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THE PROBLEM OF INTERNAL AND EDGE CRACKS
IN AN ORTHOTROPIC STRIP*

by

F. Delale and F. Erdogan
Lehigh University

ABSTRACT

The plane elastostaé{c probiem of internal and edgewcracks in an
infinite orthotropic strip is considered. The problems for the ma-
terial types“I and 11 are formulated in terms of singular integral
equations. For the symmetric case the stress intensity factors are
calculated and are compared with the isotropié“resu!ts. The results
show that because of the dependence of the Fredholm kernels on the
elastic constants, unlike the crack problem for an infinite plane,
in the strip the stress intensity factors are dependent on the elastic
constants and ara generally diffefent than the corresponding isotropic

results, -

1!rThis work was supported by NASA-Lang1ey under the Grant NGR-39-007-011
and by NSF under the Grant ENG 73-045053 AO1.
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1. INTRODUCTION

In plane elastostatic problems for an infinite orthotropic medium
containing a tine crack [1-3] or a series of collinear cracks [4] it
was shown that the stress intensity factor is identical to that found
for isotropic materials. However, if the geometry of the medium is
bounded, it is expected that in orthotropic sg1ids the material con-
stants would influence the stress intensity factors. A bounded speci-
men geometry which is sufficiently simple for the purpose of analysis
and at the same time is of sufficient practical interest is that of a
long strip containing internal or edge cracks. The main objective of
the present paper is by considering this problem to give some idea
about tﬁe dggree of influence of the material orthotropy on the stress
intensity f;ctors. The equivalent isotropic case is one of the more
widely studiea crack problems in technical literature (see, for ex-

ample, [5-13]).
2.  FORMULATION OF THE PROBLEM

Consider the plane problem for the orthotropic strip shown in
Eiguré’]. Referring to, for example [14]1, the equilibrium equations

for an orthotropic p{ane may be expressed as

22U , 5*u %y _
Bra tayr PP aay T 0
| (1)
32y 92y %y _ “
w2 T By eyt t By oy T o

where u, v are the x,y-components of the displacement vector and
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By = Tymo » By == 4 By = 14vnp (2)
. ] ﬁ \’12\’21)612 2 -|-l ? 3 2] ]
for generalized plane stress, and
b b b
B1=.J_1, 32":"2"2".’ 53='|+._.1.2_ (3)
12 12 12
for plane strain. Here, Eij’ Vi Gij are the engineering elastic con- _ ;
stants, (i,j)=(1,2,3), the indexes (1,2,3) corresponding to the direc-
tions (x,y,z}, and the matrix (bij) is given by
(bys) =B =R, A= (ay) L (L.5)=(L2,3) ,
(4) N
a0 7 VEyy 5 ayy = vy5/8 = agy » (14) o
The solution of the problem shown in Figure 1 may be obtained by using j
the standard superposition technique. Thus, for the purpose of evaluat- j
ing the stress intensity factors and obtaining information relevant to %
‘ the fracture of the solid, it is sufficient to consider the problem in : -‘j
which statically self-equilibrating crack surface tractions are the o :
o R i -1
only external loads. " i
To solve the differential equations (1} let E
ﬁ }f “ “ u(x,y)"= %.[:[f](u,x)cosay + gy (o,y)sinoxlda | '" . '"E
- w " " - (5)
. vix,y) = %J [f,{e,x)sinay + g,(a,y)cosax]da
5“: Substitutiﬁg from (5} into (1) the functions f; and g, (i=1,2) are- g
» obtained as follows: §
¥ - ]
|
i
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SICEY - @™ L flan = | epy@e ™
J y/B Y v/8 (6)
550 5.0
91(u.y) = Z Bj(a)e J ° . gz(a,y) = z ijj(a)e J 5 ,

where S11-+15y are the roots of the following characteristic equation:
by 2 402 = = - =
5" ¥ Bys +35 0, S3=-5) 4 S5 = -5, » (7)

and the constants By, B, c4s and dj. (i=1,..,4) are given by

By = (B3-ByBp-1)/By » Bg = By/By

= = . = o= 2
oy = wey = (1-gst/Bys) » cp = =q = (1-Byshhegs, »  (8)

~dy = (s] - ByBE)/BysqBg » dy = -dyls, - ByBE)/B3S,Bg

o
14

Assuming that x and y are axes of symmetry for loading as well as

,

geometry, the unknown functions Aj(u) and Bj(a), (3=1,..,4) are de-

termined from the following conditions:

u(x,y)+0 , v(x,y)+0 for yr= ,

Ouxlhsy) =0, o, (hy) =0 , Oy

u(0,y) = 0 (0,y) =0 , 0Oy

s Oyy
cxy(x’o) =0 , 0w<h ,
' “oyy(x,+0) =-ap(x) , a<|x|<b -,

v(;,O) =0 , 0<|xj<a , b<|xl<h ,

-4
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where the crack surface traction p(x) is a known function. The seven
homogeneous conditions (9-12) may be used to eliminate seven of the un-
knowns and the mixed boundary conditions (13) would give a system of
dual integral equations to determine the eighth. In this paper, de-
fining a new unknown function
o(x) = 2 v(x,0) , a<ix|<b , (14) -
the problem is reduced to a singular integral equation by using the
first equation of (13). From the second equation of (13) it is seen w
that
${x,0) =0 , O<ix|<a ., b<|xj<h , |
b __
Ja ¢{x)dx =0 . (15) %
Examining the roots of (7). it may be obsérved that %
(i) for ﬁ4<05“85 = 33'45§>0 there are four real roots, sy, S, g
S37~51» and s4=--52‘(s1>0, 52>0); in this case the cqrresponding :
material will be classified as type I; ]
“ (i1) for 86<0 the roots“are compiex, s]==w1*-jw2='-53. ;g E
sz=rui-im2= -Sg (m1>0, w2>0) and the related material will be classi- :; j
fied as type II; and 5 i
(i11) for B8,>0, B.>0the roots would be pure imaginary g E
4 6 “ G
S’l=iw3="‘53, 52=im4="'54- “ :3:
In practice generally 34 is negative. Therefore the problems of § %
interest are those relating to mateﬁials_type I and II only. This f 'f
“ “ ! G
-5~ -
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classification seems to be necessary in order to pursue the formulation
of the problem beyond equations (6) without introducing unnecessarily
complicated complex algebra. Also, in this paper only the case of
generalized plane stress will be considered. For plane strain it is
sufficient to replace the quantities Ex/(I -V, V.,)s E /(1 ”xyvyx)' and

Xy yx

v, E./(1-v ) by byqs by, and by, respectively (see equation 4).

XX xy Vyx
Because of symmetry considering only one quarter of the medium
shown in Figure 1, and using the standard stress-displacement relations
for plane stress, after somewhat lengthy but routine analysis, for ma-
terial type I (i.e., for real s, and s,) the problem may be reduced to

the following integral equation:

J [ost Tt Ky (%6t) - ky (x,=t) To(t)dt

w{1-v_ v..)

T, P e e
M }

under the additional coﬁdition (15). Here the kernel is given by

-(h-t)ags/s
k (x,t) = : J [Kl( X,0)e ¥

— ﬁ ~(h-t)os,
" | + Ky(x,0)e ( )u35/52]d¢j . (17)

The expressions for K], Kz, and m14_areagiven in Appendix A

For material type Il the roots of the characteristic equation (7)

are complex. Defining

S.i=u).l+'iu]2= "53 3. 572=m1-im2= "54 ’ (18)

-

SALEe T SR (2

A T




sy

SRR

{ ! % B ’ [MA_MMI._W_ﬂmM$ mesy
and, assuming that w]>0, in this case the integral equation becomes
Jb[ LI (x t):k {(x,~t)16(t)dt
a T-x" tex M2vM rAM
w{(1=v_. v, )
= - 5E I"x X P(X) * a<x<b » (19)
y 14 e
again subject to condition (15). The kernel ko is given by - i
k008 = | Kyltiale d (20)
where the function K3 and the related constants ry are defined in the B
Appendix B, " %
One may note that in the special case -of single internal crack, §
(i.e., for a=0, b<h) the integral equations {16} and (19) may be ;
written as ' é
b 1 oom ;
I [——+ k-(x,t)]@(t)dt == “"'P(x) ’ ~b<x<b y 1
t'!x 1 M- H
-b 1 %
2E.m 2E 1
i=1 = rdx;!L_ﬁ -y 14 {
(1'1 :2) ’ M, = " My = _ - (2]) ;:
“ 1 ey Vyx 2 vxyvyx J
where i=1 and 2 correspond to materials type 1 and II, respectively. f
In this case the single-valuedness condition (15) becomes |
: i
k!

b } '
[b€¢(x)dx =0 . : (22)

o s !
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3. STRESS INTENSITY FACTORS

The standard definition of the stress intensity factors at the

crack tips a and b is
k(a) = 1im VZ(3-X} o, (x,0) ,
X+ yy
k(b) = Vim yZTX-BY o, (x,0) . (23)
%+b Yy

To determine the asymptotic behavior of the cleavage stress Ty around
the crack tips, first it may be observed that the index of the singular
integral equations (16) and (19) is +1. Therefore, the solution is of

the following form [15]:
dLt) = F(e} (t-a)(b-t)] . (24)

Next, it should be pointed out that the left hand side of (16) and (19)

gives cyy(X,O) for x outside the interval (a,b) as well as within.

Thus, making a change in variable

X = Qgé s ; Q%Q , to= bég-r + E%Q _ “(25)
for example, (16) may be expressed as
H:[;‘-s—+ (s, 0(r)dr = SEL, PIA. coc 02 (26)
where
als) = o,y (,0) 5 ¥lr) = alt) = F(r)(1-47) (27)

L%ﬁw-zwr ST e




and k{(s,r} and F(r) are bounded functions. The objective is then to
determine the asymptotic behavior of q(s) around s=+1, (|s|>1) in terms
of the unknown function F(r) which 1% obtained by solving the integral
equation (26) in -1<s<1 where 4{s)=-p(x) is known. To do this let us
assume that the bounded funciion F{r) can be represented by the follow-

ing infinite series in Tchebyshev polynomials:
F(r) = g Ay To(r) ‘??)

Substituting from (28) into (26) one obtains

g A6, (s)+H (s)] = %%51 - " (29)

1 k(s,r)T (r)

6 (s) = l-[] L , H[(s)s= 1-{ = dr . (30)
n T [y (res)/T-F% n Tl AT

Here, Hn(s) is a bounded function. To determine G, one may use the

expression
T T {r)dr n ’
1 n o {z~v2%-T)

21 (r-z)/r%-] /z2-1

where z is the complex variable in the plane cut along (-1,1). Ob-

serving that on the real line (z2-1)% is an odd function, from (30)

and (31) it foliows that

] [§us§n(5)¢sz-l]" ... N (32)
san()/ETT =

Gh(s) =

As s+ (32) yields

T S PN SRS r
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++1, (s»1): Gn(s) = - JEl:T + R](s) .

s+-1, {s<-1): Gn(s) = ﬁ%%%; + Rz(s) ’ {33)

whére the functions R] and R2 are bounded at s=+1.

Now, observing that H (*l) finite, T (1)= =1, T ( 1)=(- 1) , from

:(29) and (33) the asymptotic behavior of q(s} is found to be

++1, (5>1): gﬂ(.iglz - 'ﬂ‘)"rsj.l:‘-"' Ra(s) »
s+-1, (s<-1): gﬁ(]—s-’l & —Ff—)-,g.z].:.l_-r Rgls) . (34)

where again the functions Ry and Ry are bounded at s=*1. Gojing back

to the original quantities by using (25) and (27), (34) becomes

x+b, (x>b): —-yy(x 0) - FO)R + RS(X) ’

M ,qrg—sy
»0 .
xra, (X':a): yy;: ) Sé.r'_;.!!_; + Rs(x) ’ (35)

where the functions R5 and R6 are also bounded at x=b and x=a. Thus,

from (23) and (35) the stress intensity factors are found to be
k(b) = - MF(1)/Z , k(a) = MF(-1)/2 . (36)

In the case of fully imbedded cracks the integral equations (16},

(19) or (21) can always be reduced to the normalized form (26) and can

be solved by using the technique described in [16].

-10-
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4. EDGE CRACKS

In equations (16) and (19) the kernels kl(x.t)-k](x,-t) and
ka(x.t)—kz(x.-t) are bounded provided b<h (see Figure 1). For b=h,
that 1s in the case of edge cracks, the integral equaticns are still
valid but these kernels do not remain bounded as x and t go to the
end point b=h ana, consequently, the singular behavior of the solu-
tion at x=b=h wuy no longer be described by (24}. Expressing the
kernels in {16) and (19) as

ki(xrt) = kif(xvt) + kiS(x’t) » (131 sz)

whers kif is bounded in the closed -interval [a,h], the unbounded parts
kis’ (1=1,2) may be obtained from (17) and (20) by examining the asymp-
totic behavior of the integrals for large values of o. Thus, after

some routine analysis we €ind

157 Mg {S(h-x)+{h-t)Bs/s, s,(h-x) + (h-t)Bs/s,

. ™8 " ™9 (37)
5 {h-x) + (h"t)Bs/Sz Sz(h-X) + (h‘t)—ﬁsfsz ’ -

1 a5 (t-X)
P1aMg |wz{t-x)* +wy(Zh-t-x)*

k25(x,t) =

r26m2(2h-t-x)

¥ SE(Tht-x) TP (Zh-T-X) %

 ry (2het-x)
* TR T (2h-t-%)7

1=




e

¥ SZhEx)? UL (38)

where the constants m; and ry are given in the appendices. Thus, for

example, the integral equation (16) may be expressed as
" [t et ko (%,8) + ko o{X,t) - Kq(x£)T6(t)dt
5 X t+x  "ist™? 18 %00 - Kplxpt)de -

= - plx) , acx<h . (39)

In {39) for the purpose of asymptotic analysis transferring the

. terms involving the bounded kernels to the righthand side one may

write
h 1 _
[ Bty g nelefedds = Pyx) o ecxen (40)

where P1 is a bounded function in [a,h]. Letting now

£ (t)
£) =
o) (h-t)%(t-a)P

where f, is H-continuous in [a;h], and following the procedure outlined

in [15], the characteristic equations for u and g are found to be

otis =0 . =12 (42)
eosTe * '“_1%'-“—1_5_ [y 6(Bs/51)%(51/85) + myz(s1/85)

+ mla(s‘élgg) + m-lg(Bs/Szz,)-u(Sz/Bs)] =0 . (43)

-12-
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Similarly, for material type 1Y described by (19), assuming the

solution again as given by (41), the characteristic equations become

cotng =0 , B=1/2 (44)

1 WaT o5 Fa7 s ..~ Yo
costa + W Ezg + W cos(Zutan E‘T)

Wy rnetw,rr w
vestear . -1 %2
ST sin(2atan m{l . (45)

At the imbedded crack tip x=a it is seen that the singularity has the
expected 1/2 power. On the other hand, as in the isotropic case, (43)
and (45) have no rcot for which O<Re{a)<1, meaning that at x=h there is
no power singutarity. One may also proceed and;investigate the possi-
bility of a logarithmic singularity for the so]htion. Thus, letting

a=0 in (41) and defining the sectionally holomorphic function

F] (Z) = ?]T- [a j::(-iz) dt . (46)
we ;ind [15]
= 1 - 1 1
FI(Z)A' STOTB (5.5 + w(ha)? Tog(z-h} f Po(z)
1P ey,  filacotms - (h) b

-13-



where P2 and P3 are bounded at x=h and have at most a singularity of
lower order than B at x=a. Substituting from (47) into (40}, multi-
plying through by (x-a)B and letting x»a, it is found tha* cotwp=0,

giving again £=1/2, On the other hand, in the neighborhood of the

gﬁend point x=h one obtains

S
M 4™ 5P

where P4 contains all the bounded terms around x=h on the ieft hand

side of (40). Similarly, for the material type II one finds

(1091 9571051 901 Vg7 1 Vo) J10g (=X} + Qg (x) = 0y (x)

. 1
[] ¥ (_m%ﬂu%)r‘] 4"19
(49)

It turns out that, as in the case of isotropic materials [10], the co-

efficient of the logarithmic term in (48) and (49) is identically zero,
meaning that the solution may not have logarithmic singularity at x=h.

In the edge crack probiem th2 integral equatigﬁ"”ﬁg) and the similar

equation for the material type II are solved by defining

olx) = £xL o EGSL - | (50)

and by using the numerica1 technique described in [10]. In this case

the stress intensity factor at x=a becomes

K(a) = MF(-1)VZE , &= (had2 . (51)

-14-
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5.  RESULTS AND DISCUSSION
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As an example the following two orthotropic materials will be

considered: N

8x106 psi (55.16x10° N/m2) ;
v 24.75 108 psi (170.65x 109 N/m2) -

6y = 0.7x10% psi (4.83x109 N/m?)

vxy = 0.036 ,

Type It E

m
1

n

Type_II: "

E. = 3.1x10% psi (21.37x709 N/m2)
E, 9,7 x105 psi (66.88x 109 N/m?)

Byy = 2.6x106 psi (17.93x109 N/m2) ,

”xy = 0.2

Tables 1-3 show some of the calcuiated results for the stress inten-
sity factors. 1In all the calculations it was assumed that the crack
surface traction was constanf, i.e., " - ?
h_=: - - _ ) ;_ | -
ux oyy(x,o) -p{x) -p, (52) -

which corresponds to uniform tension of the strip away from the crack

region. Table 1 shows thé results for an internal crack of length 2b o
(see Figure 1, a=0) which was found by solving (21). The stress in- é
{ i tensity factors used in the tables are defined by (23) and are calcu-":
' lated by using (36) for internal and (51) for edgéfcracks.n_Thg stress.
intensity factors for symmetrical]y located two collinear cracks o
(Figure 1) are given by Table &.J'Table 3 gives the rgsults for sym- . P

metric edge cracks.

e, T

15~ . ) | o



The tables also contain the stress intensity factors for the
isotropic strip which are included for comparison. A close examina-
tion of the integral equations (16), (19), or (21) would indicate that
in orthotropic materials since the Fredholm kernel ky or k2 1s heavily
dependent on the material constants, the solution must also depend on
the constants. On the other”hand, in isotropic materials even though
the structure of 'the integral equation is identical to that of (16) or
(19) (see, for example, [10]), the kernel of the integral equation is
independent of the elastic constants and the constants appear in the
equation as a multiplying factor (in the form of (1+x)/4u) only. The
stress inteﬁsity factors given in the tables indicate that the results
for the orthotropic strip are indeed different than the isotropic re-
sults. The tables also show that for approximately the same modulus
ratio Ey/Ex (in the example approximately 3/1), depending on the re-
maining constants, the materials may not only be of different type
(I or II), also the stress intensity factorﬁ may be greater (in this
case, in material type I1) or smaller (in material type I) than the
isotropic values. In orthotropic materials there are three independent

material parameters, namely, G  /E , Ex/Ey’ and Vyy* Therefore, it

sy Ey
does not seem to be feasible toymaie a systematic study and demonstrate
the effect of the material orthotropy on the stress intensity factors.
However, it appears that there exists a difference between isotropic
and orthotropic results and in highly orthotropic materials it may

be significant.

In solving this problem, the numerical analysis produced a some; )

what unexpected result. First, it should be pointed out that the

- 16—
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results given in the tables are accurate to roughly three significant
digits, the remaining digits may not be accurate. On the other hand,
after rotating the matéﬁia] 90 degrees (i.e., taking the strip parallel
to the less stiff axis and the crack along the stiffer axis) and fully
expecting to obtain a different set of results, the print out'for the
stress intensity factors came out to be identical - in all eioht digits -
to the original values obtained for the strip which was parallel to the
stiff axis. Furthermore, the ratio of the function F(r) defined by (27)
at all points in -1<r<1 for the 0 and 90 degree orientations was found
to be constant, indiéating that the crack surface displacements for the

two cases are related by (see (14), (27), and (36))
Vo (X,0M ) = v, (x,0)Mg, (53)

where the constant M is defined by (21). This simply shows that the
kernels k, and k, which appear in the fntegra1 equations (16), (19),
~and (211 remain invariant under a 90 degree rotation for a given ortho-
tropic strip.

Table 1. The stress intensity factor k{b)/pgvb for an internal crack
of length 2b in isotropic and orthotropic strips.

. s Orthotropic
b/h Isotropic Tyoe 1 Type 11
+0 +1.,0 +1.0 +1.0
0.1 1.0060 1.0044 1.0064
0.2 1.0246 1.0182 1.0261
0.3 1.0578 1.0428 1.0611
0.4 1.1094 1.0811 1.1155-
0.5 1.1869 1.1387 1.1966
0.6 1.3033 1.2264 1.3183
0.7 - 1.4888 1.3674 1.5099
0.8 1.8160 1.6241 1.8471
0.9 2.5809 2.2487 2.6278
-17-




Table 2, The stress intensity factors k{a) and k(b)} for symmetric
collinear internal cracks in a strip.

§ k(a)/p /% k(b)/p V%

a/h | b/h 2 0

T Isotr.| Type 1| Typell { Isotr. | Type I | Type Il

+0 0.4 | (+=) (o0 (0} +1.569 | +1.630 | +1.575
0.1 0.5 1.176 1.160 1.179 1.115 1.100 1.117
0.2 0.6 | 1.109 1.095 1.111 1.094 1.080 1.096
0.4 0.8 [ 1.097 1.081 1.099 1.122 1.098 1.127
0.5 0.9 | 1.127 1.704 1.132 1.221 1.170 1.231
0.6 | =1 |-+1.600 | +1.531 | =+1.613 {-rea) (+) (4)
0.1 0.91 1.678 1.595 1.689 1.694 1.607 1.705
0.5 0.95f 1,194 1.160 1.200 1.445 1.351 1.461
0.5 0.98] 1.268 1.226 1,275 1.875 1.721 1.883
0.5 | = A.640 | +1.600 | +1.661] {e0) (-+0) {+40)

Table 3. The stress intensity factor k{a)pg/% for the case of
symmetric edge cracks, =(h-a)/2.

k(a)/p, V&
a/h Isotropic| Type I | Type Il
0.1 .2.980 2.978 2.982
0.2 2.218 2,208 2.220
0.3 1.907 1.887 1,912
0.4 1,742 1.710 1.750
0.5 1.640 1.600 1.661
0.6 1.600 1.531 1.613
0.7 1.574 1.486 1.590
0.8 1.567 1.462 1,587
0.9 1.576 1.458 1.593
0.98 1.682 1.467 1.598
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Expressions for the functions K] and K2 and the constants m, (see

equation 17) (material type 1):

1
Ky (xsa) = 257 ) [my cosh(s1ah)

APPENDIX A

cosh(s ox) :
(m] 10P5 tanh(s,eh) :

-~ %
cosh(s, ax) g
+ myiy185) = Mg ”EEH(E“&ET'(m3m1155) 3
| | é
+ mymgBy tanh(s1ah))] . %
i
cosh(s1ux) \ =
B o

5 N

]
Kz(“'“) 75 ey ™ ey (-mgmyq

cush(saax)

m
11
iy, Mooy tanh(speh)) * g SosRs aRT :

m |
11
. (—;E-mzmgssutanh(s1ah) + My 18e)]

B

e

P(a) = mqmy tanh(szah) - myig tanh(sluh) ,

= 1+v

yiS191/85 » My = 1V Sp0plBs v M3 T TRA

=
—
1

§atV. C d252/85 ,

My = SptvCp s Mg = Vytdysy/Bg Mg T Vyy

R U P T T T Pt Dy T SR i T D

= vxys1+c1~ » Mg = vxy52+°2 » Mg = c]s1-1

3
~3
Ll

]
h

Mg = Cp5pml s My * dyesy/Bg s Myp = dpSylPg

3
s g
K
A
A
.
!
:
5

= dy=dglyy/Mp s Ty = (mg~mghy 1/my ) /2My 3 s
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Mg = MyMygMghg o Myg = MyBg(mymy gmymyq )/25ymy 5
My = -MgBg(maty Hiymg}/25,my 4
Mg = =MgMyq Bg(mytmomy o/ o) /2my 35,

Myg = Mghy 4 By (Mytmgm,/my )/ 255 5

APPENDIX B

Expressions for the function K3 and the constants ry (see equa-

tion 20) (material type II):

Ks(x,t.u) = F;E%TET {[-r6 sin(wzux)sinh(w1ax)
*rg cos(mzax)cosh(m1ax)1 . [r]G sin[wza(h-t)] .
. (rg Sin(mzah)COSh(m1ah) * g cos(mzah) sinh(w]ah))
Wy " c . (h-t)1)
- Mg (Eﬁ-cos[wza(h-t)] - 51n[m2a -
-(r1 sin(wzah)sinh(mlah) try, cos(wzah) cosh(m1ah))]
+ [r5 sin(wzax)sinh(w]ax) +rg cos(wzax) cosh(w]ax)]ﬁ-

+ [y sinlupa(h-t)] - (rgcos(wyah)sinh{wah)

w
- 10 sin(wzah)cosh(m]ah)) * g (m% cos[waa(h-t)]

P2~




- sinfwga(het)]) + (-r, sinfu,zh)sinh(uah)

+r

—t

o
e
n

[¢]
—
L

H

cos(maah) cosh(w]dh))]} »

=g sinh(m]ah)cosh(w1uﬁ) * rog sin(wzah)cos(mzah) .

by sy E ity o, 030,

1

Eptifg o G = ByiBy o 4y = BytiByy 4y = Bymibyy

“ﬁ+“yx37 » Py = w2+“yx58 » I3 = ]+vyx(w139'm2610)/65 ,
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Figure 1.
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Infinite strip with two internal cracks.
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