coordinates is quite natural. To identify the invariant proper-
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ties of some object, various observers have to study it with the possibly
strictest limitations in their techniques of investigation. All observers must
follow standard methods so that the results of their investigations disclose
the object’s properties, rather than the properties of the observers.

Therefore, in GR it is essential first to determine the class of standard
coordinate reference systems. After all, conservation laws emerge, accord-
ing to the Noether theorem, for any action, including the general relativis-
tic action, only if a finite-parameter set of coordinate transformations is
identified in a physically sensible way. This is why, in pursuing the
Noether approach to conservation laws, one has to identify a natural, finite-
parameter family of coordinates in general Riemannian space.

9. The Poincaré Quasigroup

Let us start with a simple question: Why are there exactly ten conservation
laws in SR? The answer is: Because space-time has four dimensions.

Indeed, a Noether-type connection between conservation laws and
space-time symmetries provides a relationship between the number of
symmetries in the n-dimensional Minkowski space-time and n itself: there
are n independent translations along n axes and Cn

2 = n(n–1)/2 independent
rotations; altogether this yields s = n(n+1)/2 independent symmetry
transformations. If n = 4, then s = 10.

The origin of the ten-parameter Poincaré group describing space-time
symmetries in SR is similar. This group, like any other, may be represented
in a purely algebraic fashion, but physicists do not always take care to
distinguish between the Poincaré group and one of its representations: the
linear representation in a 3+1-dimensional Minkowski M 3+1 space. This
representation is formed by linear transformations from one Cartesian
system of coordinates in M 3+1 to another, which conserve the metrical
structure—the expression for the metrical interval

I = ûs2 = –c2(ût)2 + (ûx)2 + (ûy)2 + (ûz)2.

It should be emphasized that the linear representation is just one of many
possible representations of the Poincaré group, and that it cannot be
extended to Riemannian space, for this representation relies upon the linear
structure of M 3+1, which is not available in curved space.

So the conservation laws in SR are generated by the symmetries of the
metrical space-time structure, the number of the symmetries being
determined by the number of space-time dimensions. The space-time in
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question is a linear space. The concept of linear space is also sufficient for
constructing a finite-parameter (in the n-dimensional case, an n(n+1)/2-
parameter) set of coordinate systems, or, in physical terms, a set of inertial
reference systems in SR. It is through the Noether theorem that this ten-
parameter set of coordinate reference systems leads to ten conservation
laws.

Let us now turn to the Riemannian geometry of GR, where we also
want to identify a natural n(n+1)/2-parameter set of coordinate reference
systems in an arbitrary n-dimensional Riemannian space.

The obvious and seemingly crucial objection to such an undertaking
hinges on the fact that the presence of a natural, finite-parameter set of
coordinate transformations must reflect some sort of space-time symmetry,
a property that does not change from point to point. And such a property,
it would seem, must be nonexistent in a space with variable curvature. And
yet, even in an arbitrarily curved space-time of GR, there is a property that
does not change from point to point: the space-time dimensionality. The
task now is to turn this trivial observation into a productive strategy.

First of all, we cannot use the concept of linear dimensionality, which
ensures the connection between conservation laws and the dimensionality
in SR. We also cannot use the topological concept of dimensionality, since
it ignores the metrical space-time structure, which is basic to GR.

Yet a metrical concept of dimensionality is available. Consider a
generalization of the following geometrical fact:

In a Euclidean (pseudo-Euclidean) n-dimensional space, the position
of an arbitrary point can be determined solely in terms of its distances
(intervals) to n fixed points. (Gorelik 1978, 1979)

In a Riemannian space, a suitable measure of “distance” can be
provided by the interval (or the world function; see Synge 1960) I(p,p1)
between two arbitrary space-time points p and p1. The description of space-
time in terms of I is equivalent to the conventional description employing
the metric tensor gik or the intervals ds2 between infinitely close points:

      (15)I (p,p1 ) 
 (P
p1

p

ds)2, ds2

 gikdx i dx k.

Here integration from p and p1 is done along a geodesic.
Let us now fix a certain point b in space. This defines the function x(p)

� I(p,b) on this space. Fixing n such points {bi}, i = 1, . . . n, in an n-
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dimensional space provides a full-blown basis and, hence, generates a
definite coordinate system: each point p is assigned n numbers xi(p) =
I(p,bi). These coordinates, introduced with the aid of the spatial metric, can
be called metric coordinates. In the four-dimensional Minkowski space,
any four points in a generic position (that is, not lying on the same plane)
provide a basis.

Consider the set of all such metric coordinate systems generated by
various bases. Since each coordinate system is completely determined by
the position of its basis points, the transformation from one such system to
another can be accomplished by indicating the positions of new basis
points {b1i} in the old basis {bk}, that is, by supplying n2 numbers I(b1i,bk),
i,k = 1, . . . , n, which can be represented in the form of a matrix.

Not all of these n2 parameters are equally essential. To exclude
“coordinate” effects, one should use standard, normalized bases, with the
intervals between basis points fixed, for example, in such a way that they
coincide with the intervals between the following points in Minkowski
space: (0000), (0a00), (00a0), (000a). Each of these bases is characterized
by the basis diameter a, which can be made infinitesimal thus effecting a
local correspondence of GR with SR.

The use of normalized bases reduces the number of parameters by
n(n–1)/2. So the set of bases (or of metric coordinate systems) is character-
ized by n2 – n(n–1)/2 = n(n+1)/2 parameters. Thus in four-dimensional
space, there are ten such parameters, just as in a Poincaré group.

Each coordinate reference system thus constructed is obtained in the
same way and can be introduced in an arbitrarily curved space.

The n(n+1)/2-parameter set of bases (or of coordinate reference
systems) introduced via the above procedure generates a quasigroup
structure. Indeed, fix a particular basis b0 (the lower index will now range
over bases). Then any other basis, as mentioned, corresponds to a certain
n × n matrix. The sequence of transformations from basis b0 to basis b1 and
then from b1 to b2 is equivalent to a transformation from b0 directly to b2.
This defines the group product of two matrices (not in the sense of matrix
algebra, of course). This product is determined by the geometry of a given
space-time Ün, specifically, by a function of 2n variables, the function
defining the interval between two points p and p1 in terms of the intervals
between these points and the points of both bases:

      (16)I (p,p1) 
 + (. . . (p,b i ) . . .; . . .I (p1,b k) . . .) .

The function + provides a global characterization of the geometry of Ün.
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If Bik = I(b1
i, b2

k) is the matrix effecting the transformation from basis
b1 to b2, the inverse matrix (in the group sense) should naturally be the
transposed matrix BT responsible for the transformation from b2 to b1. The
product and inverse operations define an n(n+1)/2-parameter quasigroup in
space Ün: the Poincaré quasigroup � Ün of this space (Gorelik 1981,
1988).

The mathematical notion of group has long been customary in physics.
A quasigroup, on the other hand, is a relatively new object. What makes it
different is the nonassociative character of the law of multiplication; that
is, for three quasigroup elements A, B, C, in general, (AB)C g A(BC)
(Bruck 1971). As algebraic objects, quasigroups have been known in
mathematics for about sixty years. Yet the significant role played by them
in differential geometry (Sabinin 1981) has only recently been recognized.
Nonassociativity is the price to pay for the shift from highly symmetrical
spaces (e.g., those of constant curvature) to spaces with variable curvature.

In Minkowski space, the quasigroup � Ün becomes isomorphic to the
ordinary Poincaré group: � M n = � (n). Indeed, every transformation from
the Poincaré group in the standard linear representation is in one-to-one
correspondence with a certain transformation of spatial unit vectors (0100),
(0010), and (0001). The basis formed by the initial point of the unit vectors
and by their ends, corresponds, one-to-one, to a set of spatial unit vectors.
And every transformation of unit vectors corresponds, one-to-one, to a
transformation of the basis.  

The set of transformations of one basis into another in Minkowski
space—those expressed in terms of mutual distances (intervals) of the
points constituting the bases—forms a nonlinear representation of the
Poincaré group. This representation is more complex than the conventional
linear representation, but it allows a generalization in the case of curved
space.

10. What Kind of Symmetry is Described by the
Poincaré Quasigroup?

It is widely believed that the notion of symmetry can be expressed mathe-
matically by an associated group (Weyl 1952, Vizgin 1972), yet the
concept of symmetry is consistent with a more general mathematical
structure. There are no apparent reasons, for example, for precluding a set
of transformations from being associated with a symmetry, if the set is
closed under composition, contains a unit (identity) transformation, and,
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for each transformation, contains the inverse one. But this is precisely what
a quasigroup is. The demand for associativity (converting a quasigroup
into a group) seems no more imperative for the description of symmetry
than the demand for commutativity (valid only for the simplest symme-
tries).

Although the requirement that the set of coordinate transformations
must form a group is frequently mentioned in connection with the Noether
theorem, it plays no role there. The structure of a set of transformations
remains, of course, essential for their physical interpretation and for the
specification of the corresponding conserved quantities.

What kind of symmetry of the arbitrarily curved space Ün is described
by the quasigroup � Ün? A generic curved space-time Ün retains a property
that does not change from point to point: the number of its dimensions. It
is an aspect of the space-time homogeneity that is not affected by the
transition from flat to curved space-time. The quasigroup � Ün represents
a symmetry of a description of space Ün by an observer (in the four-
dimensional case—a coordinate reference system produced by four space-
time points with fixed intervals between them). This symmetry can be
looked upon as a relation among space-time descriptions of one and the
same physical system by different, albeit standard, observers (coordinate
reference systems).

Does the use of special, “privileged” coordinates contradict the
principle of general covariance underlying GR? Not at all. What really
matters in GR is the possibility to have a construction realizable in an
arbitrary geometry rather than the possibility of using arbitrary coordi-
nates. After all, the latter possibility does not hinder conservation laws in
Minkowski space.

When the invariance of a certain object is at issue, one should be clear
about instrumental procedures—their standardization and the “calibration”
of the instruments themselves—employed in describing that object. In our
case, the object in question is curved space-time.

In speaking of an arbitrary reference system in SR, one usually means
(explicitly or not) “any inertial Cartesian reference system.” This is why in
GR, too, it is necessary to seek a constraint on reference systems, the
constraint “equal in power” to the restriction to inertial and Cartesian
systems in SR. In a privileged class of coordinate systems in GR, there
must be “as many elements” as there are in the class of inertial reference
systems in SR. In the same way, reference systems in GR must be capable
of being constructed “everywhere.” If a reference system is related to some
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space-time structure, then it must be possible to relate the reference system
with a similar structure located at any other position in space-time.

To describe a curved (as well as flat) space, one is free to use any
coordinates. Yet the task of describing a physical situation with the aid of
conserved quantities implies a restriction on coordinate systems. The
demand for such a restriction is not unique to GR. In SR, the very
expressions for the conserved quantities contain information about the type
of coordinate reference systems employed. This information is packed into
the quantities X and � describing coordinate transformation; see Equations
(3a, b).

Likewise, in GR, the conserved quantities, which are engendered by the
ten-parameter Poincaré quasigroup and the general relativistic action,
contain information about the type of coordinates employed, and also about
the geometry of a given space-time Ün. This information is packed into the
function +; see Equation (16). Of course, the conserved quantities of SR
also encapsulate information about the geometry of Minkowski space-time,
but only in a trivial sort of way, because this geometry is fixed and global.

11. The Ten Noether Laws of Conservation of
Energy-Momentum-Moment in GR

Thus the desired n(n+1)/2-parameter set of transformations of coordinate
systems (or, remembering the need for a physical interpretation, of
coordinate reference systems) is built into an arbitrarily curved Riemannian
space-time and has the structure of a quasigroup.

The general relativistic action

      (17)A 
 P (Rg½
� mm)d4x,

which is invariant with respect to arbitrary transformations of coordinates,
is invariant, in particular, with regard to transformations from � Ün. This
is why, thanks to the Noether theorem for the action (17), the n(n+1)/2-
parameter set of coordinate transformations � Ün generates n(n+1)/2
conservation laws of the type 0i,A

i = 0, A =1, . . . , n(n+1)/2. It seems
natural to refer to the quantity ,A

i as the density of energy-momentum-
moment.

In Minkowski geometry, n(n+1)/2 quantities ,A can be easily divided
into n and n(n�1)/2 values—energy-momentum and moment—since the
Poincaré group contains translation and rotation subgroups. In the case of
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a general Riemannian space, whose symmetries are described by a
quasigroup, the division of the conserved quantities ,A into similar sets is
a special task that cannot be accomplished uniquely.

The ten conserved components of energy-momentum-moment, ,A
i, A

= 1, . . . , 4(4 +1)/2, generated by the Poincaré quasigroup � Ü4, satisfy the
Noether-type conservation laws

0i,A
i  =  0,

but in the generic Riemannian space Ü4, these differential laws can take on
an integral form only as balance equations

Q,
i
Ad3

1i 
 0.

In general, however, it is not possible to turn these balance equations into
the conventional conservation laws, as in SR (see §2, Equations (6–8)),
since in GR, the supposition that “the field at infinity must vanish”
radically restricts the space-time geometry. Recall that this problem was
actually discussed in 1918 by Einstein, who supported the restriction to
island situations (see §4).

The density of energy-momentum-moment ,A
i is a nonlocal quantity,

since it is determined by the entire geometry (via the function +); this is
why ,A

i cannot, in general, have simple transformation properties (similar
to tensor properties in SR). And the ten energy-momentum-moment
quantities do not, in general, decompose into smaller sets like energy-
momentum and angular momentum.

However, the quantities ,A
i have resulted from the same general

Noether approach as in the rest of physics.

12. Conclusion

The problem of conservation laws in GR has a dramatic history. The
gravitational energy-momentum pseudotensor emerged as early as 1913,
two years before the real birth of GR. And yet, many decades after the
emergence of GR, experts do not regard the pseudotensor solution to be
completely satisfactory.

The drawbacks of the pseudotensor approach are especially obvious
from the viewpoint of the correspondence principle and in light of the
Noether theorem.
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The theory’s symmetry, required by the Noether theorem, can be
identified, in the case of GR, with the dimensional homogeneity of space-
time: the number of dimensions of Riemannian space is the same at each
point. The description of the dimensionality of Riemannian space Ün in
metric terms makes it possible to introduce the Poincaré quasigroup � Ün,
with the number of parameters, n(n+1)/2, connected with the number of
dimensions in the same way as in the case of the Poincaré group in SR. And
in the limiting case of Minkowski space, this quasigroup becomes isomor-
phic with the Poincaré group.

By the standard Noether procedure, this symmetry of the generic
Riemannian space-time Ün turns up ten laws of conservation of energy-
momentum-moment, or, more precisely, ten balance equations.

The conservation laws, which are based on the Poincaré quasigroup,
have an advantage over the pseudotensor laws, not only because “pseudo”
smacks of “sham” and “quasi” suggests “having resemblance to.” Philo-
logy aside, the quasigroup approach also has methodological advantages.

Abandonment of associativity makes the quasigroup structure less
definite and more flexible than the group structure. Groups are distin-
guished in a discrete way. Their differences cannot be made infinitely
small. For example, the group of circular motions does not collapse with
the group of rectilinear motions with the increase of the circle radius. But
quasigroups can change continuously, turning into each other. The Poincaré
group is sharply separated from the de Sitter group and other groups
realizable in the homogeneous spaces of GR. But the Poincaré quasigroup
connects and unites all these cases. This suggests yet another way of
looking at the transition from SR to GR.

And finally, the Noether-type approach to conservation laws in GR
provides a novel basis for the study of concrete situations arising in this
theory, where the conserved quantities may be useful.
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