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The purpose of this study was to review the distinction between formative- and reflective-indicator

measurement models, articulate a set of criteria for deciding whether measures are formative or reflective,

illustrate some commonly researched constructs that have formative indicators, empirically test the

effects of measurement model misspecification using a Monte Carlo simulation, and recommend new

scale development procedures for latent constructs with formative indicators. Results of the Monte Carlo

simulation indicated that measurement model misspecification can inflate unstandardized structural

parameter estimates by as much as 400% or deflate them by as much as 80% and lead to Type I or Type

II errors of inference, depending on whether the exogenous or the endogenous latent construct is

misspecified. Implications of this research are discussed.

A substantial amount of attention has been paid in the past 25

years to the issue of construct validation in the behavioral and

organizational sciences. Construct validation is important because,

as Schwab (1980) has noted, establishing the substantive validity

of a construct before examining its construct validity may lead to

the accumulation of knowledge that later must be discarded: “Or-

ganizational behavior has suffered because investigators have not

accorded construct validity the same deference as substantive

validity. . . . As a consequence, substantive conclusions have been

generated that may not be warranted” (p. 34).

Thus, it is not surprising that a considerable amount of effort has

been devoted to developing procedures to improve the scale de-

velopment process (cf. Hinkin, 1995; Nunnally & Bernstein, 1994;

Schwab, 1980; Spector, 1992). These efforts are evident in the rise

in the reporting of confirmatory factor analyses, convergent and

discriminant validity, and internal consistency reliability as part of

the scale validation process.

However, these procedures are all founded on classical test

theory and its assumptions about the relationships between latent

constructs and their measures. Classical test theory assumes that

the variance in scores on a measure of a latent construct is a

function of the true score plus error. Thus, meaning flows from the

latent construct to the measures in the sense that each measure is

viewed as an imperfect reflection of the underlying latent construct

(cf. Bollen, 1989; Nunnally & Bernstein, 1994). For example, one

could view a person’s performance on a series of two-digit addi-

tion problems as a reflection of his or her “two-digit addition

skill.” Or one could view the following four items developed by

Wong and Law (2002) as reflections of a person’s ability to assess

the emotions of others: “I always know my friends’ emotions from

their behavior,” “I am a good observer of others’ emotions,” “I am

sensitive to the feelings and emotions of others,” and “I have good

understanding of the emotions of people around me.” The key

point is that in this type of measurement model, the latent construct

is empirically defined in terms of the common variance among the

indicators.

Although this type of measurement model is conceptually ap-

propriate in many instances, Bollen and Lennox (1991) have noted

that it does not make sense for all constructs. Indeed, they argued

that measures do not always reflect underlying latent constructs

but sometimes combine to form them. This is consistent with the

views of several other researchers (cf. Blalock, 1964; Bollen,

1984, 1989; Law & Wong, 1999; MacCallum & Browne, 1993)

who have argued that for some latent constructs, it makes more

sense to view meaning as emanating from the measures to the

construct in a definitional sense rather than vice versa. For exam-

ple, most researchers today conceptualize job satisfaction as com-

prising a variety of distinct facets, including satisfaction with one’s

work, pay, coworkers, supervisor, and promotion opportunities.

From a conceptual perspective, these distinct facets of satisfaction

together determine a person’s overall level of job satisfaction.

Thus, in this type of measurement model, the latent construct is

empirically defined in terms of the total variance among its indi-

cators, and the indicators only capture the entire conceptual do-

main as a group.

This is a critically important distinction, because many of the

scale development procedures recommended in the literature only

apply to constructs with reflective measures, and if they are ap-

plied to constructs with formative measures, they can undermine

construct validity. For example, most texts on scale development

processes (cf. Schwab, 1980; Spector, 1992) recommend that items

that possess low item-to-total correlations should be dropped from

a scale to enhance internal consistency reliability. Although this

recommendation is appropriate in the case of reflective indicators,

because the items are all sampled from the same content domain,

if this recommendation is followed for constructs with formative
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indicators, it may result in the elimination of precisely those items

that are most likely to alter the empirical and conceptual meaning

of the construct. Thus, as noted by Bollen and Lennox (1991), the

conventional wisdom on item selection and scale evaluation must

be qualified by consideration of the directional relationship be-

tween the indicators and the latent construct.

The distinction between formative and reflective indicators is

also important because failure to properly specify measurement

relations can threaten the statistical conclusion validity of a study’s

findings. For example, Law and Wong (1999) have noted that

measurement model misspecification can sometimes bias esti-

mates of the structural relationships between constructs and po-

tentially undermine statistical conclusion validity (although it did

not do so in their study). If this were found to be generally true, it

would suggest that measurement model misspecification may

cause Type I and/or Type II errors of inference in hypothesis

testing.

However, as yet it is not known just how much impact such

misspecification might have or under what conditions it is likely to

have biasing effects. In addition, little guidance exists for research-

ers about how to distinguish formative from reflective indicators or

about how to develop, model, and evaluate constructs with forma-

tive indicators. Therefore, the purposes of this study were to (a)

discuss the distinction between formative- and reflective-indicator

measurement models, (b) develop criteria for deciding whether

measures are formative or reflective, (c) illustrate constructs that

should be modeled as having formative indicators, (d) empirically

test the effects of measurement model misspecification using a

Monte Carlo simulation, and (e) recommend new scale develop-

ment and validation procedures for constructs with formative

indicators.

Measurement Model Specification

As noted by Cook and Campbell (1979), Nunnally and Bern-

stein (1994), Schwab (1980), and others, researchers use multiple

measures of their constructs because (a) most constructs cannot be

measured without error, (b) it is difficult for a single indicator to

adequately capture the breadth of a construct’s domain, and (c) it

is necessary to unconfound the method of measurement from the

construct of interest. Thus, the use of multiple measures with

maximally different methods is the best way to ensure that the

measures validly and reliably represent the construct of interest.

However, once a researcher has developed multiple measures, he

or she faces the problem of how to accurately model the relation-

ships between the measures and the construct of interest. Generally

speaking, two different measurement models have been mentioned

in the structural equation modeling literature: the common latent

construct model with reflective indicators and the composite latent

construct model with formative indicators.

Common Latent Construct Model With Reflective

Indicators

Models of this type posit that covariation among measures is

explained by variation in an underlying common latent factor. It is

for this reason that the indicators are referred to as effects indica-

tors (Bollen, 1989; Bollen & Lennox, 1991; MacCallum &

Browne, 1993) that are reflective of the underlying construct they

represent. This is illustrated in Figure 1A by an ellipse with several

arrows emanating from it to a set of indicators. We refer to the

factors in this model as common latent constructs for two reasons.

First, this is the most common type of measurement model found

in the behavioral and organizational literature. Second, the latent

construct is empirically defined in terms of the common (shared)

variance among the items.

As noted by Bollen and Lennox (1991), there are several key

features of this type of measurement model that should be recog-

nized. First, the direction of causality flows from the construct to

the measures in the sense that the construct explains the variation

in the measures. Second, the indicators in this type of measurement

model should be highly correlated due to the fact they all reflect

the same underlying construct. As a result, they should exhibit

high levels of internal consistency reliability. Third, “for all prac-

tical purposes, equally reliable effect indicators of a unidimen-

sional [construct] are interchangeable” (Bollen & Lennox, 1991, p.

308). This is true because each of the measures is supposed to be

sampled from the same conceptual domain and to represent all

aspects of it. This implies that dropping one of two equally reliable

indicators from the measurement model should not alter the mean-

ing of the construct. Fourth, in this type of measurement model,

error is associated with the individual measures rather than with

the construct as a whole (though an overall calculation of the

reliability of a set of measures can be made on the basis of the

individual measure reliabilities). One advantage of this is that it

Figure 1. Factor specification for the common latent construct model

with reflective indicators (A) and the composite latent construct model

with formative indicators (B).

711MEASUREMENT MODEL MISSPECIFICATION



permits researchers to evaluate the differential reliability of the

individual items in their scales. This is helpful when designing

scales because it provides a basis for identifying weaker items and

suggests areas where the scale could be improved. Finally, because

the measures are all imperfect reflections of the underlying con-

struct, a summed scale score will not adequately represent a

construct with reflective indicators, and using a scale score in place

of the latent construct will result in inconsistent structural esti-

mates of the relationships between the construct and other latent

constructs.

Composite Latent Construct Model With Formative

Indicators

Less well known than the reflective-indicator measurement

model is the formative-indicator (or causal-indicator) measure-

ment model. As indicated in Figure 1B, this model posits that the

measures jointly influence the composite latent construct, and

meaning emanates from the measures to the construct in the sense

that the full meaning of the composite latent construct is derived

from its measures. This has two important implications. First,

because the measures are not hypothesized to be caused—or

determined—by the composite latent variable, the model itself

does not assume or require the measures to be correlated (cf.

Bollen, 1984; Bollen & Lennox, 1991). Indeed, it would be en-

tirely consistent with this measurement model for the indicators to

be completely uncorrelated. Therefore, internal consistency reli-

ability is not an appropriate standard for evaluating the adequacy

of the measures in formative models. Indeed, as noted by Bollen

and Lennox (1991), “causal [formative] indicators are not invali-

dated by low internal consistency so to assess validity we need to

examine other variables that are effects of the latent construct” (p.

312). This would suggest that to assess the validity of formative

indicators, researchers must pay particular attention to nomologi-

cal and/or criterion-related validity.

A second implication is that the consequences of dropping a

formative indicator from a measurement model are potentially

much more damaging than the consequences of dropping a reflec-

tive indicator. Although dropping one of two equally reliable

measures from a reflective-indicator model does not alter the

empirical meaning of a construct, that may not be true for a

formative-indicator model. Assuming the measures are not redun-

dant (i.e., they tap different facets of the conceptual domain),

dropping a measure from a formative-indicator model may omit a

unique part of the conceptual domain and change the meaning of

the variable, because the construct is a composite of all the

indicators. This is true because unlike reflective measures that

individually tap the entire conceptual domain, formative measures

only capture the entire conceptual domain as a group. This sug-

gests that for formative-indicator models, following the standard

scale development procedures—that is, dropping the items that

possess the lowest item-to-total correlations or the lowest factor

loadings—may result in the removal of precisely those items that

would most alter the empirical meaning of the composite latent

construct. Doing so could make the measure deficient by restrict-

ing the domain of the construct (cf. Churchill, 1979; Schwab,

1980). Thus, this is another reason why measures of internal

consistency reliability should not be used to evaluate the adequacy

of formative-indicator models.

Related to the above discussion, because the composite latent

variable is explained by the measures in a formative-indicator

model, high intercorrelations between formative indicators can

make it difficult to separate the distinct impact of the individual

indicators on the construct. This happens because the indicator

coefficients are analogous to those obtained from a multiple re-

gression of the latent construct on the formative indicators, and the

stability of these coefficients is influenced by both multicollinear-

ity and sample size (cf. Bollen & Lennox, 1991). This makes it

difficult to identify the unique effect of each indicator on the

construct. This is not the case in the reflective-indicator model, in

which the coefficients relating the latent construct to its indicators

are analogous to simple regression coefficients. Thus, although

multicollinearity may be viewed as a virtue for reflective indica-

tors, it can be a significant problem for measurement-model pa-

rameter estimates when the indicators are formative.

A final feature of the formative-indicator model is that like the

reflective-indicator model, it includes an error term. However,

unlike the reflective-indicator model, error is represented at the

construct level rather than at the individual-item level. The error

estimate for this model captures the invalidity of the set of mea-

sures—caused by measurement error, interactions among the mea-

sures, and/or aspects of the construct domain not represented by

the measures—rather than the amount of error attributable to each

individual measure. The presence of a construct-level error term is

also a reminder of the fact that a formative-indicator construct is

more than just a shorthand way of referring to an empirical

combination of measures. It possesses what MacCorquodale and

Meehl (1948) termed surplus meaning:

These constructs involve terms which are not wholly reducible to

empirical terms; they refer to processes or entities that are not directly

observed (although they need not be in principle unobservable); the

mathematical expression of them cannot be formed simply by a

suitable grouping of terms in a direct empirical equation; and the truth

of the empirical laws involved is a necessary but not sufficient

condition for the truth of these conceptions. (p. 104)

Consequently, as is true for reflective-indicator constructs, a

construct with several formative indicators cannot be adequately

represented by a summed scale score, and using a scale score to

represent a formative-indicator construct will lead to biased esti-

mates of the structural relationships involving the construct. As

noted by Bollen and Lennox (1991),

if the composite [scale score] is the only variable measured with error,

then the coefficient estimated for that variable will tend to be too low.

In the more realistic situations of more than one explanatory variable

containing error, the coefficient estimates can tend to be downwardly

or upwardly “biased.” (p. 310)

This is true even if a weighted sum is used instead of an un-

weighted sum. The only time this would not be true is in the

unlikely event that all of the coefficients relating the measures to

the construct were equal to 1, and construct-level error was equal

to 0.

Criteria for Distinguishing Between Reflective- and

Formative-Indicator Models

Given the importance of the differences between formative and

reflective measurement models, it is important for researchers to
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carefully evaluate the nature of the relationships between their

constructs and measures. The first question to consider is whether

the indicators are defining characteristics of the construct or man-

ifestations of it. If the measures represent defining characteristics

that collectively explain the meaning of the construct, a formative-

indicator measurement model should be specified. However, if the

measures are manifestations of the construct in the sense that they

are each determined by it, a reflective-indicator model is appro-

priate. This judgment can be made by carefully thinking about

whether it is more likely that changes in the latent construct would

produce changes in the measures than it is that changes in the

measures would produce changes in the latent construct.

A second question is whether the indicators appear to be con-

ceptually interchangeable. If the measures are reflective, they

should share a strong common theme, and each of them should

capture the essence of the domain of the construct. Indeed, reflec-

tive measures are typically viewed as being sampled from the same

conceptual domain. However, this is not generally true for forma-

tive measures (cf. Bollen & Lennox, 1991). If the indicators are

formative, they may not necessarily share a common theme, and

each of them may capture a unique aspect of the conceptual

domain.

Closely related to this, a third question to consider is whether the

indicators would be expected to covary with each other. A

reflective-indicator measurement model explicitly predicts that the

measures should be strongly correlated with each other because

they share a common cause (i.e., they all reflect the same under-

lying latent construct). In contrast, a formative-indicator measure-

ment model makes no predictions about the correlations among the

measures. They might be high, low, or somewhere in between.

Thus, if the indicators are not expected to be highly correlated, a

reflective-indicator measurement model would seem to be inap-

propriate. However, if the indicators are expected to be highly

correlated, then either model might be appropriate, and one would

need to rely on the other criteria.

A final question to consider is whether all of the indicators are

expected to have the same antecedents and/or consequences. Re-

flective indicators of a construct should all have the same ante-

cedents and consequences because they all reflect the same

underlying construct and are supposed to be conceptually inter-

changeable. However, because formative indicators are not neces-

sarily interchangeable and may tap unique aspects of the concep-

tual domain, they would not necessarily be expected to have

similar antecedents and consequences. Therefore, if some of the

measures are expected to have different antecedents and/or con-

sequences, they should be modeled as formative indicators,

whereas if they all share virtually the same antecedents and con-

sequences, they should be modeled as reflective indicators.

A Continuum of Reflective- and Formative-Indicator

Measurement Models

The distinction between reflective- and formative-indicator

models can be generalized to higher order factor structures. Up to

this point, the discussion has focused exclusively on the relation-

ships between measures and first-order latent constructs. However,

it is important to recognize that conceptual definitions of con-

structs are often specified at a more abstract, second-order level,

with multiple first-order subdimensions serving as reflective or

formative indicators (cf. Bacharach, Bamberger & Sonnenstuhl,

2002; Baum, Locke, & Smith, 2001; Demerouti, Bakker, Nachre-

iner, & Schaufeli, 2001; Holtom, Lee, & Tidd, 2002; Hom &

Kinicki, 2001; Mitchell, Holtom, Lee, Sablynski, & Erez, 2001).

Because of this, it is possible for a single multidimensional con-

struct to have one type of measurement model relating its measures

to its first-order subdimensions and a different measurement model

relating its subdimensions to the second-order latent construct they

represent. It is also possible for a construct to have a mixture of

some reflective and some formative indicators at either level of

abstraction.

Figure 2 illustrates a series of three related models with reflec-

tive indicators, and Figure 3 depicts a corresponding series of

models with a mixture of reflective and formative indicators. The

first panel in each figure represents, respectively, the common

latent construct and composite latent construct models discussed

above. The other panels represent important elaborations of these

initial models. There are several planes represented in each of

these figures. The top one represents the conceptual plane, whereas

the bottom one represents the observational plane. The middle

planes represent first- and second-order empirical abstractions.

The figures are drawn in this way to emphasize two important

distinctions: (a) The latent constructs (whether first or second

order) are empirical abstractions intended to formally represent the

hypothetical constructs, but the two are not synonymous (cf.

Bollen, 1989), and (b) neither the hypothetical constructs nor the

latent constructs that represent them can be measured directly

without error (cf. Bacharach, 1989; Schwab, 1980).

Figure 2 depicts the most commonly used measurement models

in behavioral research. Panel 1 of this figure shows a unidimen-

sional first-order latent construct with three reflective indicators.

Panel 3 shows a series of first-order latent factors with reflective

indicators, and it also shows that these first-order factors are

themselves reflective indicators of an underlying second-order

construct. Panel 2 also shows a second-order construct, with three

first-order latent factors as reflective indicators. However, each of

the facets in this panel has only a single reflective indicator. There

are a couple of interesting features of these models that are

important to recognize. First, the model shown in Panel 2 is not

identified, because unique values for the item-level error terms and

facet-level error terms cannot be simultaneously estimated. How-

ever, the model can be estimated if one or the other of these error

terms is fixed (usually at the value of 0, although not necessarily

so). Second, if the item-level error terms are fixed at 0, the models

shown in Panels 1 and 2 are empirically indistinguishable. That is,

their predicted covariance matrices are identical. Third, the models

shown in Panels 2 and 3 are conceptually equivalent, differing only

in the number of measures reflecting each of the facets. Generally

speaking, the difference between these models is that the model in

Panel 3 permits item-level measurement error to be distinguished

from facet-level measurement error. This advantage is a direct

result of the fact that multiple indicators of each facet are available.

Finally, it is important to recognize that the models represent a

continuum of conceptual differentiation in the sense that all three

might apply to the same hypothetical construct. The choice would

depend on the generality or specificity of one’s theoretical

interests.

To clarify this point, consider the case of a hypothetical con-

struct such as “liking for a supervisor.” One might define the
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domain of this construct as consisting of positive affect toward the

supervisor, the desire to interact with him or her, and positive

evaluations of him or her. If this construct is not the primary focus

of a study, a researcher might measure it in fairly general terms

with three items using the measurement model shown in Panel 1 of

Figure 2 (e.g., “I really like my supervisor,” “I enjoy working on

projects with my supervisor,” and “I think my supervisor is a nice

person”). However, if this construct is the primary focus of the

study, it is likely that the researcher will draw sharper conceptual

distinctions between the three facets of liking (i.e., affect toward,

interaction with, and evaluation of the supervisor) and spend

considerably more time and effort on the development and refine-

ment of the measures. In this instance, the researcher may develop

multiple items to measure each of the key facets of the construct

and use a measurement model like the one shown in Panel 3 of

Figure 2. For example, additional measures of the affect subdi-

mension might include items such as “I am very fond of my

supervisor” and “I feel positively toward my supervisor”; addi-

tional measures of the interaction subdimension might include

items like “I frequently talk to my supervisor during breaks and my

lunch time” and “I enjoy interacting with my supervisor outside of

work”; and additional measures of the evaluation subdimension

might include “My supervisor is one of the most pleasant people I

know” and “I believe my supervisor is an honest person.” The

advantage of this measurement model is that it allows one to

separate item-level measurement error from measurement error at

the level of the subdimension.

The model shown in Panel 2 is a transitional model that is

empirically equivalent to the model in Panel 1 (when the item-

level measurement error terms are fixed at 0) but represents a

conceptual elaboration of it because Panel 2 draws more of a

distinction between the facets. The difference between Panels 1

and 2 is that in Panel 2, the researcher has decided that the

conceptual distinctions between the facets are important to recog-

nize. This measurement model has also been used as a simplifi-

cation of the model in Panel 3 when the indicators of each facet are

scale scores created by averaging a set of items measuring the

facet. In this case, it is conceptually equivalent to the model in

Panel 3 but empirically different.

Figure 3 contains a parallel set of interrelated models that have

formative indicators of the composite latent construct. Panel 1

shows a composite latent construct with three formative indicators.

Panel 3 shows a second-order composite latent construct with three

first-order latent constructs as formative indicators, and each of

these first-order latent constructs has multiple reflective indicators.

Panel 2 is a transitional model that is empirically equivalent to the

model in Panel 1, when the item-level measurement error terms are

fixed at 0, and conceptually equivalent to the model in Panel 3

because both emphasize the importance of the conceptual distinc-

tions between the facets. Once again, the choice of measurement

model would depend on the generality or specificity of one’s

theoretical interest.

Overall job performance may be a good example of a construct

for which these measurement models would be appropriate. Many

Figure 2. Reflective-indicator measurement models.
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people are now recognizing that job performance is a composite

latent construct that has both in-role and extrarole facets. For

contextual performance researchers (cf. Borman & Motowidlo,

1993), the facets include task performance, job dedication, and

interpersonal facilitation, whereas for organizational citizenship

behavior researchers (MacKenzie, Podsakoff, & Ahearne, 1998),

the facets include in-role performance, helping behavior, sports-

manship, and civic virtue. However, regardless of the specific

approach, all of these researchers agree that overall job perfor-

mance is a multidimensional construct that comprises several

distinct subdimensions. Indeed, we would argue that (a) these

subdimensions are all defining characteristics of job performance,

because one cannot even think about evaluating job performance

without reference to one or more of them; (b) changes in a person’s

performance in these areas produce changes in his or her job

performance; (c) these subdimensions are likely to have different

antecedents; and (d) each of these subdimensions captures a

unique aspect of the job performance construct domain not cap-

tured by the others.

Having said this, it is obvious that there are many different ways

in which these subdimensions could be measured—ways that are

all equally acceptable from a conceptual point of view. Indeed,

Organ (1988) has argued that what we have referred to as helping

behavior may be measured differently in different organizational

contexts, and Motowidlo (2000) has taken this one step further and

argued that this subdimension of contextual performance should be

measured differently in different organizational contexts. But both

authors view these alternative measures as being equally appro-

priate reflections of the underlying construct. An employee’s

scores on the measures would be reflections of the extent to which

he or she engaged in helping behavior. Thus, the relations between

the measures and the first-order subdimensions of job performance

look like those depicted in Panel 3 of Figure 3.

If job performance is the focus of the study, researchers will

probably want to use the measurement model shown in Panel 3,

because it faithfully represents all of the conceptual distinctions

that the researcher believes are important, and it provides the most

powerful means of testing and evaluating the construct. In this

model, the item-level error terms capture the invalidity and unre-

liability of the individual measures. This might be caused by

contaminating constructs or random factors. However, the error

term associated with the composite latent construct of job perfor-

mance captures the invalidity of the set of subdimensions as

measures of the second-order construct. This invalidity may be due

to several factors, including the imperfect validity of the individual

components or their invalidity as a group due to the failure to

include all of the facets that are important aspects of job perfor-

mance in the measure.

If job performance is less central to the research and/or is part of

a complex system of relationships being investigated, researchers

might choose to use either the model shown in Panel 1 or the

model in Panel 2 with a single measure of each subdimension of

Figure 3. Formative- and mixed-indicator measurement models.
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performance. And researchers might use the model in Panel 2 with

scale scores as single measures of each subdimension when they

wish to have some of the benefits of the complete second-order

factor structure (see Panel 3) without drastically increasing the

number of measures in their model. However, because these scale

scores do not fully represent the subdimensions, there is a trade-off

being made. Finally, it is important to recognize that none of the

models shown in Figure 3 are identified as they are depicted. Ways

of achieving identification in constructs with formative indicators

are discussed in the Practical Guidelines for Developing and

Evaluating Constructs With Formative Indicators section.

Commonly Misspecified Constructs in Organizational and

Behavioral Research

We believe that much of what is said above about job perfor-

mance also applies to other important constructs in the literature.

This is consistent with the view of Law and Wong (1999), who

have noted that “the ubiquity of the composite view . . . is evi-

denced in other constructs such as role conflict and role ambiguity,

organizational commitment, occupational health, mental health,

and dysfunctional thought processes” (p. 149). Our own reading of

the literature suggests that there are many more constructs for

which a formative model is appropriate.

For example, another construct that probably should be modeled

as a composite latent construct is transformational leadership. This

construct is often conceptualized as being a function of charisma,

idealized influence, inspirational leadership, intellectual stimula-

tion, and individualized consideration (cf. Bass, 1985, 1998). In

our view, these forms of leader behavior are conceptually distinct,

likely to have different antecedents and/or consequences, and are

not interchangeable. Indeed, it is not difficult to imagine a leader

who is able to demonstrate consideration to followers (e.g., exhibit

individualized consideration) but is not able to get them to ques-

tion the appropriateness of critical assumptions they have about

their work (e.g., exhibit intellectual stimulation) or able to display

a sense of power and confidence (e.g., exhibit idealized influence).

Thus, even though this construct has consistently been modeled in

the literature as having reflective indicators (cf. Bycio, Hackett, &

Allen, 1995; Geyer & Steyrer, 1998; Tracey & Hinkin, 1998),

Bass’s (1985) transformational leadership construct should be

modeled as having formative indicators, probably as shown in

Panel 3 of Figure 3. The same can be said for Podsakoff, Mac-

Kenzie, Moorman, and Fetter’s (1990) slightly different concep-

tualization of transformational leadership.

Another example of a construct that should be modeled as

having formative indicators is procedural justice. According to

Colquitt (2001), procedural justice consists of the perceived fair-

ness of the procedures used to arrive at a person’s job outcomes,

including whether (a) the procedures are developed with the em-

ployee’s input, are applied consistently, are free of bias, and are

based on accurate information; (b) employees have influence over

the outcome; and/or (c) employees have the ability to appeal the

outcome. Clearly, perceptions of the overall fairness of the proce-

dures are the result of these things rather than the cause of them.

Moreover, the items are not interchangeable, and because all of the

characteristics mentioned in them are necessary for the procedures

to be perceived as fair, eliminating one or more of the items would

alter the conceptual domain of the construct and undermine its

validity. Finally, some of the things that one might do to make sure

that the procedures are free of bias and consistently applied would

be quite different from what one might do to ensure that the

procedures are developed with the employee’s input. Therefore,

contrary to how it has been modeled in the literature (cf. Colquitt,

2001; Masterson, 2001; Moorman, 1991), procedural justice

should probably be modeled as having formative indicators.

Of course, we do not mean to imply that every construct, or even

most constructs, should be modeled as having formative indica-

tors. Nor are we suggesting that the authors cited in the above

examples should have been aware of the distinction between

formative and reflective indicators at the time their research was

conducted. Instead, our point is that the specification of the mea-

surement model is a critical decision that needs to be made on the

basis of conceptual criteria like the ones that we have discussed.

The Severity of the Effects of Misspecification

The preceding examples demonstrate that measurement model

misspecification is fairly common among published research stud-

ies. This is an important problem, because empirical research (Law

& Wong, 1999) has demonstrated that measurement model mis-

specification can bias structural parameter estimates. In Law and

Wong’s study, the parameter estimate for the relationship between

job perception and job satisfaction was inflated by 132% (.995 vs.

.429) when job perception was incorrectly modeled as having

reflective indicators compared with when it was correctly modeled

as having formative indicators. However, both estimates were

statistically significant, so no error of inference was made. Law

and Wong also found that measurement model misspecification in

one construct can sometimes influence relationships in a model

that do not involve this construct and result in errors of inference.

Although Law and Wong (1999) provided an important dem-

onstration of the potential effects of measurement model misspeci-

fication, there are three factors that limit the extent to which the

findings of their study can be generalized. First, because their

results were only based on data from a single sample, it is difficult

to know whether the results might be sample specific. Second,

because Law and Wong’s sample was relatively small (N � 204),

and error rates are known to be sensitive to sample size, it is not

clear how generalizable their findings about the effects of mea-

surement model misspecification on error rates might be. Finally,

the generalizability of their results may also be limited by the fact

that the error term for the job perception construct was not iden-

tified when job perception was specified as having formative

indicators. This is because the job perception construct did not

have two paths emanating from it that led to independent con-

structs. It had two paths leading from it, but the two constructs

were causally related. This causes the error term for the composite

latent construct (job perception) and the structural error terms for

the constructs it influences to be indeterminate (i.e., unique pa-

rameter estimates are not obtainable). This is an identification

problem that was explicitly noted by MacCallum and Browne

(1993).

Simulation Objectives

In view of the above limitations, there is still not a very clear

picture of how severe the effects of measurement model misspeci-
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fication might be. Therefore, we conducted a Monte Carlo simu-

lation designed to investigate three unresolved issues. First, to

what extent is the estimate of a structural relationship between two

constructs (e.g., �) biased by measurement model misspecifica-

tion? We expected that the position of the misspecified construct in

a model (e.g., exogenous vs. endogenous) would influence the

degree of bias observed. This is because treating the formative

indicators of a construct as if they were reflective indicators

reduces the variance of the latent construct, because this defines

the construct in terms of the common variance of the indicators

rather than in terms of their total variance (cf. Law & Wong, 1999,

p. 145). When the misspecified construct is in the exogenous

position, the variance of the exogenous construct will go down,

thus resulting in an upward bias in the estimates of the impact of

this construct on other constructs because the estimate captures the

effect of a one-unit change in the exogenous construct on the

endogenous construct. Conversely, when the misspecified con-

struct is in the endogenous position, the variance of the endoge-

nous construct will be reduced, thereby producing a downward

bias in the structural estimate of the relationship between this

construct and an exogenous construct. However, when both the

endogenous and exogenous constructs are misspecified, this rea-

soning would lead to the prediction that effects would tend to

partially cancel each other out, thus producing less of a bias. The

magnitude of the item intercorrelations was also expected to in-

fluence the extent of the bias in the structural estimates, because

the greater the magnitude of the item intercorrelations, the smaller

the change in the variance of a construct produced by measurement

model misspecification. Therefore, the greater the magnitude of

the item intercorrelations, the smaller the bias in the structural

estimates produced by measurement model misspecification. In

this sense, the magnitude of the interitem correlations captures the

degree of measurement model misspecification, with high item

intercorrelations indicating a less severe misspecification than

lower intercorrelations.

The second unresolved question that the simulation was de-

signed to address is this: To what extent will measurement model

misspecification lead to errors of inference in hypothesis testing?

The statistical inferences about relationships between constructs

are based on the critical ratio of the magnitude of the unstandard-

ized structural estimate and the standard error of that estimate.

Therefore, things that bias either of these two values have the

potential to lead to errors. It is widely recognized that sample size

is inversely related to the magnitude of the standard error of the

structural estimate (Cohen, 1988). In addition, we have already

argued that the position of a misspecified construct in a model

(e.g., exogenous or endogenous) and the strength of the item

intercorrelations will bias the magnitude of the structural param-

eter estimates. Consequently, these factors should also influence

the error rate by influencing either the numerator or the denomi-

nator of the critical ratio. More specifically, we expected that (a)

misspecification of the exogenous construct would inflate the

structural parameter estimate, thus increasing Type I and decreas-

ing Type II error rates; (b) misspecification of the endogenous

construct would deflate the structural parameter estimate, thus

decreasing Type I and increasing Type II error rates; (c) as the

magnitude of the item intercorrelations increased, the bias in the

structural estimates produced by either type of measurement model

misspecification would decrease, and the effects of these factors on

the Type I and Type II error rates should decrease; and (d)

increasing the sample size would decrease the standard error of the

structural parameter estimate and increase Type I and decrease

Type II error rates. In addition, although we were not necessarily

predicting that these factors would interact to influence the error

rate observed, this possibility was examined in the simulation.

The third question addressed by the simulation is this: To what

extent are the most commonly used goodness-of-fit indices capa-

ble of detecting measurement model misspecification? This re-

search used the goodness-of-fit index (GFI), comparative fit index

(CFI), standardized root-mean-square residual (SRMR), and root-

mean-square error of approximation (RMSEA) as the indices of

model fit. The GFI was selected because it is one of the most

widely reported indices in the literature; the SRMR was selected

because Hu and Bentler (1998) found it to be the most sensitive

goodness-of-fit index for detecting misspecified relationships be-

tween latent constructs; and the CFI and RMSEA were selected

because Hu and Bentler (1998) found that they were the most

sensitive goodness-of-fit indices at detecting measurement model

misspecification. Because high CFI and GFI values and low

SRMR and RMSEA values are associated with better fitting mod-

els, we expected the CFI and GFI to be negatively related to the

degree of model misspecification and the SRMR and RMSEA to

be positively related to the degree of model misspecification. This

means that we should have observed main effects of the endoge-

nous and exogenous construct misspecification manipulations and

perhaps an interaction between the two on these goodness-of-fit

indices. Similarly, because the degree of measurement model

misspecification is greater when the item intercorrelations are low

than when they are high, we expected that our manipulation of the

magnitude of the item intercorrelations would have a main effect

on the goodness-of-fit indices. More specifically, as intercorrela-

tions among the items increased, the CFI and GFI should have

increased, and the SRMR and RMSEA should have decreased.

Finally, on the basis of previous simulation research (cf. Anderson

& Gerbing, 1984; Bearden, Sharma, & Teel, 1982; Bollen, 1990;

Hu & Bentler, 1998, 1999), we expected that sample size would be

positively related to the GFI, negatively related to the SRMR and

RMSEA fit indices, and generally not related to the CFI. However,

it is important to note that with the exception of Hu and Bentler

(1998), the effects of model misspecification on this pattern of

results have not been examined.

Simulation Design

Therefore, we conducted a Monte Carlo simulation to investi-

gate these issues. More specifically, the simulation examined the

empirical consequences of inappropriately applying a reflective-

indicator measurement model to a construct that should have been

modeled with formative indicators. Figure 4 summarizes the mod-

els tested in the Monte Carlo simulation conditions. The simulation

conditions varied on the basis of whether (a) the measurement

model of the focal construct was correctly specified as having

formative indicators (as indicated in Figure 4A) or incorrectly

specified as having reflective indicators (as indicated in Figures

4B, 4C, and 4D); (b) the size of the sample used in the simulation

was small (125), medium (500), or large (875); (c) the item

intercorrelations of the focal construct were relatively weak (.20),

moderate (.50), or strong (.80); and (d) the relationship between
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the exogenous and endogenous constructs was weak (e.g., .10),

moderate (e.g., .30), or strong (e.g., .50). It is important to note two

things about these models. First, the correctly specified model (see

Figure 4A) includes two reflective indicators in addition to its five

formative indicators. As we elaborate on in our discussion of

Figure 8 (presented later), these reflective indicators were included

to ensure that the otherwise formatively measured construct would

be identified (cf. MacCallum & Browne, 1993). Second, we did

not include cells in the simulation design where there was no

relationship between the exogenous and endogenous constructs

because we wanted to focus on how measurement model misspeci-

fication influences estimates of structural relationships of known

strength and statistical tests of those relationships, and we wanted

to do this under conditions in which the power was great enough

that any errors of inference (i.e., Type II errors) would be due

primarily to the manipulated factors rather than chance.

Manipulating whether the exogenous or endogenous constructs

were misspecified allowed us to examine the consequences of

measurement model misspecification on structural paths emanat-

ing from and going into the misspecified constructs. This is im-

portant because both types of misspecification are commonly

found in the literature, and their effects are expected to be differ-

ent. The manipulation of the magnitude of the correlations among

the indicators of the construct with the formative indicators al-

lowed us to test the significance of the effects of misspecification

across a variety of situations, including some in which the item

intercorrelations were high enough (e.g., .50 and .80) that it might

appear that a reflective-indicator model is appropriate. Indeed, a

five-item scale with item intercorrelations of .50 would have a

Cronbach’s alpha of .83, and with intercorrelations of .80, it would

have a Cronbach’s alpha of .95. Manipulating sample size in the

simulation permitted us to examine the effects of the size of the

sample on the likelihood of Type II errors and the goodness-of-fit

indices. The mean sample size in our simulation (500) was selected

to correspond to the mean sample size in articles published in

several organizational and management journals from 1995–1997

(cf. Scandura & Williams, 2000); the small sample size (125) was

selected to roughly correspond to the minimum needed to safely

meet the sample-size requirements for the maximum-likelihood

estimation method; and the large sample size (875) was selected to

be an equal distance from the mean sample size and to roughly

correspond to a typical “large” sample. Finally, the manipulation

of the strengths of the paths emanating from the construct with

formative indicators allowed us to evaluate the consequences of

measurement model misspecification across the range of relation-

ship strengths typically reported in psychological research (cf.

Cohen, 1992).

After the population values were set, nine population covariance

matrices were calculated for the true model (see Figure 4A)—one

for each of the unique combinations of interitem correlation

strength (.20, .50, .80) and relationship strength (.10, .30, .50).

Following this, a Monte Carlo simulation was conducted using

EQS 5.7b (Multivariate Software, Inc., Encino, CA). The simula-

tion generated raw data sets of varying sample size (125, 500, 875)

from each of the population covariance matrices, assuming a

normal distribution. The data were sampled from a normal distri-

bution because the maximum-likelihood technique used to esti-

mate the model assumes multivariate normality and because most

other researchers have used normally distributed data when con-

ducting statistical equation modeling simulation studies. A total of

500 data sets were generated for each condition. These data sets

were then fit to the models shown in Figure 4, generating param-

eter estimates and fit statistics for each replication. We were

particularly interested in the unstandardized structural parameter

Figure 4. Summary of simulation models.
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estimate (�), its standard error, and the overall indices of model fit

(CFI, GFI, RMSEA, and SRMR).

Simulation Results

Before turning to the results of the simulation study, it is

important to note that with 500 cases per cell and 108 cells, the

power to detect statistically significant effects of the manipulations

was quite large. Indeed, according to Cohen (1988), with our

sample size and using an alpha level of p � .05, there was virtually

a 100% chance of detecting a small, medium, or large effect.

Consequently, most of the manipulated effects and their interac-

tions were statistically significant ( p � .05). However, this does

not mean that they were all equally important in accounting for

variation in the criterion measures. Therefore, we calculated partial

�2 estimates to identify the most important effects, and only those

effects that accounted for approximately 5% of the variance in the

criterion measure are discussed.

Table 1 reports the means for the criterion measures for the

simulation treatment conditions, and Table 2 reports the analysis of

variance results. The first four columns of Table 1 indicate the

treatment condition. More specifically, the first two columns in-

dicate whether the endogenous and/or exogenous constructs were

misspecified, the third column indicates the interitem correlation

values, and the fourth column indicates the sample size of each of

the treatment conditions. Column 1 in Table 2 reports the main and

interactive effects of the manipulations of the misspecification of

the endogenous construct, exogenous construct, item intercorrela-

tions, and sample size. Although it was important for generaliz-

ability purposes to also manipulate the magnitude of the effect of

the exogenous construct on the endogenous construct (�) across a

range of effect sizes, the results shown in Tables 1 and 2 are

collapsed across these conditions for several reasons. First, the

effect of this manipulation on the magnitude of the � coefficient is

theoretically uninteresting, because this factor is a direct manipu-

Table 1

Criterion-Measure Means for All Treatment Conditions of the Monte Carlo Simulation

Treatment condition Measure

Endogenous
misspecified

Exogenous
misspecified

Interitem
correlation

Sample
size � SE of � CFI GFI RMSEA SRMR

No No .20 125 0.299 0.024 .996 .937 .021 .060
No No .20 500 0.301 0.012 .999 .984 .008 .030
No No .20 875 0.300 0.009 1.000 .991 .006 .023
No No .50 125 0.301 0.019 .997 .937 .022 .058
No No .50 500 0.300 0.010 .999 .984 .009 .030
No No .50 875 0.300 0.007 1.000 .991 .006 .022
No No .80 125 0.300 0.016 .998 .937 .021 .055
No No .80 500 0.300 0.008 1.000 .984 .008 .028
No No .80 875 0.300 0.006 1.000 .991 .006 .021
No Yes .20 125 1.717 0.270 .913 .880 .123 .075
No Yes .20 500 1.613 0.126 .916 .927 .121 .052
No Yes .20 875 1.608 0.095 .916 .934 .121 .047
No Yes .50 125 1.606 0.165 .960 .891 .098 .064
No Yes .50 500 1.564 0.081 .962 .939 .096 .038
No Yes .50 875 1.559 0.061 .962 .946 .096 .032
No Yes .80 125 1.549 0.109 .993 .917 .045 .055
No Yes .80 500 1.540 0.054 .995 .968 .043 .028
No Yes .80 875 1.543 0.041 .995 .976 .044 .022
Yes No .20 125 0.046 0.017 .897 .876 .134 .090
Yes No .20 500 0.047 0.009 .898 .922 .133 .077
Yes No .20 875 0.047 0.007 .899 .929 .133 .074
Yes No .50 125 0.047 0.017 .927 .860 .131 .105
Yes No .50 500 0.048 0.008 .929 .903 .129 .096
Yes No .50 875 0.048 0.006 .929 .910 .129 .094
Yes No .80 125 0.046 0.017 .932 .767 .146 .122
Yes No .80 500 0.046 0.008 .932 .797 .145 .119
Yes No .80 875 0.046 0.006 .932 .802 .145 .118
Yes Yes .20 125 0.263 0.103 .813 .826 .170 .101
Yes Yes .20 500 0.251 0.050 .814 .872 .169 .088
Yes Yes .20 875 0.253 0.037 .814 .879 .169 .086
Yes Yes .50 125 0.246 0.090 .889 .821 .153 .108
Yes Yes .50 500 0.249 0.045 .892 .866 .151 .098
Yes Yes .50 875 0.247 0.034 .892 .873 .151 .097
Yes Yes .80 125 0.234 0.086 .927 .754 .143 .122
Yes Yes .80 500 0.239 0.042 .928 .788 .142 .118
Yes Yes .80 875 0.235 0.032 .929 .798 .141 .116

Note. All means have been collapsed across levels of gamma. Endogenous � endogenous construct; Exogenous � exogenous construct; � �

unstandardized structural parameter estimate; CFI � comparative fit index; GFI � goodness-of-fit index; RMSEA � root-mean-square error of
approximation; SRMR � standardized root-mean-square residual.
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lation of the magnitude of this coefficient. Therefore, testing it

would simply reveal that our manipulation worked. Second, this

factor was not expected to influence the other criterion measures

(CFI, GFI, RMSEA, and SRMR). Indeed, the only consistent

effect of the � manipulation was that the overall goodness-of-fit

indices decreased as the � value increased, but only when the

endogenous construct was misspecified. Third, the addition of this

factor would have tripled the size of Table 1 and obscured the

more important relationships in the data.

Effects of the manipulations on the structural parameter esti-

mate and Type II error rate. As indicated in Table 2, the mag-

nitude of the structural parameter estimate (�) was primarily

determined by the endogenous and exogenous construct manipu-

lations and their interactions. These manipulations accounted for

21%, 19%, and 11%, respectively, of the variance of this criterion

variable. These same manipulations and their interactions ac-

counted for 5%, 27%, and 4%, respectively, of the variance in the

standard error of the structural parameter estimate. These effects

are depicted in Figure 5. Figure 5A shows that when the exogenous

construct alone was misspecified, the structural parameter estimate

(1.59) was 429% higher than its true value of 0.30. However, when

the endogenous construct alone was misspecified, the structural

parameter estimate (0.048) was 84% lower than its true value of

0.30. Finally, when both the endogenous and exogenous constructs

were misspecified, the structural parameter estimate (0.246) was

18% lower than its true value of 0.30. Figure 5B shows that

misspecification of the exogenous construct greatly inflates the

standard error of the estimate, misspecification of the endogenous

construct slightly deflates the standard error of the estimate, and

misspecification of both constructs has the net effect of inflating

the standard error. Thus, measurement model misspecification was

found to either inflate or deflate the structural parameter estimate

and the standard error of the estimate, depending on whether the

exogenous or endogenous construct was misspecified.

We investigated the extent to which misspecification influenced

inferences about the statistical significance of this relationship

(i.e., the Type II error rate) using logit regression analysis by

calculating the critical ratio of the unstandardized estimate to its

standard error and examining whether the ratio was greater or less

than the critical value of 1.96 (for � � .05). When the exogenous

construct alone was misspecified, the average Type II error rate

was found to be 0. When the endogenous construct alone was

misspecified, the average Type II error rate was 19%. Finally,

when both constructs were misspecified, the average Type II error

rate was 18%. This means that the statistical test falsely indicated

that there was no relationship between the two constructs when

there really was one 19% of the time when the endogenous

construct was misspecified, even though the power was sufficient

to detect even the weakest relationship virtually 100% of the time.

Thus, consistent with our expectations, (a) misspecification of the

exogenous construct inflated the structural parameter estimate but

did not reduce the Type II error rate (because it was already at 0),

and (b) misspecification of the endogenous construct deflated the

structural parameter estimate and, consequently, inflated the Type

II error rate. Although we did not have specific hypotheses regard-

ing the interactive effects, misspecifying both the exogenous and

endogenous constructs had almost exactly the same inflationary

effect on the Type II error rate as misspecifying the endogenous

construct alone (18% vs. 19%, respectively). However, as shown

in Figure 5, when both constructs were misspecified, the increase

in the Type II error rate was due much more to an inflation of the

standard error of the estimate than to a deflation of the estimate

itself, whereas when only the endogenous construct was misspeci-

fied, the increase in the Type II error rate was due more to a

deflation of the estimate than to an inflation of its standard error.

In addition to the effects discussed above, the standard error of

the estimate was also influenced by sample size (partial �2
�

11%), as expected. As indicated in Table 1, the standard error of

the estimate decreased as sample size increased. Moreover, this

effect was found to be stronger when the exogenous construct was

misspecified than when it was correctly specified (partial �2
�

7%).

Finally, as expected, the bias in the structural parameter estimate

(�) produced by the misspecification of the exogenous or endog-

enous constructs decreased as the item intercorrelations increased.

The same was also true for the bias in the standard error of the

estimate that was produced by the misspecification of the endog-

enous or exogenous constructs. However, contrary to expectations,

the Type II error rates did not follow this pattern, because the rates

of decline of the structural parameter estimate and its standard

error were different. The effects of misspecification of the exog-

enous construct on the Type II error rate decreased only trivially as

the item intercorrelations increased, whereas the effects of mis-

specification of the endogenous construct on the Type II error rate

actually increased slightly as the item intercorrelations increased.

Thus, the findings provide only partial support for the expected

effects; however, it is important to note that none of these inter-

action effects accounted for a very substantial percentage of the

variance (see Table 2).

Effects of the manipulations on goodness of fit. Generally

speaking, we expected to observe endogenous, exogenous, and

item intercorrelation main effects (and perhaps their interactions)

on the goodness-of-fit indices. We also generally expected sample

size to influence them, although less so for the CFI. Consistent

with these expectations, Tables 1 and 2 indicate that when the

endogenous construct was misspecified, the CFI decreased (partial

�2
� 32%); when the exogenous construct was misspecified, the

CFI decreased (partial �2
� 12%); and as the interitem correlation

values decreased, the CFI decreased (partial �2
� 14%). In addi-

tion, Figure 6A shows that there was also an interaction between

the manipulation of the exogenous construct specification and the

item intercorrelation that accounted for 7% of the variance in this

criterion variable. As indicated in this figure, misspecification of

the measurement model for the exogenous construct decreased

the CFI much more when the item intercorrelations were low

than when they were high. This makes sense, because both of

these manipulations influenced the severity of the model

misspecification.

Misspecifying the endogenous construct decreased the GFI (par-

tial �2
� 26%), and the GFI also decreased as the sample size

decreased (partial �2
� 6%). In addition, as shown in Figure 6B,

there was an interaction between the manipulation of the specifi-

cation of the endogenous construct and the interitem correlation

value (partial �2
� 8%). The GFI was positively related to the

interitem correlation value when the endogenous construct was not

misspecified, but it was negatively related to the interitem corre-

lation value when the endogenous construct was misspecified.

With respect to the RMSEA, the results indicated that this criterion
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Figure 5. Illustrations of the effects of exogenous and endogenous construct misspecification on the structural

parameter estimate (A) and the standard error of the structural parameter estimate (B).
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Figure 6. Illustrations of interaction effects on (A) the comparative fit index (CFI), (B) the goodness-of-fit

index (GFI), and (C) the root-mean-square error of approximation (RMSEA).
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variable increased when the exogenous construct was misspecified

(partial �2
� 12%) and when the endogenous construct was

misspecified (partial �2
� 35%). In addition, there was also a

fairly substantial interaction effect between these two factors (par-

tial �2
� 5%), depicted in Figure 6C. As shown in the figure, the

RMSEA increased as the degree of measurement model misspeci-

fication increased, but not as much as would be expected if the

effects of the endogenous and exogenous misspecification effects

were simply additive. Finally, the results indicated that misspeci-

fying the endogenous construct increased the SRMR (partial �2
�

29%).

In our discussion so far, we have focused on the effects that the

manipulations had on the means of the goodness-of-fit indices.

However, one issue that has not been addressed is the extent to

which the goodness-of-fit indices are capable of detecting mea-

surement model misspecification. This can be evaluated by calcu-

lating the percentages of time that the fit indices failed to detect

measurement model misspecification using traditionally accepted

cutoff criteria for each of the goodness-of-fit indices (cf. Hu &

Bentler, 1998, 1999): .95 for the CFI, .90 for the GFI, .05 for the

RMSEA, and .08 for the SRMR. Table 3 shows the percentages of

time that each of the four goodness-of-fit indices failed to detect

the misspecification of the measurement model. As shown in the

table, the best goodness-of-fit-index at detecting measurement

model misspecification was the RMSEA, followed by the CFI.

These findings are consistent with Hu and Bentler (1998). The

RMSEA successfully detected the measurement model misspeci-

fication, except when the exogenous variable was misspecified and

the item intercorrelations were high (e.g., .80.) The CFI success-

fully detected measurement model misspecification in all cases in

which the item intercorrelations were low (.20), and it was better

at detecting misspecification in the endogenous construct than in

Table 3

Error Rate Percentages of Incorrect Inferences About Model Goodness of Fit

Treatment condition Measure

Endogenous
misspecified

Exogenous
misspecified

Interitem
correlation

Sample
size CFI GFI RMSEA SRMR

No No .20 125 0% 0% 10% 7%
No No .20 500 0% 0% 0% 0%
No No .20 875 0% 0% 0% 0%
No No .50 125 0% 0% 10% 12%
No No .50 500 0% 0% 0% 0%
No No .50 875 0% 0% 0% 0%
No No .80 125 0% 0% 10% 16%
No No .80 500 0% 0% 0% 0%
No No .80 875 0% 0% 0% 0%
No Yes .20 125 0% 3% 0% 71%
No Yes .20 500 0% 100% 0% 100%
No Yes .20 875 0% 100% 0% 100%
No Yes .50 125 89% 21% 0% 84%
No Yes .50 500 100% 100% 0% 100%
No Yes .50 875 100% 100% 0% 100%
No Yes .80 125 100% 93% 56% 84%
No Yes .80 500 100% 100% 85% 100%
No Yes .80 875 100% 100% 94% 100%
Yes No .20 125 0% 1% 0% 32%
Yes No .20 500 0% 100% 0% 61%
Yes No .20 875 0% 100% 0% 66%
Yes No .50 125 26% 6% 0% 33%
Yes No .50 500 33% 67% 0% 33%
Yes No .50 875 33% 67% 0% 33%
Yes No .80 125 35% 22% 3% 33%
Yes No .80 500 33% 33% 0% 33%
Yes No .80 875 33% 33% 0% 33%
Yes Yes .20 125 0% 0% 0% 8%
Yes Yes .20 500 0% 0% 0% 34%
Yes Yes .20 875 0% 0% 0% 33%
Yes Yes .50 125 0% 0% 0% 32%
Yes Yes .50 500 0% 8% 0% 34%
Yes Yes .50 875 0% 33% 0% 34%
Yes Yes .80 125 34% 4% 0% 34%
Yes Yes .80 500 34% 34% 0% 34%
Yes Yes .80 875 35% 35% 0% 35%

Note. Errors of inference in the first nine rows refer to the percentages of time that the correctly specified
model was falsely rejected as being inconsistent with the data. In the remaining rows, errors of inference refer
to the percentages of time that a misspecified model was falsely judged to fit the data. Endogenous �

endogenous construct; Exogenous � exogenous construct; CFI � comparative fit index; GFI � goodness-of-fit
index; RMSEA � root-mean-square error of approximation; SRMR � standardized root-mean-square residual.
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the exogenous construct. The goodness-of-fit index that was the

least sensitive at detecting measurement model misspecification

was the SRMR. Generally speaking, it performed especially poorly

when the exogenous variable was misspecified, and it was incor-

rect about a third of the time when the endogenous variable was

misspecified. Overall, with the exception of the RMSEA, the

goodness-of-fit indices tested will fail to detect measurement

model misspecification a substantial proportion of the time.

Practical Guidelines for Developing and Evaluating

Constructs With Formative Indicators

In view of the fact that some of the most widely researched

constructs in the literature are misspecified and that measure-

ment model misspecification can have potentially serious ef-

fects, it appears that the field would benefit from some practical

guidelines for developing, modeling, and evaluating constructs

with formative indicators. Figure 7 provides an overview of the

similarities and differences in the stages of the scale develop-

ment and validation process for constructs with reflective indi-

cators versus constructs with formative indicators. Most of the

stages in this process have been described elsewhere (cf.

Churchill, 1979; Nunnally & Bernstein, 1994; Schwab, 1980)

and are elaborated on here only when the procedures that one

should follow for developing and evaluating formative-

indicator models differ from those that should be followed for

reflective-indicator models.

Figure 7. Comparison of scale development processes for reflective and formative constructs.
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As indicated in Figure 7, the initial stages involve defining the

conceptual domain and evaluating the conceptual dimensionality

of the hypothetical construct. Our own review of the literature

suggests that the failure to think carefully about the dimensionality

of constructs is one of the primary causes of measurement model

misspecification. As shown in Figures 2 and 3, constructs are often

multidimensional, and their subdimensions may have either for-

mative or reflective measures and may themselves be either for-

mative or reflective indicators of a second-order construct.

The next step is to generate a set of items that completely

captures the conceptual domain of the construct (i.e., is not defi-

cient) without being contaminated by other related constructs. For

reflective measures, the goal is to develop a representative sample

of measures for the construct (cf. Nunnally & Bernstein, 1994;

Schwab, 1980), whereas for formative measures, the goal is to

develop a set of measures that represents a census of the key

elements of the conceptual domain (Bollen & Lennox, 1991).

Once the measures have been generated, the next step is to

determine whether the measures are reflective or formative indi-

cators of the construct(s) of interest. This decision can be based on

the criteria discussed earlier in this article. Generally speaking, the

indicators are formative if the following conditions prevail: (a) The

indicators are viewed as defining characteristics of the construct,

(b) changes in the indicators are expected to explain changes in the

construct, (c) the indicators do not necessarily share a common

theme, (d) eliminating an indicator may alter the conceptual do-

main of the construct, and (e) the indicators are not necessarily

expected to have the same antecedents and consequences.

Regardless of whether the indicators are formative or reflective,

the next step is to establish the scale of measurement for the

construct. For reflective-indicator models, this can be done by

fixing a path from the latent construct to one of its indicators at 1

or by fixing the variance of the construct at 1. Either of these

solutions is acceptable. For formative-indicator models, the scale

of measurement is set by either fixing a path from one of the

indicators to the composite latent construct at 1 or by fixing the

variance of the construct at 1. Once again, either of these solutions

is acceptable.

Once this is done, reflective-indicator models should be estima-

ble. However, an additional step is needed to achieve identification

for formative-indicator models. To resolve the indeterminacy as-

sociated with the construct-level error term, each construct with

formative indicators must emit paths to at least two unrelated

reflective indicators. As shown in Figure 8, this condition can be

satisfied if the construct emits paths to at least two unrelated latent

constructs with reflective indicators (see Figure 8A), one reflective

indicator and one latent construct with reflective indicators (see

Figure 8B), and/or at least two theoretically appropriate reflective

indicators (see Figure 8C).

As an illustration of these methods of identification, assume that

a researcher is interested in job satisfaction and wishes to model it

as a composite latent construct with multiple formative indicators

(e.g., satisfaction with pay, satisfaction with coworkers, and sat-

isfaction with the supervisor). In isolation, without any paths

entering it or emanating from it, this construct would not be

identified. However, one way that it would be identified is if the

theoretical structure being tested included paths from job satisfac-

tion to two unrelated latent constructs with reflective indicators, as

shown in Figure 8A. Intent to leave the organization and employee

voice might be suitable for this purpose, assuming that these

constructs had reflective indicators and that they were not causally

related. The resulting model would be identified, including the

error terms D1, D2, and D3. As shown in Figure 8B, in a situation

in which there is only one path emanating from job satisfaction to

a latent construct with reflective indicators, another way of achiev-

ing identification would be to add a single reflective indicator (V4)

of job satisfaction. An example of a potentially appropriate item

might be “Overall, how satisfied are you with your job?” Because

this new indicator captures overall job satisfaction rather than any

one of its individual facets, it is reflective in nature. Therefore,

with the addition of this reflective indicator, the job satisfaction

construct would now have two paths emanating from it and would

be identified (including D1 and D2).

A potentially more versatile method of achieving identification

(illustrated in Figure 8C) would be to include two reflective

indicators (V4 and V5) for the job satisfaction construct (e.g.,

“Overall, how satisfied are you with your job?” and “Generally

speaking, I am very satisfied with all facets of my job”). The

advantage of having two reflective indicators is that it allows (a) a

confirmatory factor model to be estimated and (b) the job satis-

Figure 8. Alternative methods of achieving identification in formative-indicator measurement models. A:

Achieving identification by emitting paths to two unrelated latent constructs with reflective indicators. B:

Achieving identification by emitting one path to a reflective indicator and one path to a latent construct with

reflective indicators. C: Achieving identification by emitting two paths to two theoretically appropriate reflective

indicators.
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faction construct to occupy any position in a structural model (i.e.,

endogenous or exogenous). In addition, it is important to note that

the measurement model in Figure 8C should be viewed as a single

latent construct with a mixture of formative and reflective indica-

tors rather than as a single reflective-indicator latent construct with

multiple causes. This is a subtle but important conceptual distinc-

tion that arises from the nature of the indicators. It makes sense to

interpret the structure in this way because the indicators (whether

reflective or formative in nature) all relate to the same conceptual

domain specified in the construct definition and are all content-

valid operationalizations of the same construct. Indeed, this model

is analogous to the redundancy analysis model often used to assess

the validity of formative indicators in partial least squares analyses

(cf. Chin, 1998).

A final decision that needs to be made when specifying models

that include constructs with formative indicators is how to handle

the covariances among the exogenous variables and constructs.

Two ways have been proposed (cf. MacCallum & Browne, 1993):

(a) Constrain all of the covariances among the exogenous latent

constructs and manifest variables to be equal to 0, or (b) follow

standard practice and estimate the covariances among all exoge-

nous latent constructs and manifest variables. The advantage of the

former approach is that model parsimony is not undermined by the

addition of a potentially large number of nonhypothesized paths,

and as a result, the goodness-of-fit indices will be a better reflec-

tion of the veracity of the hypothesized relationships. The advan-

tage of the latter is that the overall fit of the model is not

unnecessarily penalized for the covariances among the exogenous

variables that are due to factors outside of the model. Of these two

approaches, we agree with MacCallum and Browne (1993) that

freeing up all of the covariances is a better solution, because it

would be a very strong theoretical statement to assume that all of

the exogenous variables are perfectly uncorrelated. Indeed, if these

covariances were all fixed at 0, it would mean that any common

causes of these variables that were outside of the system of

relationships represented in the model would contribute to the lack

of fit of the proposed model. For this reason, fixing the covariances

is not an acceptable solution to this problem.

Once the measurement model has been formally specified, the

next step is to collect data for the purposes of evaluating and

purifying the measures. The first step in purifying the measures is

to estimate a confirmatory factor model and evaluate whether (a)

the individual hypothesized measurement relationships are statis-

tically significant, (b) the solution is proper, and (c) the relation-

ships (as a group) are consistent with the sample data. Assuming

that these conditions are met, the validity and reliability of the

individual items and constructs can be evaluated. For reflective

indicators, item validity is equal to �std.
2, and item reliability is

equal to the squared multiple correlation coefficient when the

specific variance is equal to 0 (Bollen, 1989). These values are the

same when only one construct influences each measure, as in most

confirmatory factor models. For formative indicators, item validity

is reflected in the significance and strength of the path from the

indicator to the composite latent construct. Multicollinearity

among the indicators poses the same problems in this case as it

does in multiple regression models, because the relationships be-

tween the indicators and the composite latent constructs are anal-

ogous to a multiple regression in which the construct is the

dependent variable and the indicators are the independent vari-

ables. In addition, it is important to note that it is not conceptually

or empirically possible for one formative indicator to account for

100% of the variance in the latent construct. It is not conceptually

possible for a formative indicator to perfectly represent a compos-

ite latent construct, because the construct is defined as being a

function of multiple distinct components or parts, so one indicator

cannot validly represent the entire conceptual domain. Moreover,

it is not empirically possible for one indicator to account for all of

the variance in the composite latent construct unless the indicators

are perfectly correlated (which is unlikely to be the case). The

more indicators there are, the lower the average variance ac-

counted for. Although we are not aware of any absolute standards

for judging the absolute magnitudes of the item validities for

formative indicators, the relative magnitudes can be compared

using the standardized path coefficient.

Another possibility for assessing item validity for formative

indicators can be applied if the composite latent construct has at

least one reflective indicator that measures the overall composite

latent construct. This method uses the reflective indicator in much

the same way that a criterion measure would be used to establish

criterion-related validity. The validity estimates for the formative

indicators of a composite latent construct are obtained by request-

ing the standardized indirect effects from the structural equation

modeling program. This indirect effect is the estimate of the

impact of the formative indicator on the composite latent construct

multiplied by the estimate of the impact of the composite latent

construct on the reflective indicator. In Figure 8B, this would be

represented by the indirect effect of V1 on V4. If more than one

reflective indicator is available for the construct, the indirect

effects of a given formative indicator on each of the reflective

indicators could be averaged to provide a more robust estimate of

the indicator’s validity. This indirect effect represents the relation-

ship between the formative indicator and an overall measure of the

construct, and it can be viewed as an index of item validity if one

can assume that the overall measure is a valid criterion measure on

the basis of its content. Obviously, this technique puts a premium

on the content validity of the reflective indicators. If they are

invalid, then they cannot be used to provide evidence for item

validity.

For a reflective indicator, the item reliability is equal to the item

validity or the squared multiple correlation for the item as long as

only one latent construct causes each measure. Because item

reliability places an upper bound on item validity, it is desirable for

the squared multiple correlation for each item to be greater than

.50. However, for formative indicators, it is difficult to obtain an

estimate of item reliability. There is no squared multiple correla-

tion coefficient for the item because the measurement model posits

that the item influences the latent construct rather than vice versa.

Consequently, reliability must be assessed through other means.

One possibility is to use a test–retest procedure, but this would

only be an appropriate index of reliability if the item is expected to

be stable over time (cf. Nunnally & Bernstein, 1994, p. 254).

Interrater agreement can also be used as an index of item reliability

for some types of constructs (e.g., observable performance behav-

iors). Still another possibility is to correlate each individual item

with an alternative measure of the same specific aspect of the

construct’s domain in a pretest and to use the correlation as an

index of reliability. Although not all of these methods can be used

for every measure, hopefully at least one will be appropriate.
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To purify the measures, one should eliminate items that fail to

meet the desired standards for validity and reliability discussed

above. However, in doing so, a few caveats are important. First, if

the construct-level validity and reliability are good (see below), do

not worry if a few of the individual-item reliabilities or validities

do not meet the desired standards. Only items with unacceptably

low validity or reliability should be eliminated (e.g., Hinkin, 1995;

Nunnally & Bernstein, 1994; Spector, 1992). Second, although

eliminating the only item that taps an essential aspect of the

construct domain is always potentially problematic, this is espe-

cially important to keep in mind for composite latent constructs,

because the formative indicators must provide a census of the

conceptual domain, not just a sample of it (cf. Bollen & Lennox,

1991).

Once item validity and reliability have been assessed, the next

step is to evaluate construct-level validity. For constructs with

reflective indicators, convergent validity can be assessed by the

average variance in the items accounted for by the latent construct

they represent (cf. Fornell & Larcker, 1981). This can be calcu-

lated by averaging the squared multiple correlations (or the

squared completely standardized loadings—�2s) for the con-

struct’s measures. Fornell and Larcker (1981) have argued that for

a construct to possess convergent validity, the majority of the

variance in its items (i.e., more than 50%) should be accounted for

by the underlying construct rather than by measurement error. For

constructs with formative indicators, convergent validity at the

item level is not relevant, because the composite latent construct

model does not imply that the measures should necessarily be

correlated. Instead, assessments of construct validity should be

based on nomological or criterion-related validity (see below).

For constructs with reflective measures, construct-level reliabil-

ity can be assessed with an estimate of internal consistency (e.g.,

Cronbach’s alpha) or the somewhat different index of reliability

proposed by Bagozzi (1980, p. 181). Generally speaking, the

accepted standard for these indices is .70 or above (Nunnally &

Bernstein, 1994). For formative-indicator constructs, the concept

of internal consistency is not appropriate as a measure of reliability

because the indicators are not assumed to be reflections of an

underlying latent variable. Indeed, as noted by Bollen and Lennox

(1991), formative indicators may be negatively correlated, posi-

tively correlated, or completely uncorrelated with each other. Con-

sequently, Cronbach’s alpha and Bagozzi’s index should not be

used to assess reliability and, if applied, may result in the omission

of indicators that are essential to the domain of the construct.

One way to assess discriminant validity that works for both

formative and reflective measures is to test whether the constructs

are less than perfectly correlated. This test requires the scale of

measurement for each latent construct to be set by fixing its

variance at 1, and it should be performed for one pair of constructs

at a time. One could also test whether the construct intercorrelation

is less than .71. This would test whether the constructs have

significantly less than half of their variance in common. Both of

these tests can be done by examining the confidence interval

around the estimate. A more stringent test that can be used for

reflective-indicator models is to examine whether the average

variance extracted for each construct (�vc�) is greater than the

square of the correlation between the constructs (cf. Fornell &

Larcker, 1981). Conceptually, this test requires that each latent

construct account for more of the variance in its own indicators

than it shares with another construct. This test should be performed

for one pair of constructs at a time by averaging the squared

multiple correlations for each construct’s indicators (separately)

and comparing these values to the square of the intercorrelation

between the two constructs of interest.

Nomological validity can be assessed using the same procedure,

regardless of whether constructs have formative or reflective in-

dicators. Its assessment entails estimating the latent constructs and

testing whether their intercorrelations with hypothesized anteced-

ents, correlates, and consequences are significantly greater than 0.

Of course, for consistency, the magnitude of the correlations used

to establish nomological validity should be greater than the mag-

nitude of the correlations used to establish discriminant validity.

This type of validity can also be assessed by using groups with

recognized differences on the construct of interest and testing

whether the mean level of the construct differs across these groups

in the hypothesized direction. For example, if one is interested in

assessing the validity of the measures of a quality-of-life construct,

one could compare the scores of a group of people with known

quality-of-life deficits (e.g., chronic or extended illnesses) with

those of another group that does not possess these quality-of-life

deficits to see if the scores of the two groups differ in the expected

direction.

The final step in the scale development process is to cross-

validate the psychometric properties of the scale. This is particu-

larly important if model modifications were made in the scale

development and refinement process. Regardless of whether the

measures are formative or reflective, either the multigroup ap-

proach discussed by Steenkamp and Baumgartner (1998) or the

statistical technique developed by Browne and Cudeck (1989,

1993) could be used to cross-validate the scale properties.

Conclusions

In conclusion, this research has shown that there are important

distinctions between formative- and reflective-indicator measure-

ment models. Several of the most commonly researched constructs

in the field have formative measures that are incorrectly modeled

as though they were reflective measures. This is a problem, be-

cause as demonstrated by our Monte Carlo simulation, measure-

ment model misspecification can inflate unstandardized structural

parameter estimates by as much as 400% or deflate them by as

much as 80% and lead to either Type I or Type II errors of

inference, depending on whether the endogenous or the exogenous

construct is misspecified. Moreover, the simulation results suggest

that there is a substantial probability that measurement model

misspecification will not be detected with many of the most

commonly used goodness-of-fit indices, with the exception of the

RMSEA.

This research has several important implications. First, it sug-

gests that some of the empirical findings reported in the literature

may be misleading. Even our cursory review of the literature

suggests that measurement model misspecification is not uncom-

mon, and because this misspecification can lead to Type I and

Type II errors, we have reason to question the validity of the

findings of studies that failed to correctly model measurement

relationships. Thus, it appears that as Schwab (1980) predicted, the

failure to give adequate attention to construct validity and mea-

surement model specification has probably led to substantive con-
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clusions about the relationships between constructs that are un-

warranted. Although the extent to which this is true is difficult to

evaluate without access to the actual data from studies in which the

measurement models have been misspecified, in our opinion, this

could be a fairly serious problem for the field.

A second implication is that it is essential for researchers to

think carefully about the relationships between constructs and their

indicators and to make sure that these relationships are correctly

modeled. Indeed, our findings would suggest that a researcher’s

implicit hypotheses about measurement relationships are as im-

portant as his or her hypotheses about structural relationships and

should be tested empirically. To help with this, we have provided

a set of criteria that can be used for deciding on the appropriate

measurement model, and we have discussed the specification of

constructs with formative indicators in some detail.

A final implication of our research that flows directly from the

previous work of Bollen and Lennox (1991) is that it needs to be

recognized that some of the procedures for developing and eval-

uating constructs with reflective indicators cannot be used for

constructs with formative indicators. Most of the recommendations

for how to develop and evaluate measures are based on classical

test theory and its assumption that the measures reflect the under-

lying constructs they are intended to represent. However, this

assumption is not appropriate for formative measures. Therefore,

we have provided a set of guidelines for developing, evaluating,

and validating constructs with formative indicators, and we have

contrasted these recommendations with those for reflective indi-

cators. Although additional refinements will undoubtedly have to

be made to our recommendations, we nevertheless believe that

they represent a good first step in the development of a set of

procedures that researchers can use for constructs with formative

measures.
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