THE PROBLEM OF NEGATIVE ESTIMATES OF
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0. Summary. The usefulness of variance component techniques is frequently
limited by the occurrence of negative estimates of essentially positive parameters.
This paper uses a restricted maximum likelihood principle to remove this objec-
tionable characteristic for certain experimental models. Section 2 discusses
certain necessary results from the theory of non-linear programming. Section
3 derives specific formulae for estimating the variance components of the
random one-way and two-way classification models. The problem of determining
the precision of instruments in the two instrument case is dealt with in section
4, and a surprising though not unreasonable answer is obtained.

The remaining sections provide an algorithm for solving the problem of nega-
tive estimates of variance components for all random effects models whose
expected mean square column may be thought of as forming a mathematical
tree in a certain sense. The algorithm is as follows: Consider the minimum mean
square in the entire array; if this mean square is the root of the tree then equate
it to its expectation. If the minimum mean square is not the root then pool it with
its predecessor. In either case the problem is reduced to an identical one having
one less variable, and hence in a finite number of steps the process will yield
estimates of the variance components. These estimates are non-negative and
have a maximum likelihood property.

1. Introduction. In order to discuss the philosophy of this paper consider a
series of J astronomical observations.of the same quantity taken on each of K
nights [13]. There are then KJ observations in all, which will be denoted by
i k=1,--- ,K;j=1,---,J.If uis the “true” value of the observation
being made and a; is the error peculiar to the kth night, then it may be ap-
propriate to assume that the conditional random variables y:; given a; are in-
dependent and normally distributed with common variance o* and with con-
ditional expectations equal to p + ai . Further, if the a;’s are independent and
normal with means 0 and variances o>, then the unconditional distribution of
the yi;’s is normal. Each observation has expectation u, variance ¢° + o3, and
the covariance of y; and y.; is o3 if ¢ = k and is O otherwise. This is, of course,
equivalent to the usual balanced one-way variance component model: y;; =
g+ ar + ex; where p is an unknown constant and the a’s and ¢’s are independent
normal variates with zero means and variances a. , o respectively. However,
the above conditional probability argument constitutes, to our way of thinking,
a derivation of the usual model from more reasonable assumptions.
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Denoting the overall mean of the observations by #.. and the mean of the
observation taken on the kth night by ., then it may be demonstrated [14,
p.226) that 4., s2 = J 2 (G — 4.0/ (K — 1), and 8 = D ;4 (%ai — Gr-)/
(KJ — K) are a set of independent sufficient statistics. s. and s are, of course,
the mean squares due to the night effect and error respectively. If h(a, p) de-
notes the density function of a random variable which is « times a mean-square
deviate with p degrees of freedom, i.e.,

(1.1) h(a, p) = [T(p/2)(2a/p)""T"2* ™" exp (—pz/2a), @ >0,z 20,
then s* and s have the densities hlo?, K(J — 1)] and h(s® 4+ Joi, K — 1)
respectively.

The traditional estimators of o” and ¢ , which are s* and (s; — s°)/J respec-
tively, are obtained from Table 1 by equating the mean-squares to their ex-
pectations and solving. Clearly the traditional estimate of o: may be negative;
should this occur, we do not believe that any such statistical analysis would
become useful until it is decided what to do with the negative estimate. This,

TABLE 1
Source d.f. Mean Expected
Square Mean Square
nights K-—-1 35 ot + Joi
error KJ-1) s? a?

then, is an example of what we mean by “the problem of negative estimates of
variance components”. T'wo possible explanations of a negative estimate present
themselves: (1) the assumed model may be incorrect and (2) statistical noise
may have obscured the underlying physical situation. Anscombe [2] and Nelder
[10] have done valuable work which adopts the first explanation; in this paper
we explore the second point of view. That is, we take the assumed model to be
correct and ask how our estimation procedures should be changed when negative
estimates occur.

Herbach [7] has used the maximum likelihood principle to obtain variance
component estimators which are non-negative. For the balanced one-way classifi-
cation that is being discussed in this section, the full maximum likelihood esti-
mators are &4 = §..,

& =4, Jet = (1 — KYs — ¢, when (1 — KMhsiz &,

& =0, & =K —1)s: + K(J — 1)§)/KJ, when (1 — K8k < s
In the present paper we do not use these true maximum likelihood estimators.
Instead, we use a method of restricted maximum likelihood which, for the one-

way classification, yields estimators only slightly different from those obtained
by full maximum likelihood. We illustrate the method by continuing our dis-
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cussion of the balanced one-way classification. By sufficiency it is immaterial
whether we maximize the joint likelihood of the original JK observations or the
joint likelihood of .., s* and s; . For the restricted maximum likelihood method
we go further and maximize the joint likelihood of s* and s .

For estimating scale parameters in general, the restricted maximum lLikelihood
method, used in this paper, consists of maximizing the joint likelihood of that
portion of the set of sufficient statistics which is location invariant. This pro-
cedure is utilized in similar problems by Anderson and Bancroft [1, p. 320], for
example, and has two arguments in its favor. First, it gives the accepted esti-
mates in similar cases where it is well established what estimates ‘‘should” be
used. For example, if z;, --- , z, are independent and identically distributed
normal deviates from a population whose mean and variance are both unknown
then full maximum likelihood would yield the variance estimator =(z; — £)*/n.
We believe that very few statisticians would use this estimator in a practical
situation; they would prefer Z(z; — £)°/(n — 1), the estimator given by re-
stricted maximum likelihood.

Second, the intention here is not to question the traditional estimates, but to
investigate the way in which the traditional estimates should be altered if the
problem of negative estimates arises. Consideration of the likelihood function of
&” and s’ yields the traditional estimates, while working with all JK observations
does not. Similar considerations apply in the other models considered in this
paper. A tilde placed over a parameter will denote the restricted maximum likeli-
hood estimator of the parameter. Thus & is the restricted maximum likelihood
estimator of the parameter ¢°.

The log-likelihood function of s and &’ is

(12) L(w, we) = —3(c + filog wy + fo log we + fuwn/w1 + fowe/ws),

where fy = K(J — 1), =K — 1,0y = o’ and we = o + Joo ; and ¢ does
not depend on ¢” or ¢ . w; and w, denote the values which may be assumed by
the random variables s* and s. respectively. The notation introduced at this
point anticipates a terminology which will be used throughout the paper.

From a conceptual viewpoint, the solution of the problem of negative esti-
mates of variance components, at least in so far as restricted maximum likelihood
is concerned, is that L should be maximized subject to the constraints o* = 0
and o2 = 0. Because of the invariance of maximum likelihood estimates, it is
enough to maximize L with respect to w; and w; subject to the constraints w, =
w; > 0. Note that

(1.3) OL/dw; = 3fi(w: — wi)/wit ; t=12

and hence if 0 £ w; < w,, then the restricted maximum likelihood estimates of
«; and ws are respectively w, and ws .

The other possibility is that 0 < w. < w; in which case (@, @), the vector
of restricted maximum likelihood estimates, lies on the boundary of the ad-

missible region. It is shown in the next section that & cannot equal zero and
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hence @ = & in this case. Throughout the region w; = w; = w, the relation
0L/dw = §(fi + ) [(fowr + fawn) /(f1 + f2) — ]/« is valid and @&, = & =
(foor + fawe) /(f1 + fo).

Now reinterpreting, if s; = s* then 3 = s’ and 52 = (s2 — §%)/J. If, however,
s2 < s’ thend, = Oand & = [(K — 1)s! + K(J — 1)s/(KJ — 1). Referring
to Table 1, it is likely that this is what one would have done without the detailed
mathematical analysis. We have, however, relieved our consciences a little and
at the same time laid the foundation for the analysis of more complex situations.

2. A maximization problem. In the following, » and & are p dimensional
column vectors while A is a non-singular p by p matrix. The transpose of the
matrix M is denoted by M’. g(w) is a function of p variables, Gi(w) = dg/dw;
and G(w) is the column vector with elements Gi(w), -+, Gp(w). A vector is
said to be = 0 or < 0 if and only if each of its elements satisfies these inequalities.
Denote the ith rows of 4™ and A’ by b; and a; respectively.

TreoREM 1. If g(w) is a differentiable function at &, then a necessary set of
conditions that it has a relative mazimum at & subject to the constraints A 'w = 0 is:

(2.1) (a) 47% = 0, (b)y A'G&®) = O and (e) &G(a) = 0.
Furthermore the conditions (2.1) are equivalent to, for each i(= 1, -+ , p), either

bid =0 and aG(d) =0
(22) or
b >0 and aG(&) = 0.

The set of all points w satisfying A ™'w = 0 will be referred to as the admissible
region. The previous theorem can be proved from the results of Kuhn and
Tucker [8] or more simply by considering the directional derivative at & in the
direction of an arbitrary point in the admissible region. In this way one first
establishes that (¢) must hold and then that «'G(&) = 0 for all admissible w.
The Farkas theorem (a statement may be found in [8]) is then used to establish
(b).

In order to study conditions under which there will be a unique solution to
the relations (2.1) or (2.2) it is necessary to remind the reader of a property of
strictly concave functions and their tangent planes. The equation of the plane
tangent to g(w) at v = @ is (0 — 8)'G(&) + ¢(&) = t(w), say. If g(w) is &
strictly concave function having gradient vector G(w), then #(w) = g(w),
equality holding only at « = a.

TeEoREM 2. If g(w) is a strictly concave function having gradient vector G(w)
and if & satisfies (2.1), then g(&) > g(w) whenever A7w = 0 and w = .

ProoF. Assume for purposes of contradiction that g(&) = ¢(&), A7 = 0
and & # &. Then (@) > g(a) = ¢(d), (& — @)'G(&d) + ¢g(&) > ¢g(&) and
&'G(&) > @'G(&) = 0. But @’G(d) = (A7'@)'A’G(&) = 0 a contradiction.

CoroLLARY. If g(w) s a strictly concave function having gradient vector G(w),
then the solution to (2.1) or (2.2) is unique.
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3. Multiple classifications.

General Theory. The analysis of the one-way classification has already been
treated in the introduction. The problem treated in this section can be described
as follows: wy, ---, w, are p independently distributed variables. Using the
notation of equation (1.1), the probability density function of w; is h(w;, f:).
w, ¢" and  are the column vectors (w , - , wy)’, (o1, ,0%) and (wy, - -,
wp)’ respectively.

E(w) = o = Apgo’
¢ = A7'w if the inverse exists. In order to find & (the vector of restricted maxi-
mum likelihood estimates of the components of o*) it is sufficient to maximize

twice the log of the density function of w;, ---, w,, which is

(3.1) g(w) = const — i.Z:’;f.-(log wi + wifw;),

with respect to wy, - - - , w, and subject to the set of linear constraints 47w = 0.
For the function (3.1),

(3.2) Gi = 3g/dwi = fulw: — wi)/wl,

and (2.1¢) becomes

(3.3) 2fi = 2fwifa.

Note that g(w) = const — » f:log w; — 2 f: on the curve (3.3).

One final point needs to be emphasized before proceeding to special cases.
From (1.1) it is clear that (1.2) and (3.1) are valid only if w; = 0 and w; > O.
If w; > O then the value of the likelihood function at w; = 0 is — « and in
looking for a maximum the possibility w; = 0 need not be considered. If w; = 0,
then &; = 0.

The two way classification. For a development of this model see [9, p. 345],
Table 2 gives the expected mean squares.

Here o1 is the interaction component, o3 = 710} , 03 = 7o, o and ot are
the row and column components, and r, and r, are the number of rows and
columns respectively.

1 00 1 11
A7=—-1 1 0) and 4’={0 1 0
-1 01 0 01
TABLE 2
Source Mean Expected Mean
Square Square
Rows w3 ws = o + o3
Columns Wy w2 = 07 + o8

. . 2
Deviations wy w1 = o1
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The equations (2.1) become

(i) & = 0;

(") 0 = fulér — wn) /a1 + fa(@r — wa) /@2 + f(@s — ws) /a5
(i) &1 < & (ii") @ = w,
(i) @& = @ ; (iii") @ = ws.

According to Section 2, necessary conditions for maximum likelihood esti-
mates are that equality must hold in at least one equation of each pair; further,
if w; > 0 a maximum likelihood estimate cannot occur at w; = 0. There are
thus four possibilities aecording to whether equality does or does not hold in (ii)

and (iii).
w;...; is the mean square obtained by pooling w;, --- , w:, i.e.,
(3.4) Wi = (f;’wi + -+ fk’wk)/(fi + .- +fk)

The four possible cases with their solutions and implications for the w’s are
listed.

(a) & < @e,o <dg;@1 =W, =W, d =wWs ;W < W, w <Wg.

(b) &1 = @p,1 < @g; =G = W, &g = W ;W1 2 We, W S Wpp < Ws.

(€) &1 = @g,an < d@p; @& = @3 = Wig, G = W, Wy = W3, Ws < wg < We.

(d) @y = @, = Gg; @ = @ = G5 = Wieg ; Wias = Wa, Wizg = W3 ; Wys = We,

wye = w; and either wy = w; or wy = w; .

Table 3 gives the appropriate estimates under the various conditions. Since
(a), (b), (c¢) and (d) are mutually exclusive, the maximum likelihood estimates
are unique in this case.

The two factor experiment with m observations per cell. The table of expected
mean squares appears here as Table 4, see [9, p. 346] for the background.

Equations (2.1) give

i) 0 = fi(ér — wy) /@1 + Je(@e — wy) /a3 + fs(@s — ws) /g
+ fu(@ — we) /s

() & £ @& i) & = wm
TABLE 3
Conditions 7 EA FH
’w1<w,,,w1<w, W wy — W ws — W
wr = Wy, W2 S Wiz < Wy Wiz 0 Wy — Wia
w = Wy, ws S W < Wy Wig Wy — Wis 0

Wi = Wy, Wis = W
and either w;, = w, Wias 0 0
or w; = wWs
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TABLE 4
Source Mean Expected
Square Mean Square
Rows W we = o1 + o3 + o}
Columns w3 ws = o1 + o1 + o3
Interactions W, ws = o1 + o1
Deviations w1 w1 = o}
TABLE 5
Conditions 7 FH FH &
‘w1<W2<W3,’W3<’LD4 w Wy — W w; — Wy We — W3
W < Wy < Wi, W 2 Wy~ wy Wz — W1 W3 — Wa 0
w < Wy < Wa, Wy = W3 wy Wez — W1 0 W — Wa
W = W2, Wi < W3, Wiz < Wa Wig 0 w; — Wiz wWg — Wiz
Wigs < Wa, W3 S Wiz, Wes < Wy Wias 0 0 W5 — Wi
Wigs < W3, We S Wiz, W4 S W1 Wiz 0 W; — Wi 0
W < W, Ws S Wau , Wi S W wr Wass — W1 0 0
W = Wi, Ws S Wi, W1 = Wan Wi2s4 0 0 0
(i) @& = & (iii") @ = ws
(lV) @ é (:)4 (iV’) (54 ; Ws.

Hence in this case, there are eight possibilities depending on whether equality
does or does not hold in (ii) (iii) and (iv). Table 5 gives the various solutions
and again they are mutually exclusive showing that the maximum likelihood
estimates are unique. The notation is that of (3.4).

4. Determination of the precision of instruments. The succeeding portions of
this paper may be read without reference to this section. The problem of deter-
mining the precision of instruments has been studied by Simon [15] and Grubbs
[6], and by Russell and Bradley [12]. Russell and Bradley have a slightly different
practical application in mind, and their model assumes that all effects are fixed
except those which are called the instrument errors in this paper. The Simon,
Grubbs technique results in estimates of the variance components which are
frequently negative. In this section the model of Grubbs is assumed but esti-
mators are developed which are non-negative. We treat only the “two instru-
ment”’ case.

It is instructive to “derive” the Grubbs model from the point of view of con-
ditional probability. With this in mind, consider a random sample a;, -- -, an
of size n selected from a normal distribution with mean p and variance o°. Each
of the items in this sample is then measured by two instruments. y;; is the
measurement of the 7th item according to the jth instrument. y.; given a; is
normal with mean a; + 8; and variance o; . The instrument errors are assumed
to be independent. §; is the bias of the jth instrument. Thus y,; and ¥, 2 = 1,
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.-, n, are a sample of size n from a bivariate normal distribution with E(y.;) =
u + B; . The variance covariance matrix of y; and y. is

a'f-l-o'2 e
2= 2 2 2/
o g2 + ¢

and |Z| = o}o” + oios + o°03 . If |Z| is not zero then o'’ denotes the element in
the ¢th row and jth column of ="

Once again we apply the restricted maximum likelihood method. The location
invariant portion of the set of sufficient statistics consists of the sample variances
and covariance:

su=2(ya — §)/(n — 1), 8= Z(ya— F2)’/(n—1), and
s = Z(ya — §1) (Yo — F2)/(n — 1).
S = (811 S12> .
S12 S22
The determination of f(si , sz , $12), the joint probability density function, is

complicated by the fact that the observations may follow the singular as well as
the non-singular normal distribution. Using the notation of (1.1)

f(sll » S22, 812)

=h(02»’"'— 1), Su = Sz = 82, ot = o3 =0, a2>0,
=h(0’§2n—1), 812=822=0, g'2=0-§=0, 0»§>0’

=h(et,n—1), su=8p=0 o =0¢=0 o3>0,
=0 otherwise,
for the singular cases. For the non-singular case [4, p. 397]
f(su, 82, sn)
= constant |S|*"™ |Z|7" exp [—3(n — 1) (¢"su + o782 + 20"s12)]

in the domain where S is positive definite and is zero elsewhere. Hence if
L = L(s, o1, 03) = logf(su, 8z, s12), then
2L/(n — 1) = ¢ — log ¢® — su/d’, ot = a7 = 0, @ >0,
Su = 82 = Sn,
=c—10go’§—822/0'§, ot =4 =0, o8 > 0,
s2=8u=0,
(4.1) =c—logoi —su/oi, oi=do=0, ai>0,
812 = 832 = 0,

=c¢ — log |Z| — (¢"su + o + 20"sw), |Z| >0,



NEGATIVE VARIANCE COMPONENT ESTIMATES 281

S positive definite,
= — otherwise.

Here ¢ is a generic symbol denoting a quantity independent of o} , o3 and o>

Consider the case where S is positive definite; the region || = 0 need not be
investigated for maxima since L = — « throughout this region. With a view to
using Theorem 1 write

o =d" = (a3 + /|2, =" = (+ /3,
w = o’ =" = —d/|2|

The restrictions on these parameters are w; + ws 2 0, w; + wg = 0, —wg = 0.

10 1 10 0
A7r=(0 1 1}, A'=10 1 0 |,
00 —1 11 -1
Gi=n/2(su — ot — o), Go=n/20sm — o} — o),
Gs = n/2(sp — o).
The inequalities (2.1) become
(i a=z0 (i) suzet+ &
(i) 520 (") sw=a+d
(iii) #20 (iii") su + 82 — 280 = &} + &}

At least one inequality of each pair must be an equality. It is clear from (4.1)
what the variance component estimates should be if S is not positive definite.
Table 6 lists the various possibilities. Two consequences of the positive semi-
definite nature of S are worthy of mention. First, Table 6 covers all possibilities
and second, sy + $» — 28 is non-negative. This follows from the relation
3(s11 + 822)® = susze = siz . The top line of the table agrees with the estimates of
Grubbs [6]. The further entries show how Grubbs’ estimates should be modified
under various circumstances.

TABLE 6
. .2 . .
Conditions 7 73 &
811 > 812,
822 > 812> 0 811 — 812 823 — 812 812
822 > 812 = 811 0 811 + 822 — 2815 81
811 > 812 = 822 811 + 822 — 2813 0 822
s12 =20 811 S22 0
Su1 = 833 = 812 0 0 811
S2=8u1=0 0 822 0

813 = 83 = 0 81 0 0
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6. Trees and mathematical programming. The remaining mathematical
portions of this paper develop some theorems in non-linear programming which
yield rules for pooling the mean squares when negative estimates of variance
components occur. “A linear graph is defined informally as a collection of points,
and a collection of lines or pairs of points which deseribes the connections of
points; -- - . ,

A cycle of a graph is a collection of lines of the form: 4z, s, - - - ; be—t1,
where ¢; designates the line joining points £; and ¢; , all points in the collection
save {; are distinct. A graph is connected if every pair of points is joined by a
path, that is, a collection of lines of the form &, tas, - -+ , h—tfx , With all
points # to & distinet ---.

A connected linear graph without cycles (or lines in parallel or “slings”) is a
tree. This mathematical object has a closer affinity to a family tree than to the
growing varieties. A tree with one point, the root, distinguished from all other
points by this very fact, is called a rooted tree” [11, pp. 109-110}.

The root of a rooted tree is denoted by r, and #s is the (unique) path connecting
the points £ and s. It will be convenient to write ¢ = s if ¢ and s are two labels for
the same point. If ¢ and s are distinct points, but #r is coincident with s then s will
be said to be < t or ¢ > s. Note that not all points are ordered by this relation-
ship. The predecessor of ¢ denoted by ¢ is the (unique) point on rt for which

(a) £ <t _

(b) s < {*foralls < ¢
In a perfectly natural manner, ((™) ™" = ¢~ and £ **¥ = (™)™ are defined
inductively.

Let T denote a rooted tree with points ¢, , - - - , ¢, . Several kinds of subsets of
T will be found useful.

Let U be an arbitrary subset of T and define

(5.1) B() = (s|s=t, B(t) = (s|sisnotin B(t)),
(5.2) S, U) = (ueU|t<ubutfornodin Uist < @ < u),
(5.3) E(@, U) = B(t) nv) B(u).

e8(t,
B, 8 and E stand for branch, successor and equivalence respectively. Note that
E(t, U) depends on the set U under discussion, but B(t) is independent of U.
Also if ¢ is an element of E(s, U) then E(¢, U) = B(¢) N E(s, U).

Let the » vector of Section 2, be given by & = [w(ti), *--, @(tp)]’. Thus
w(?) is a scalar function defined over the points of T', w(#;) corresponding to the
point #; of T. The problem which is now to be solved is that of maximizing a
differentiable function

(54) g(w) = glo(h), - -+ o(ty)]
subject to the constraints
(5.5) w(t) 2 w(t™),

where w(r™) is defined to be equal to zero in order to simplify the notation.
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Further let G(w, t) be the partial derivative of g with respect to w(f) evaluated
at the p dimensional vector point, w, then the gradient vector G{(w) of Section 2
is given by G(0) = [G(w, t), -+, G(e, 8)].

THEOREM 3. g(w) has a relative mazimum ot = & = [6(4), -+, a(ty))
subject to the constraints (5.5) only if for some subset of T, call it Q, & satisfies
(a) a(t) > a(t™), > G(a, ) =0, teQ;
seE (¢, Q) :
(5.6) (b) > G, =0 teQ;
seEB (2, Q)

(c) &(t) = @(q) whenever g€ Qandt e E(g, Q)-

& will be called a solution corresponding to the solution set Q.
Proor. The matrix of coefficients in (5.5) is the matrix A™" of Theorem 1.
Hence the relations (2.2) become

either @(f) = &(f™") and Gla,s) =0
()

or &) > &™) and G(a,8) =0
)

L

(5.7)

t

for each ¢ ¢ T. Thus to prove Theorem 3 we need only show that the conditions
(5.6) and (5.7) are equivalent. First assume that (5.7) holds and define @ =
{t|a(t) > a(t™)}.

B@ = BO N B@l U B@ =FtQ U B

The sets on the right are disjoint and hence

3 G@s) = 2 Kays)+ D 2 G(&9).
8eE(¢,Q) @e8(t,Q) B(q)

seB(t)

From this last relationship it is clear that (5.6) (a) and (b) hold. If ¢ = g then
&(t) = @(q) trivially; if t ¢ E(g, Q) but ¢ > ¢ then according to (6.3) and (5.7)
there is a chain ¢, £, + -+, £ * = g such that &(¢) = &(t™) = --- = &(t™) =
&(q) and hence (5.6) (c) must hold. Now assume that (5.6) is valid.

B(t) = E(4, Q) gE(q, Q).

>t

E G(&, 8) = usE%Q) G(‘I’) 8) + Z E G(&, 8),

seB(t) q;g 2ck (2,Q)
)

and (5.7) is easily established.

6. A quadratic programming problem. This section specializes the results of
5 by choosing for the function g(w) of (5.4) the special form

(6.1) o(0) = gw,0) = —} Zf(t,-) () — w(t)?

where f(t;) and w(¢;) are known positive constants associated with the point
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t; of T. The objective here, then, is to maximize (6.1) subject to the constraints
(5.5).

In order to make the statement of the next theorem as tractable as possible
it is desirable to introduce some terminology concerning finite weighted averages.
With this in mind let D and E be subsets of 7 and define

(62) 1(D) = =5,
(63) w(D) = Zf(Ow®) /(D).

‘It is clear from this definition that if D and E are disjoint, then
(6.4) w(D U E) = [f(D)w(D) + f(E)w(E))/[f(D) + f(E)].

TuEOREM 4. If g(w) has the special form (6.1), then & is a relative mazimum
point subject to the constraints (5.5) only if there exists a set Q such that

(a) &(t) = wlE(q, Q)] whenever ge Qandt e E(q, Q),
(6.5) (b) wlE(g, Q)] < wlE(g, Q)] whenever g Q,§eQandq < g,
(¢) wlE(t, Q)] < wlE(q, Q)] whenever g Q, and t ¢ E(q, Q).
Proor. For brevity write E(g) for E(q, @) and G(t) for G(w, t).
G(t) = f(O) (w(®) — (1)), te T
First assume that (5.6) holds.

0= Z_(;)G(S) = %)f(S)(w(S) — a(g))-
Solving for &(q)
a(q) = ‘%f(S)w(S)/g;)f(S) = w[E(g)]

and (6.5) (a) is necessary. To prove (6.5) (b) one merely needs to notice that
there exists a chain §, § ', - -- §* = ¢ such that w[E(q)] = &(g) > aghHz -
= oG = a(g) = w[E(q)]. The proof that (6.5) (¢) is necessary proceeds as
follows. 0 = D ,cxyG(s) = PN f(s){w(s) — w[E(q)]} and hence

wlE(g)] 2 B%)f(S)W(S)/EZ(;)f(S) = w[E(1)].

That the conditions (5.6) are true whenever (6.5) is valid, may be seen by
noting that the steps are reversible in the above argument.

THEOREM 5. If g(w) has the special form (6.1), then for given w(ty), - - - , w(t,)
the relations (6.5) have a unique solution, &(t), - -+, &(t,). This solution is the
absolute maximum point of (6.1) subject to the constraints (5.5).

Proor. By calculating the second partial derivatives, (6.1) may be shown to
be a strictly concave function. The theorem then follows from Theorem 4 and
the corollary to Theorem 2.
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The remainder of this section establishes an algorithm for computing the
solution &(t1), -, @(tp) of Theorem 5.
LeEMMA 1. If Q s the solution set defined in Theorem 4, then w(E(q, Q)] = w(q)
whenever q € Q.
"~ Proor.
E(q) = {d} y E(t)
¢

teS8(qg,T)
t

where the role of @ is suppressed.

wlE(Q)] = (f@w(e) + 3 fEOWEO)/EQ)]
teQ

= {f(@Qw(e) + wEDIAE(D)] — f(QB/AE(D]

Hence the lemma.

THEOREM 6. Let w(t*) < w(t) for all t ¢ T. If t* = r, then the solution, &, of
Theorems 4 and 5 lies on the plane w(r) = w(r). If t* > r, then & lies on the plane
w(t*) = w(t* ).

Proor. First consider the case t* = r, r is always ¢ Q so that &(r) =
wlE(r, Q)] = w(r). If &(r) # w(r) then w[E(r, Q)] > w(r). This however,
contradicts Lemma 1. Next consider the case t* > r. Assume for purposes of
contradiction, that w(¢*) < w(t) forallt e T, but &(¢*) = &(#* ). Thus &(t*) >
&(t* ') or t* £ Q. Since t* # r there exists ¢ £ T such that * £ S(¢, Q) and w[E(f)]<
wlE(t*)]. But according to Lemma 1, w[E(t*)] = w(¢*). Therefore w[E(f)] <
w(t*) contradicting the minimum property of w(¢*).

THEOREM 7. If g has the special form (6.1), H is a hyperplane containing the
arbitrary set K, and if ws € H 1s such that g(w, o) = g(w, w) for all w € H, then
g(w, wo) = g(w, w) for all v ¢ K, if and only if g(wn, wo) = g{wn, w), for all
we K.

Proor. The truth of the theorem will be apparent if it is established that
g(w, w) = g(w, ws) + g(wn, w) for all w & H. In this proof f(¢;), w(t;) and w(t;)
are written as f; , w; and w; respectively. If the equation of H is

y 4
(6.6) > hiwi = d,

faml
then w; is the value of w which minimizes
2 2
‘Z;f (wi — wi)

subject to the constraint > £ hw; = d. By the method of Lagrange multipliers
it can be established that

(6.7) fi(w; — wni) = M
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where X is a constant of proportionality independent of j. Hence if w ¢ H then
Zfi(’wi — wni) (wns — @) = A2 hi(wni — i) = AMd — d) = 0,
2o fiwi — w)® = 2 fi(wi — wni)® + 20 filons — wi)?

and finally g(w, w) = g(w, @) + g(wr, w).

Before Theorem 7 can be used in a particular case, it will be necessary to
determine an expression for w; . This may be done by carrying on from equations
(6.6) and (6.7).

(6.8) whj = w; — My/f;.

y P P
Z hions = Z hiw; — A Z h?/fi =d
i=1 b |

4=l

since wy, ¢ H, and hence

(6.9) A= zi hav; — d) /( il Ri/f3).

In order to discuss the way in which Theorems 6 and 7 may be used to es-
tablish an algorithm for computing &, first consider the case t* = r. Let wy be
the maximum of (6.1) subject to w(¢) = w(¢£ ) for all ¢ such that £ > r. Writing

g(w, w) = —3(Nho(r) — (=3 2 > f(OWw() — ()T,
te8(r,T) B(t)
it is clear that we(r) = w(r) and for ¢ > r, we(t) is to be found by several apph-
cations of Theorem 4. For ¢ > 7, wy(t) must be a weighted average of the w(¢#)’s
(again ¢t > r) and hence since w(r) < w(¢) forall te T (i.e., t* = r) then w(r) =
wo(r) = wo(t) and the vector wy satisfies the relations (5.5). In this case, wy maxi-
mizes (6.1) subject to (5.5) and wp = &.

Next consider the case t* > r, according to Theorem 6, & lies on the plane,
H say, whose equation is w(#*) = w(t*7). Defining K = [0 ] w(t*) = o(t*™)
and w(f) £ w(t™)] and using Theorem 7, maximizing (6.1) in the admissible
region (5.5) is the same as maximizing g(ws , w) with respect to w ¢ K. According
to equations (6.6), (6.8) and (6.9), wa(t*) = wa(t* ™) = w(t*, t*) and wi(t) =
w(f) fort 5= t* and ¢t > t*". Hence

glon,©) = — 3 > f(Ow®) — o(OF
t##¢* and

fsapr—1

— () + FE ), 7)) — (@]
Maximizing (6.10) over K is the same problem as the one with which we started
but in one less variable.

Summarizing, @ may be found by applying the following algorithm: Let
T, = T and w(¢, T1) = w(t). Define T;,, inductively from 7'; as follows. Denote
the predecessor of ¢ in T; by P(¢, T:) and let w(t*, T:) be the least (¢, T:) such
that w(t, T:) < o[P(t, T:), Ti. We may express this by saying that ¢* is the

(6.10)
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minimum violator in 7'; . t* depends on %, but we suppress this dependence in the
interest of simplifying the notation. Writing P(¢*, T;) = ¢ say, then the line
t*t’ is deleted from 7'; and a point will be said to be > (<)¢* in Tyy, if it was
> (<) t*ort'in T;. All other points, lines and orderings are unchanged and the
resulting linear graph is T;y; . Tij1 is a tree or perhaps several disjoint trees.
F(&*, Tiyr) = F(t*, Ts) + f(¥, Ts) and w(t*, T;y1) is defined to be

[f(8%, Te(e*, T) + (&, Tow(t, THVF(E*, Tin).

All other f’s and w’s in T';y, are unchanged. Record for later use that &(¢*) =
@&(t"). If T; has no violators and hence no minimum violator, then the induction
is stopped at the 7th stage and @(f) = w(¢, T;) for all £in T; . This process would
seem to lend itself best to explanation by example and it is intended to write a
less mathematical companion article in another journal which will provide
several examples.

7. Trees and multiple classifications. Again let T denote a rooted tree with
p points. Let ¢°(¢) be a function defined over 7. w(t) is then defined by

(7.1) w(t) = 2 d*(s).
st
Solving these equations one obtains
a(r) = w(r)
(7.2) . o
a(t) = w(t) — (i), tFE .
As in Section 3, if w(t), - -- , w(¢,) are independently distributed mean squares,

and if the probability density of w(Z) is hlw(Z:), f(¢:)], where the notation of
(1.1) bas been used, then twice the log of the density function is given by

(7.3) g(w) = const. — '_Z:f(t.') [tog w(t)) + w(t:)/w(ts)].

Thus to find maximum likelihood estimates of the ¢”’s defined in (7.2), one must
maximize (7.3) with respect to the constraints (5.5) to find &(¢) and then sub-
stitute in the equations (7.2) to find °(¢). The theory of Section 5 applies and,
in particular, Theorem 3 may be used to prove

TuEOREM 8. The problem of maximizing (7.3) subject to (5.5) is equivalent to
the problem of maximizing (6.1) subject to (5.5).

Proor. Since (7.3) assumes an unrestricted maximum and the admissible
region is closed then (7.3) assumes a restricted maximum. Further the necessary
conditions (5.6) are the same for the two different problems and hence the condi-
tions (6.5) of Theorem 4 are necessary that either function have a restricted
maximum. But according to Theorem 5 the solution of (6.5) is unique and hence
yields the restricted maximum of both (6.1) and (7.3).

8. Acknowledgments, and remarks of a general nature. The author’s interest
in the problems of this paper, was aroused by discussions with E. Vernon Lewis,



288 W. A. THOMPSON, JR.

Kenneth Horowitz, Paul Cox, and Frank E. Grubbs. Suggestions made by
Robert M. Lauer, Russell Remage, Christian C. Braunschweiger, Willard E.
Baxter, James R. Moore and the referees have been particularly beneficial.

A problem similar to that of Section 7 is considered by Van Eeden [5] and
Brunk [3]. Their problem is more general in that they consider maximum likeli-
hood estimation with respect to lattice type constraints. Hence, the algorithm
which is developed by Van Eeden and Brunk would apply here as well; however,
they do not consider the problem of negative estimates of variance components
explicitly nor do they specialize their results to tree type constraints. For tree
type constraints the algorithm of this paper is superior to that of Van Eeden and
Brunk in that (in Brunk’s notation) the order of choosing the sets A; is specified
thus reducing the maximum possible number of steps from 2¥ — 1 to N — 1.
The algorithm of this paper is of value in the Van Eeden, Brunk problem when
their constraints are of the tree type but is not extendable to the more general
case of lattice constraints.

In some cases, where the pooling is always in the same direction, it is clear that
the restricted maximum likelihood estimates are biased but for other components,
perhaps in the same experiment, the pooling sometimes increases the estimate and
sometimes decreases it so that the presence of any bias is difficult to determine.
Some designs, for example the three factor experiment [9, p. 346], do not yield
expected mean square columns which form a tree. If the various mean squares are
independent we may use general quadratic programming techniques to maximize
(6.1) subject to the appropriate constraints. The resulting estimates will no
longer be restricted maximum likelihood, but will have a corresponding least
square property. Further, in the case of tree type constraints this procedure
reduces to the method of this paper and hence may be considered as an extension
of it.

REFERENCES

{11 R. L. AnpERsSON aND T. A. BaNCROFT, Statistical Theory in Research, McGraw Hill,
New York, 1952.

[2] F.J. Anscomsg, Contributions to the discussion on D. G. Champernowne’s, ‘“Sampling
theory applied to autoregressive sequences,’”’ J. Roy. Stat. Soc., Ser. B, Vol. 10
(1948), p. 239.

[3] H. D. BrUNK, “On the estimation of parameters restricted by inequalities,” Ann.
Math. Stat., Vol. 29 (1958), pp. 437-455.

[4] Hararp CraMER, Mathematical Methods of Statistics, Princeton University Press,
Princeton, 1946.

{5] ConsTaNcE VAN EEDEN, Testing and Estimating Ordered Parameters of Probability
Distributions, University of Amsterdam, Amsterdam, Holland, 1958.

{6] Frank E. GruBBs, ‘‘On estimating precision of measuring instruments and product
variability,” J. Amer. Stat. Assn., Vol. 43 (1948), pp. 243-264.

{71 Leo~ H. HErBACH, “Properties of model II—type analysis of variance tests,” Ann.
Math. Stat., Vol. 30 (1959), pp. 939-959.

(8] H. W. KurN anp A. W. TuckEr, “Nonlinear programming,”” Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, University of
California Press, Berkeley, 1951, pp. 481-492.



NEGATIVE VARIANCE COMPONENT ESTIMATES 289

9] ALExaNDER McFARLANE Moob, Introduction to the Theory of Statistics, McGraw Hill,
New York, 1950.

[10] J. A. NELDER, ‘‘The interpretation of negative components of variance,’’ Biometrika,
Vol. 41 (1954).

{11] Joun RiorpAN, An Iniroduction to Combinatorial Analysis, Wiley, New York, 1958.

[12] THOMAS S. RUSSELL AND RALPH ALLAN BRADLEY, ‘‘One-way variances in a two-way
classification,”” Biometrika, Vol. 45 (1958), pp. 111-129.

[13] HENRY SCHEFFH, ‘‘Alternative models for the analysis of variance,”’ Ann. Math.Stat.,
Vol. 27 (1956), pp. 251-271.

[14] HeENrY ScHEFF#, The Analysis of Variance, Wiley, New York, 1959.

[15] L. E. Simon, ‘“On the relation of instrumentation to quality control,”’ Instruments,
Vol. 19 (1946), pp. 654-656.



