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In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates 
cannot be the physical positions. The relation between them is given by the individuality 
differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a 
wide family of solutions for these equations. In general, those solutions do not satisfy the 
condition of constancy of velocities' moduli, and therefore we have to reparametrize the world 
lines into the proper time. We derive here a condition on the Cauchy data for the individuality 
equations which ensures the constancy of the velocities' moduli and makes the reparametrization 
unnecessary. 

PACS numbers: 11.80. - m, 02.30.Jr. 11.30.Cp 

I. INTRODUCTION 

The description of the relativistic interaction at a dis­
tance between particles has been a difficult task both from 
the mathematical and the conceptual viewpoints. There are 
some different ways to face these problems in the litera­
ture. l

-4 

In this paper we consider two versions of an action-at-a­
distance theory called predictive relativistic mechanics 
(PRM). The main hypothesis of this theory are: (i) Poincare 
in variance and (ii) the dynamics of the interacting particles is 
given by a second-order differential system and, therefore, 
the motion is completely determined by the initial positions 
and velocities. The versions of the PRM which we consider 
here are the so called "multitime formalism"s and "a priori 
Hamiltonian formulation,,,6 respectively. 

In the multi time formalism, Hamiltonian descriptions 
have been derived by Bel and co-workers? for the electro­
magnetic interaction and for the scalar and vector short 
range ones. However, this method leads inevitably from the 
beginning to power expansions in some constant and, al­
though there are iterative algorithms to obtain all interesting 
functions order by order, their convergence has not been 
proved yet. Also, it is hard to go beyond order two. 

In the a priori Hamiltonian framework6 it is possible to 
consider a wide class of models which do not need perturba­
tive methods, at least in the first steps. However, this formal­
ism is objected to in that it does not allow us to describe 
physical interactions like those mentioned above. Anyhow, 
the a priori Hamiltonian formalism will provide exact simple 
models of interacting relativistic particles whose study will 
permit us a better understanding of quantization. 

Both frameworks can be related to one another by inte­
grating the so-called position equations-see Sec. II. As we 
shall see later, a Poincare-invariant predictive system (multi­
time formalism) can be associated with each "a priori" Ha­
miltonian one plus a good set of Cauchy data for the position 
equations. However, this correspondence usually implies re­
parametrization of the world lines of each particle into its 
individual proper time. This is studied in detail in Secs. II 
and III. 

Because of the necessity of reparametrizing the world 
lines, the associated Poincare-invariant predictive system 

does not coincide with the starting Hamiltonian one, but 
they are proportional, as we shall see in Sec. III. Therefore, 
the former does not leave the symplectic form invariant 
whereas the Hamiltonian system does. 

As we have mentioned above, an "a priori" Hamilton­
ian system is in correspondence with a wide class of Poin­
care-invariant predictive ones, depending on the prescribed 
Cauchy data. In Secs. IV and V we study how the Cauchy 
data can be restricted in order to ensure the coincidence 
between the "a priori" Hamiltonian system and the associat­
ed Poincare-invariant predictive one. 

II. PREDICTIVE HAMILTONIAN SYSTEMS 

In predictive relativistic mechanics the basic equations 
of motion consist of N coupled second-order differential sys­
tems8 

a.r,: a~ 
-- = Dabrrl;, -- = DabO~(X,1T), 
BUb BUb 

a, b, c,'" = 1, ... ,N, f,l,v,.·· = 0,1,2,3. (2.1) 

Each one defines a vector field on the phase space TM 4N 

B a 
Ha = rrI; . - + O~(x,1T) . -, a = 1, ... , N. (2.2) 

Bxap. B~P. 

The integrability conditions of (2.1) read 

(2.3) 

meaning that if, starting from a point P in the phase space, 
some among the particles are transported along their respec­
tive world lines to a new point Q E TM4N, the same integral 
of (2.1) is obtained irrespectively that you take either P or Q 
as initial conditions. 

It is easy to proof the following9
•
1O

: 

Theorem 2.1: Let H1, ... ,HN be vector fields of the type 
(2.2) such that [Ha ,Ha· ] = 0, 'tJ a' #-a. Then, there exists an 
open neighborhood ~ of ! 0 J X TM 4N C RN X TM 4N and a 
continuously differentiable mapping 

fjJ: ~ _ TM 4N, 

(ul,· .. ,UN;P) - (fjJ~(ua,x~,n::), ~~(ua,x~,n::)), (2.4) 

P = (x~,n::), 

such that: 
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(i) tp(O,P) = P, V P E TM 4N, 0= (0, ... ,0) E RN , 

(ii)(a2,P)E'1I, (lT I,tp(a2,P))E'1I, (lT l +a2,P)E '11 

=? tp (lTI,tp (a2,P)) = tp (lT l + a2,P); (2.5) 

(iii) for any function/on TM 4N, 

[a!a /(tp(lTI, ... 'lTN;P))L~o = (Ha/)P (2.6) 

(this means that Ha is the tangent vector to the trajectory of 
the particle a in the phase space); 

(iv) uniqueness. 
A very important feature due to the Kronecker {j 's ap­

pearing in (2.1) is that tp ~ depends only on the parameter lTa . 
This property is called the "individuality condition." 

Theorem 2.2: Let uJ- be a neighborhood of [ ° l X TM 4N C RN X TM 4N and let tp be a continuously dif­
ferentiable mapping: 

tp: '11 _ TM4N 

(lTI,. .. ,lTN; P) - (tpa(lTa, P),Cpa(lTa, P)) 
with the properties (i) and (ii). 

Then the vector fields [Ha l a ~ I ... N defined by (2.6) are 
of the type (2.2) and fulfill the conditions (2.3). 

The Poincare in variance of the differential system (2.1) 
is assured iff e ~ are translation-invariant 4-vectors. Then 

(2.7) 

where PI' and JI'V are the generators of the Poincare group. 
Equations (2.3) and (2.7) exhibit that PI" JI'V' and Ha 

span a realization of an abelian extension of the Poincare 
algebra. 7 The associated transformation group 9 ® d N is 
the direct product of the Poincare group and the abelian one 
,pfN~RN. 

Hereafter will be called a Poincare-invariant abelian 
system (PIAS) any family of differential systems [Ha' 
a = 1, ... , N l of the type (2.2) fulfilling (2.3) and (2.7). 

In predictive relativistic mechanics it is also required 
that ~ be an integral of motion for any system 
[Hb' b = 1, ... , N l. This means that the parameter lTa is the 
proper time of particle a, apart from a multiplicative con­
stant. This implies the following relation: 

1TUll . e~(X,1T) = 0. (2.8) 

A PIAS satisfying the conditions (2.8) will be called hereafter 
a Poincare-invariant predictive system (PIPS). 

A Hamiltonian formalism for the system (2.1) will be 
determined by picking up a simplectic fl form on TM4N 
invariant under 9 ® d N' 

As is well known, a function! can be associated to each 
field A, which leaves fl invariant. This function is defined in 
TM 4N, at least locally, by 

d/= iA fl, 

and it is unique, apart from an arbitrary additive constant [in 
Eq. (2.8) i means the interior product9

]. 

In particular, the functions associated with PI" J w' 
and Ha are, respectively, the linear momentum, the angular 
momentum, and the Hamiltonians. 

It is important to realize that in all cases of interest: 
fl =l-dx~ 1\ d~ in order to circumvent the no-interaction 
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theorem. 3 

The preceding are the main features of the natural ap­
proach to obtain a Hamiltonian description [as a first step to 
quantization of a classical system like (2.1 )]. A very impor­
tant fact of this approach is that it usually involves perturba­
tive methods, as it can be seen in the cases of electromagnetic 
and of short range scalar and vector interactions. 7, II 

Another approach to predictive relativistic mechanics 
is given by the so-called "a priori Hamiltonian predictive 
systems." It consists in giving N scalar functions Ha (q,p) on 
the phase space TM4N endowed with a symplectic form: 

fl = dq~ 1\ dp~ (2.9) 

where, in order to assure the Poincare invariance, the ca­
nonical coordinates q~ behave like x~ under Poincare trans­
formations and the momentap~ are translation invariant 4-
vectors. This implies 

a P =E-
I' a arj: 

(2.10) 
_ a a a a a a 

JI'V - qall . a---:'- - qav .-a + PI' . -a - p, . . --
q a q~ 'Pav apal' 

and the corresponding functions: 

(2.10') 

The simplectic form (2.9) defines the Poisson bracket: 

[ nJ1 b l - {jb I' [ nJ1 v l [a b l 'fa'Pv - a '1]v' 'fa,qb = PI',Pv = 0, (2.11) 

in terms of which the Hamilton equations read 

a~ au 
-a a = [Hb,q~ L a'Pl' = [Hb'P~ j, a,b = 1,2, ... , N,(2.12) 

7b 7b 

and their integrability conditions: 

[Ha,Ha· l = 0, Va'=l-a. (2.13) 

Assuming that the conditions (2.13) are fulfilled by the Ham­
iltonians, the Hamilton equations (2.12) are integrable, i.e., 
there exist functions/~(71, ... ,7N;q~,p;) and 
g~(71, ... ,7N;q~,P;) which are solutions of(2.12) and 

/~(O, ... ,O;q~,p;) = q~, ~(O, ... ,O;q~,p;) = p~. 

However, there is still one important difference 
between these solutions and the integral (2.4). In general,f~ 
and g~ do not accomplish the individuality condition and 
depend essentially on more than one of the parameters 
(71, ... ,7N)' Furthermore, if we require/~ and g~ to depend 
only on 7a (V a = 1, ... , N), then it turns out-no-interaction 
theorem'-that only free particle Hamiltonian systems are 
allowed. 

It is for this reason that the a priori canonical coordi­
nates (q,p), have no physical meaning; therefore, we cannot 
identify ~ with the physical position x~ and, henceforth 
fl =I-d~ 1\ dp~. 

In order to give some physical content to these "a priori 
Hamiltonian predictive systems," we must introduce the 
physical positions x~(q,p), which we define by the individua­
lity condition: 

(2.14) 
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which are N - 1 partial differential equations on x~. 
A system of N scalar functions Ha (q,p) fulfilling the 

integrability conditions (2.13) and the individuality condi­
tion (2.14) will be called hereafter an "a priori Hamiltonian 
predictive system." 

As far as we have assumed that (2.13) is fulfilled, the 
partial differential system (2.14) is integrable. Therefore, a 
good set of Cauchy data determines a unique solution of 
(2.14): x~(q,p). 

We can then define the velocities 

x~(q,p) [Ha,x~l. (2.15) 

From (2.13) and the Jacobi identity for Poisson brackets it is 
obvious that 

(2.16) 

If the Jacobian la(x~, x~)/a(~,p~)1 does not vanish, the 
functions x~(q,p) and x~(q,p) define a change of variables. 
Then, the vector field H: associated with Ha (q,p) by n can 
be written as 

H ' '1' a f:" I' ( . ) a_I N a = Xa -- + ~ a X, X . --, a - , ... , , 
axal' axal' 

(2.17) 

where S~( x(q,p), x(q,p)) [Ha(q,p), xa(q,p)J· 
These systems are of the same type as (2.2) and, as a 

consequence of (2.13), they obviously satisfy the conditions 
(2.3)9: 

[H;,H;, ] = o. 
Since Ha (q,p) are scalar functions, x~ and S~(x,x) are 

translation-invariant 4-vectors. 
What has been achieved is that any "a priori Hamilton­

ian predictive system" (HPS) with a good set of Cauchy data 
for (2.14) determines a unique PIAS, provided that the posi­
tions and velocities (x~, x~) are a complete set of coordinates 
on phase space. 

We have to realize that the PIAS associated with the 
HPS depends crucially on the Cauchy data for the position 
equations. In general, two different sets of Cauchy data for 
(2.14) associate to the same HPS two different PIAS. 

In general, the PIAS (2.17) is not affine parametrized, 
i.e., it is not a PIPS, because the condition (2.8) 
xal' . S~(x,x) = 0 need not be fulfilled. 

One question now arises: Is it possible to obtain a PIPS 
equivalent to (2.17) via a reparametrization? 

III. REPARAMETRIZATION OF A PIAS 

Let us start from a PIAS: 

H' = xl' . ~ + f:"1'(x,x).~, a = 1, ... , N. 
a a axal' ~ a axal' 

We introduce now the following change of variables in 
TM 4N

: (Xb' xc) ~ (Xb ,1Tc) defined by 

~ Pa(xb , xc)· x~, (3.1) 

where Pa (x b , xc) are N given scalar functions. 
This transformation leaves the position invariant and 

only modifies the velocities' moduli. The inverse transfor­
mation is given by 
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(3.2) 

where the N functions aa (Xb ,1Tc) can be obtained from 

aa·f3a(xb,ac1Tc)=I, a=I, ... ,N, (3.3) 

provided that the conditions of the implicit function 
theorem 12 are fulfilled. Moreover, it is obvious that this oc-

curs if and only if {f3a (xb,xc )~ - x~ 1 a = 1 ..... N are functional­
ly independent. 

We then define the following second-order differential 
systems: 

with 

a a 
H = tr:.a . -- + el'(X,1T). --, a = 1, ... , N, 

a axal' a a1T"1' 

e~(x,1T)=(H:f3a)(x,a1T)· ~ + f3~(x,a1T)· S~(x,a1T). 
(3.4) 

The following two theorems are referred to the relations 
between PI AS and PIPS defined by reparametrizations. 

Theorem 3.1: If the functionsf3a (x,x) introduced in (3.1) 
satisfy 

H:,f3a = 0, Va' #a, (3.5) 

then: 
(i) The family of second-order differential systems 

[Ha 1 a = 1, .... N defined in (3.4) is a PIAS. 
(ii) Any integral of [H: 1 a = 1 •.. ,. N can be reparametrized 

into an integral of [ Ha 1 a = I,., N· 

Theorem 3.2: 
Let 

[H; = x~ . a/axal' + S~(x,x). a/axal'; a = 1, ... , N J be a 
PIAS and 
[Ha = ~ . a/axal' + e~(X,1T) . a/a1T"l'; a = 1, ... , N 1 be a 
PIPS. 

Assume that any integral fJ ~(C7a' X,1T) of the second can 
be reparametrized into an integral 1/I:;(Ta, X, x) of the first. In 
other words, there exist 2N functions/a (Tb' x, x)andf3b (x, x) 
as much differenciable as necessary, such that 

(3.6) 

(3.7) 

(3.8) 

(iii) H;,f3a = 0, Va' #a; (3.9) 

(iv) S~(x, x) = f3 a- 2(X, x)· e~(x, f3x) 

(a~ ) + a~ (O.x..*1 ·f3a ·x~. (3.10) 

We have to realize that the reparametrization functions 
fa depend not only on Ta but also onxt andx~. This is due to 
the fact that each integral of the PIAS must be reparame­
trized independently of the others. This makes the problem 
much more involved than it seems at first sight. The forego­
ing two theorems establish which conditions must be im­
posed on the functions/a(Ta , xt, x~) in order to preserve the 
predictive abelian character of the system after reparametri-
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zation. This complication has not been noticed in the least in 
previous works. 6 It turns out, however, that all reparametri­
zations of PIAS existing in the literature happen to fulfill 
Eqs. (3.5) and hence keep the abelian character of the system. 

IV. A NATURAL RESTRICTION ON THE CAUCHY DATA 

We have concluded in Sec. II that the PIAS associated 
with a given HPS depends very strongly on the Cauchy data 
taken to solve the position equations (2.14). 

The big variety of Cauchy data for Eq. (2.14) lies in two 
facts: 

(i) The Cauchy surface.I is any (7 N + 1) submanifold of 
the phase space, with the only restrictions of being Poincare 
invariant and of not being a characteristic of (2.14). (ii) The 
prescription 

[X~ - f~(q,p)]x = ° 
is only restricted by good behavior under the Poincare 
group. 

(4.1) 

In order to reduce somehow the wide variety of solu­
tions of the position equations, we can furthermore intro­
duce the orthogonality conditions (2.8), which in Hamilton­
ian formalism are written as 

(4.2) 

A first integration of this equation can be worked out 
immediately and leads to 

(4.3) 

where m~ (q,p) is a positive integral of motion which is usual­
ly taken to be 2Ha (q,p).6 We shall also do it hereafter. 

Although (4.3) is apparently a new differential equation 
to add to Eq. (2.14), we shall see in the following that it can be 
reduced to a condition on the Cauchy prescription (4.1). 

Let us first consider a Cauchy surface satisfying the 
above conditions (i). It will be defined by N - 1 scalar func­
tions: 

¢B(q,P) = 0, B = 2, ... , N, 

and no linear combination of the vectors H;, b =/=- a, can be 
tangent to.I. That is to say: 

[I bC(q,p)' !HC'¢B]] =0, 't;/ B=2, ... ,N 
c#a I 

~[b C(q,p)Lr = 0, 't;/ c=/=-a, 

which is satisfied if and only if 

det(! ¢B.Hc ]II) =/=-0, B = 2, ... , N, c=/=-a. (4.4) 

If we want ~ to be a good Cauchy surface for the posi­
tion equations of any particle, Eq. (4.4) need to be true for 
any a = 1, ... , N. 

Let us now consider a vector field of the form 

Da = H~ + I !/Jla)H;. (4.5) 
c#a 

The functions !/Jfa) can always be chosen in such a way 
that DalI is tangent to.I, that is to say, 

[Da¢B]I = 0, 't;/ B = 2, ... , N, (4.6) 

which can also be written as 
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(4.7) 

But from (4.4) the linear system (4.7) is Cramer's and the 
restriction to.I of !/Jla) (q,p) is uniquely determined. Substitut­
ing then these suitable values of ¢lal into (4.5), we have for 
any g(q,p) 

(4.8) 

Therefore, taking (2.14) and (4.1) into account and using 
(4.8), we can write 

(4.9) 

Theorem 4.1: The solution of Eq. (2.14) with the set of 
Cauchy data [x~ - f~(q,p)] I = ° satisfy also the condition 
(4.3) if and only if 

(DaIIfal')(DaIIf~) = - m~(q,p). (4.10) 

Proof (a) (if) Let x~(q,p) be the solution of (2.14) with 
these Cauchy data, and let us define ga (q,p)=! Ha, x~] 
. r H a , X U1' ]. From (4.9) and (4.10) it follows that 

(4.11 ) 

Then, using (2.13), (2.16), and the Jacobi identity for Poisson 
brackets, we have 

(4.12) 

Therefore, gu is a solution of (4.12) with the Cauchy data 
(4.11). But the uniqueness of solutions implies 

ga (q,p) = - m~ (q,p), 

and the first part of the proof (if) is finished. 
(b) The second part of the proof (only if) is immediate. 

V. APPLICATION 

We shall here apply the results obtained in the last sec­
tion to the family of models presented in Ref. 13 and given by 
the Hamiltonian functions: 

Hb =a(p'Yb)-{3P2_y[~y~ + I lYA'lA')] 
A <A' 

+ V(Js, zc) (5.1) 

where 

PI'-EQp~, y~-(l/N)P" -~, z::=q~ - q;', (5.2a) 

ylt __ ~y~, (5.2b) 

(5.2c) 

EA = I, a,b,c = 1,2, .. " N, A,B,C = 2,3, ... , N, and a,{3,y are 
arbitrary real constants. 

In these models, the integration of the position equa­
tions (2.14) has been worked out taking the Cauchy data: 

[x~ - q~]x = 0, .I=!(q,p) E TM 4N /(p.ZA) = OJ. 
(5.3) 

However, since the 4-velocities ! Ha, x~ 1 have not con­
stant moduli the parameters 7 a , a = I, ... , N, along the world 
lines of the particles, are not the proper times. 

We shall here relax the prescription (5.3) and take 

[X~ - (it; + ha (q,p) . P")] I = 0, (5.4) 

where ha (q,p) is an arbitrary scalar function which will be 
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fixed by requiring (4.10). 
Since we are only interested in the values of ha (q,p) on 

~ o==! (P . Z B) = 0 I, it will only depend on the variables 
P 2, p. X, p. YB'.P ,2~, Y ~. Also, since~ is translation-in­
variant and x~ and ~ change like 
x~ ----> x~ + eI', q'; ----> ~ + e' under a translation el', we have 
that ha (q,p) must change like 

ha ----> ha + E' P Ip2. 

Hence, we can write 

ha =p.X/p2+ Ko ' (5.5) 

where Ka is translation-invariant and, therefore, it only de­
pends on p2, p. YB' Z'~, y;. 

We shall here study the case a = 1. Then we can obtain 
the others x~(q,p), a =1= 1, by a simple permutation of indices. 

The vector field DI introduced in (4.5) is given in this 
particular case by 

1 DI = -------------
aP 2 + Ny(P. yd 

[
,a N a J x aP-.-+ I NyPf.yI-YB)·-' 

JJr. B~ 2 JAB 
(5.6) 

where use has been made of the new parameters 
lA, Jr. B, B = 2, ... , N J, which are related to the (Ta la~ I • • N' 

byL~ 

(5.7a) 

and 

(5.7b) 
a 1 a a 
-= --- -= -a((p·YB),-J· 
dAB N dJr. JTB 

Then, the condition (4.10) on the Cauchy data (5.4) im­
plies that, on ~, 

hi = [(II - P 2
). (m~ + q~)] 112, (5.8) 

where the dot means derivation by D I . The sign + have 
been chosen in order to ensure the future orientation of xt. 

Working out the necessary derivatives, we obtain 

~ N.y.a·p 2 

~= - ----~~-------
a . P 2 + N· y. (lYd 

X [yt + (p 2)-I. Ea(P. Ya)' y~], (5.9) 

where, as was pointed out in the detailed study of these mod­
els,13 P 2 and (P . Y B) are integrals of motion and the y ~ only 
depend on A. Therefore, the right-hand side of (5.9) can be 
expressed as 

¢!1=aA.y~, 

where aA (P 2, lY B) are integrals of motion. 

1669 

The evolution of y ~ is described by i3 

d- fL 
~=N. (V,y~j, 
dA 
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(5.9') 

(5.10) 

Finally, substituting the solution of (5.10) in (5.9) and intro­
ducing it in (5.8), we obtain h1(q,P)II by a simple integration. 

In the following we shall study in detail the particular 
case of an oscillatorlike potential: 

a<a' 

= -~k[(N-I)'~2~-2' I (2B .28')].(5.11) 
B<B' 

with 

Equation (5.10) becomes 

d-!1 r A 
--= 

dJ.. 
-N.y.y~ 

r~=z~ - (l/N)EBZ~, A,B = 2, ... , N, 

rt== - (l/N)EBZ~. 

If we now define ;p f'=a B
,. ~, we can write 

d¢!1 -__ =N 2 ·k·m!1 
d)' .,.. , 

whose general solution is 

¢ !1(J.. ) = R fL . sinwA + S fL . COWA, w=(N 3ky) I /2 

- w - -
<pfL(A ) = -2- [R!1 COWA - SI-' sinwA ], 

N ·k 

where R I-' and S I-' depend on the initial conditions. 
Substituting (5.15) into (5.8) and (5.9), it yields 

+ 2(R . S )COWA . sinwA ]. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

Since P 2 and (P . Y B) do not depend either on A nor on 
AB andy ~ only depends onA, we can write, taking (5.9') into 
account, 

(5.17) 

where b is a constant of motion which we derive in Appendix 
A and a is the parameter along the integral curves of D 1: 

d 
D 1 =-· 

da 
Hence, introducing this in (5.16) yields 

dh 1 1 2 - 2 -
- = . [ml + R . sin2(wba) + S2 
da ~ 

2 - -. cos (wba) + 2(R . S )sin(wba) . cos(wba)], 

which, after some manipUlations, leads to 

dh 1 = ~A 2 _ B 2 sin2(wba _ 8 ), 
da 

with 

B2 = ~v1RS)2 + !(iP -S2»0, 
-P 

tan28 = 2(R . S )I(S 2 _ R 2). 

(5.18) 

(5.19) 

(5.20b) 

(5.20c) 

Since B 2,;;;A 2, the solution of (5.19) can be expressed in 
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terms of an elliptic integral of the first kind 14: 

hl(u) = ~. E(B, wbu - 0) + r, 
wb A 

where r satisfies D1r = o. 

(5.21) 

We now have to explain what does this result mean. We 
are looking for a function h l (P

2
, PX, PyB' XI", ji~,?,:) on ~ 

satisfying the ordinary differential equation (S.19). A unique 
solution of it is determined giving a suitable set of initial 
conditions, i.e., a 7 N-submanifold~' of ~ such that it is not 
a characteristic of D 1, and the prescribed value of h 1 on~' . 
The situation is visualized in Fig. 1. 

Equation (5.21) gives us hl(Q) in terms ofQo and u [as is 
obvious A 2, B 2, Oaregivenin terms of the variables in Qo, the 
initial point for the trajectory of(S.14)]. However, we want 
our final result in terms of the coordinates of Q. 

In Appendix B the expressions of A 2 and B 2 in terms of 
constants of motion are given (B4). We also give there an 
expression (B7) for the phase 0 in terms of Q. Substituting 
(B7) into (5.21), it yields 

hl(Q)= ~E(B, -p)+r, (S.22) 
wb A 

with 

(B7) 

where 

;PI" = - Nr
aP2 

[rr + _1_EU(Pyu)r~], (S.23a) 
aP 2 + Nr(P, YI) p 2 

¢I"- Nr
aP2 [-I" 1 U(Py) -1"] (S23b - - ap2+Nr(Pyd YI + piE U 'Yu' . ) 

The integral of motion r is determined by fixing the initial 
conditions. If, for instance, we take 

~'==IP'X=OJ, hll~' =0, (5.24) 

we have, taking (5.22) into account, that 

z: 

FIG. 1. (7 = variation of the parameter between Qo and Q. 
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(S.2S) 

and 

where A is obtained from (A2): 

A = [2NPp 2 - (l/P2)NyEU(Pyu)2] -I. (P.X). (S.27) 

VI. CONCLUSIONS 

This paper is a study of the equivalence between two 
different versions of predictive relativistic mechanics. 

An N-particle system is described in the "a priori" Ha­
miltonian formalism6 by N Poincare-invariant functions Ha 
such that their mutual Poisson brackets vanish. The physical 
position are related to the canonical variables through the 
individuality conditions (2.14), which admit a wide class of 
solutions depending on the prescribed Cauchy data. This is 
the worst feature of this formalism because fixing only the 
Hamiltonian has not any physical meaning. 

Hence, in this framework the physical model must be 
established in two steps: (i) the Hamiltonian functions and (ii) 
the Cauchy data for the position equations. Then, integrat­
ing these equations we can associate a Poincare-invariant 
abelian system (PIAS) to the given Hamiltonian model 
(HPS). 

In general, the PIAS obtained in this way does not fulfill 
the condition of constancy of the velocities' moduli, and 
therefore it is not a Poincare-invariant predictive system 
(PIPS). We have shown in Sec. III that by means ofa repara­
metrization a PIPS can be associated with a given PIAS. 
This reparametrization is not unique. It involves a change of 
coordinates of the form: 

(x~, x~) --+ (x~, 1T~), 1T~ Pb (x, x) . x~. 

We have seen in Sec. III what conditions must be fulfilled by 
the proportionality factors Pb (x, x) in order to preserve the 
commutativity conditions (2.3). 

If a given reparametrization transforms a PIAS into a 
PIPS, the new variables (x~, 1T~) must verify: 
1T ~1Tul" = - m~, a = 1, ... , N, where I m~, a = 1 ... N ] are 
N arbitrary functionally independent constants of motion. 
Therefore, a given PIAS is reparametrized into a PIPS by as 
much reparametrizations as possible choices of the set 
m~, a = 1 .. , N ]. The most natural choice of these con­
stants are the N Hamiltonians. 

However, the Lie derivatives of the symplectic form fl 
with respect to the proper time along the individual world 
lines (i.e., the derivatives 2'(Hu)fl being H u, the tangent 
vector fields of the PIPS, a = 1 ... N) do not vanish and hence 
the PIPS is not Hamiltonian, with respect to the symplectic 
form fl. 

In Sec. IV we have considered the special situation in 
which the Cauchy data for the position equations lead di­
rectly to a PIPS and no reparametrization is necessary. In 
this case the PIPS is Hamiltonian. In Sec. V we have applied 
these results to the family of models presented in Ref. 6. 
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APPENDIX A 

The evolution of the functions (PX), (PzA), A = 2, ... , N 
is given byl3 

(PX) = (PX)o + 2N·{J· p 2A + a~(PyA) 'AA' 
(AI) 

(PzA) = (PzA)o + N· y[(PyA) + £B(PyB)] . A + aP 2AB· 

If we constrain the evolution to remain on 
~ \PzA = 0, A = 2, ... , N), we have 

AB = - NY2 [(PyB) + ~(PyA)] 'A, 
aP 

(A2) 

(PX)~=(PX)o+A.[2N.{J'P2- ;2· N . y .£a(Pyaf]. 

Therefore, we can write 

(PXh - (PX)o 
A = 2 2 2 2N . {J . P - (1/ P ). N . Y . £a(Py a) 

We can also relate the parameters A and 0' 

d(PXh = 2N{Jp2 __ 1_. N. y. £a(Py f, 
dA p 2 a 

d(PXh aP 2 
--- = DdPX)~ = --,:------

dO' aP 2+N·y·(Pyd 

hence 

b= dA 
dO' 

APPENDIX B 

X [ 2N{JP 2 - ; 2 N . y . £a(Py a )2]; 

aP 2 

(A3) 

(A4) 

(AS) 

We shall here derive the expressions of A 2, B 2, () in 
terms of integrals of motion. 

As is well known, 15 the system (5.14) has the tensor 
integral of motion: 

Hl'v=N 2 • k· (Pl'. (P v + N· y.1;I" .1pv. (B1) 

Substituting (5.15) into (B1), it yields 

Hl'v = N. y. (R 1'. R v + SI'. SV). (B2) 

We then define 

Ml'v _l_Hl'v= N·k (p1"(pv+I;I"'IPV, (B3) 
Ny y 

which is also a tensor integral of motion. 
Using (B3), we can write 

= [2/( - P2)]{WNk Iy)(p 2 - ¢2f + (Nk ly)((p¢)2} 1/2, 
(B4) 

1671 J. Math. Phys., Vol. 24, No.6, June 1983 

A 2 = [1/( _ P 2)]( mi + ! M ~) +! B 2 

= [1/(-p 2)1[mi +(NkI2y)(p2+!¢2] +!B2, 

where (p I' and ¢ v are given in terms of ~ and z~ by (5.9), 
(5.9'), and (5.13). 

From (5.15) we have 

R I' = ¢I'. sinwA + [NY . (Pl'. COSliJA, 

SI' = ¢I'. COSliJA - [NY . (Pl'. sinwA, 

and, substituting this in (5.20c), it yields 

or, equivalently, 

(B5) 

(B6) 

() = WA + p, p_! arctan [2[NY((p¢)/(¢2 - Ny . (p 2)]. 
(B7) 
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