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Abstract

Graph theory deterministically models networks as sets of vertices, which are linked by connections. Such mathematical
representation of networks, called graphs are increasingly used in neuroscience to model functional brain networks. It was
shown that many forms of structural and functional brain networks have small-world characteristics, thus, constitute
networks of dense local and highly effective distal information processing. Motivated by a previous small-world connectivity
analysis of resting EEG-data we explored implications of a commonly used analysis approach. This common course of
analysis is to compare small-world characteristics between two groups using classical inferential statistics. This however,
becomes problematic when using measures of inter-subject correlations, as it is the case in commonly used brain imaging
methods such as structural and diffusion tensor imaging with the exception of fibre tracking. Since for each voxel, or region
there is only one data point, a measure of connectivity can only be computed for a group. To empirically determine an
adequate small-world network threshold and to generate the necessary distribution of measures for classical inferential
statistics, samples are generated by thresholding the networks on the group level over a range of thresholds. We believe
that there are mainly two problems with this approach. First, the number of thresholded networks is arbitrary. Second, the
obtained thresholded networks are not independent samples. Both issues become problematic when using commonly
applied parametric statistical tests. Here, we demonstrate potential consequences of the number of thresholds and non-
independency of samples in two examples (using artificial data and EEG data). Consequently alternative approaches are
presented, which overcome these methodological issues.
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Introduction

The human brain is organized as a highly interconnected

structural network that functionally connects adjacent and distant

brain areas [1]. In the last decade, there’s an increasing interest in

modeling the human brain network using brain graphs, because

they seem to provide an adequate, yet simple model of a complex

system as the brain is. A brain graph models the connectivity of the

brain with a number of nodes interconnected by a set of edges [2].

The constitution of a node within a brain graph has to be specified

by the researcher and is depending on neuroimaging method,

anatomical parcellation schemes and connectivity measures [3].

Moreover, one edge of such a brain graph can represent

a functional or structural connection between cortical or sub-

cortical regional nodes. Such a network can be mathematically

represented as a graph with edges and nodes. The resulting

topology is characterized by local and global parameters, most

prominently, the cliquishness of connections between nodes in

a topological neighbourhood of the graph (clustering coefficient),

or the global efficiency of information transfer within the network,

which refers to the path length of a network [2,4].

Networks of so-called ‘‘small-world’’ topology constitute an ideal

balance of efficient information transmissions between distant

nodes (small path length), while retaining efficient local in-

formation processing (high clustering coefficient) [2,5]. These

premises lead to a topology characterized by segregated clusters

that are connected by local hubs, suggesting functional integration

and segregation, which is a highly plausible model of how the

human brain operates. This view is supported by studies indicating

that brain networks at the scale of single neurons up to

macroscopic functional networks incorporate the topology of such

‘‘small-worldness’’ [1,2,3]. Interestingly, a growing number of

studies indicates that small-world characteristics based on

anatomical and functional brain measures are strongly related to

intelligence [6,7,8], age [9,10], sex [11], genetics [12], synaesthesia

[13], and/or neurological diseases [14,15,16,17]. Thereby, in-

dicating that this network topology is a key factor in describing

brain functions.

Although this research strategy provides promising insights, the

commonly used analysis approach is associated with some

particular statistical problems. In this paper we will discuss these

problems and will present two alternative approaches that

overcome these methodological issues.

Usually, small-world network analyses in the context of

exploring interindividal differences aim to test whether parameters
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of network efficiency (i.e. path length and average cluster

coefficient) are related to specific populations. For example, the

researcher aims to examine whether two groups differ in terms of

particular network parameters. In order to accomplish this

comparison, the network parameters are calculated for each

group separately and then compared between these groups using

parametric tests, such as, t-tests or ANOVAs. A common

approach is to calculate various measures of dependency (i.e.

correlation) between brain attributes obtained from regions of

interest (i.e. cortical thickness, brain activity, etc.) that are

extracted from anatomical or neurophysiological data (i.e. EEG,

MEG. fMRI, MRI, or DTI). This leads to regions-wise within-

subject measures of connectivity. If measures of connectivity are

obtained for each group separately - as with structural magnetic

resonance imaging (sMRI) and diffusion tensor imaging (DTI) data

(except for fibre tracking data) - [14,18] only one network per

group and per threshold can be calculated, leading to region-wise

within-group measures of connectivity.

A commonly used strategy to conduct statistical comparisons for

the latter type of data is to use different and arbitrarily chosen

thresholds from which the different network measures are

calculated [1,2,3]. As a consequence of this strategy one obtains

as many network measures per group as thresholds used. These

different thresholded networks are pseudo-replications of group

level networks, which serve as measures for classical inferential

statistics. In the context of this paper we will use the expression

‘‘multiple-thresholds-approach’’ to describe this analysis pro-

cedure.

Although frequently used, this ‘‘multiple-thresholds-approach’’

is associated with several problems. First, depending on the

number of chosen thresholds the sample size will vary and this

influences the power of statistical testing. Second, the sets of

thresholded mean correlation matrices are not independent (as

classical statistics would require), because the information in

a sparser correlation matrix is also comprised in a denser

correlation matrix. This is particularly problematic for parametric

statistical tests, since they inevitably require independence of the

data. Thirdly, not only the number of thresholds used causes

problems, but also the range of the thresholds used to estimate the

network parameters are arbitrary. For example, one could restrict

the thresholds to a range from 0.2 to 0.6 or to a range from 0.3 to

0.8. Using these different ranges will generate different results.

Although the above-mentioned approach is not entirely wrong,

since one may wish to compare the profiles of network parameters

across the different thresholds, this approach can nevertheless lead

to ambiguous results. In this paper, we will demonstrate with two

examples how this approach can lead to ambiguous results. In the

last part we will propose an alternative approach, which uses

randomisation statistics and does not suffer from the above-

mentioned statistical problems.

Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

local ethics committee (Kantonale Ethikkomission: EK-80/2008).

All participants provided written informed consent for the

collection of samples and subsequent analysis.

Multiple-thresholds-approach
Example 1 - real data. For the first illustration of the

problem associated with this approach we used EEG data from

a previous study [19]. Seventy-four healthy male students (mean/

standard deviation: 25,5/4.86 years) participated in the study.

After recording seven minutes of spontaneous EEG at rest,

subjects conducted the Raven Advanced Progressive Matrices

(RAPM) [20], which is a widely used measure of psychometric

intelligence. In contrast to the previous study [19], we performed

a median-split based on the performance in the RAPM. This

resulted in a high IQ group (n = 25) and a low IQ group (n = 34).

The median raw score was 23 correctly solved items. Subjects who

scored at the median level of the RAPM were excluded.

Spontaneous EEG at rest was used to analyze connectivity

parameters of intracortical sources of brain oscillations in the

upper alpha band (10,5–12 Hz). The coherence between 84

anatomical regions of interest in both hemispheres was computed

(for the details of the analyses see [19]). This resulted in an 84684

correlation matrix (84 ROIs) for each subject. The connectivity

matrices of all subjects from the low IQ group to the high IQ

group were averaged separately, resulting in a mean connectivity

matrix for the low IQ and high IQ groups. The connectivity

matrices were then thresholded at different coherence values. This

multiple-threshold approach resulted in as many networks per

group as the number of thresholds applied to the connectivity

matrix. Network parameters (clustering coefficient, characteristic

path length and number of edges) were then calculated for each

connectivity matrix by using the tnet software [21]. In order to

draw statistical inferences regarding group differences in network

parameters, such as, the clustering coefficient and the character-

istic path length, we used a classical parametric statistical test (t-test

for independent samples). As mentioned above, this multiple-

threshold-approach is problematic because both the sample size

and the statistical power depend on the number of thresholds used.

In addition, the key assumption of independency between samples

in t-tests is violated when using differently thresholded correlation

matrices.

We demonstrated this by using three different numbers of

thresholds while keeping the ranges constant (range: 0.65–0.99).

The sparsest network (threshold r = 0.99) was omitted, because

the networks became no longer consistent. In the first trial we

thresholded the connectivity matrix 10 times (increments: 0.034)

resulting in 10 networks per group, in the second trial we

thresholded the connectivity matrix 15 times (increments: 0.0227),

and in the third trial we thresholded the connectivity matrix 35

times (increments 0.01). In a second step, the small-world

parameters were calculated for each threshold per group. The

different thresholded networks served as the different measure-

ments units within each group.

Thus, in the first trial we obtained 10 measurements for each

small-world parameter, in the second trial we obtained 15

measurements for each small-world parameter, and in the third

trial we obtained 35 measurements for each small-world param-

eter. Afterwards, we separately compared these small-world

parameters between the low IQ and the high IQ groups for each

trial by using a t-test for independent samples (p,0.05). Since we

have to consider the fact that p-values depend on sample size, we

also calculated effect sizes according to Cohen [22]. All statistical

analyses in the present study were performed with MATLAB [23].

Results. For the first trial (thresholding the matrix 10 times),

there were no significant differences between the low and the high

IQ groups regarding small-world parameters (clustering coeffi-

cient: t(8) =1.87, p = 0.078, Cohen’s d = 0.42; path length:

t(8)=21.30, p = 0.21, Cohen’s d = 0.31; number of edges: t(8)
=1.85, p = 0.08, Cohen’s d = 0.42). For the second trial

(thresholding the matrix 15 times), we found significantly more

edges (t(13) =2.40, p = 0.02, Cohen’s d = 0.38), a higher cluster

coefficient (t(13) =3.07, p = 0.004, Cohen’s d = 0.46), and no

Methods of Small-World Network Analysis

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e53199



differences regarding characteristic path length (t(13)=21.51, p

= 0.14, Cohen’s d = 0.25) for the high IQ group compared to the

low IQ group. For the third trial (thresholding the matrix 35

times), t-tests revealed highly significant differences between the

high and the low IQ groups. There was a significantly increased

number of edges (t(33) =3.52, p = 7.76*1024, Cohen’s d = 0.39),

and a higher clustering coefficient (t(33) =4.44, p = 3.33*1025,

Cohen’s d = 0.47) in the high IQ group. In contrast, we found

a significantly decreased characteristic path length (t(33)=22.24, p

= 0.02, Cohen’s d = 0.26). An overview of this data is presented in

Figure 1.

Example 2– simulated data. In our second example, we use

a simulation to illustrate how the commonly used multiple-

threshold-approach may lead to false positive results. An

illustration of the method is displayed in Figure 2. We set up

our simulation to mimic the multiple-threshold-approach with

data obtained by structural MRI or FA-DTI data. We simulated

a study with 60 subjects, who comprised two experimental groups

of equal size (30 subjects per group). This is a commonly used

sample size for studies conducted in this field [2,24,25]. As in the

first example, we used 84 brain regions (e.g. 84 Brodmann Areas).

A randomly created value of a z-distribution was allocated for each

of the 84 brain regions. This was done separately for each subject.

Since we only have one value per node and sample, there is no

possibility of calculating a correlation matrix for a single subject.

Therefore, in order to calculate the strength of the association

between nodes, we needed to calculate correlations between the

nodes (84 brain regions) of each group. This results in two

association matrices with 84 rows and columns. Each entry of the

row and column represents the correlation coefficient (connectivity

strength) between the two simulated brain regions. Since there is

now only one network per group, the groups cannot be statistically

compared at this stage. We followed the common multiple-

threshold-approach to ‘‘deal’’ with this problem by thresholding

the two networks over a set of thresholds (range: 0.01–0.91;

increments: 0.001, total: 900); this resulted in 900 networks per

group. For each thresholded network we then obtained the small-

world parameters, namely, the number of edges, the clustering

coefficient, and the characteristic path length by using the tnet

software [21]. To compare the small-world network parameters, t-

tests for independent samples (p,0.05) were used, which is

common practice. We calculated three examples (three different

threshold ranges) with the simulation data because we aimed to

replicate the analysis and to demonstrate that in addition to the

number of thresholds, the threshold limits (upper and lower

threshold of the threshold range) might influence the results. In the

first step, we extracted three different threshold ranges between

0.01 and 0.91. A low threshold range (0.01–0.06), a middle

threshold range (0.50–0.54), and a high threshold range (0.86–

0.91) were chosen. This resulted in 50 differently thresholded

connectivity matrices per group within the threshold range.

Analog to the example of the real data, we compared the networks

of the two simulated groups over different numbers of thresholds.

The different thresholded connectivity matrices served as the

different measurement units within each group. In the first trial,

we took 10 differently thresholded connectivity matrices (incre-

ments: 0.005) for the group comparison using independent t-tests.

In the second trial, we calculated with 25 connectivity matrices

(increments: 0.002) per group. In the third trial, we calculated with

50 connectivity matrices (increments: 0.001) per group. This was

done for the three threshold ranges (0.01–0.06; 0.50–0.54; 0.86–

0.91). Because the networks were randomly generated, we

hypothesized that there would be no differences between the

networks of the two groups in any small-world parameter.

Results. Comparing the random networks of the two

simulated groups for the first trial (10 thresholded connectivity

matrices) within the threshold range of 0.86–0.91 revealed no

significant difference in any of the small-world parameters. In the

second trial (25 thresholded connectivity matrices), we found

significantly more edges (t(23) =2.18, p, = 0.03, Cohen’s d = 0.29)

and a lower characteristic path length (t(23)=22.09, p, = 0.04,

Cohen’s d = 0.28) for the first group. For the third trial (50

thresholded connectivity matrices), the t-tests revealed highly

significant differences between the two simulated groups. There

was also a significant increase in the number of edges (t(48) =3.19,

p, = 0.002, Cohen’s d = 0.30) and in the clustering coefficient

(t(48) =2.20, p, = 0.03, Cohen’s d = 0.21). In contrast, we found

a significant decrease in the characteristic path length

(t(48)=23.05. p = 0.003, Cohen’s d = 0.29).

Figure 1. Results of the multiple-thresholds-approach of the example with the real data. Mean values for the small-world parameters
clustering coefficient, path length, and number of edges. We thresholded the correlation matrix 10, 15, and 35 times; this resulted in different
statistical results. For the version with 10 increments, t-tests revealed no statistical differences. For the version with 15 increments, the clustering
coefficient and number of edges was significantly increased in the high IQ group compared to the low IQ group. In the version with 35 different
thresholds, the comparison between the high and low IQ groups revealed significant effects for all small-world parameters. The high IQ group
showed a significantly enhanced small-world topology. For an optimized display, the numbers of edges were scaled (number of edges divided by
1000).
doi:10.1371/journal.pone.0053199.g001

Methods of Small-World Network Analysis
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Within the middle threshold range (0.50–0.54), there were no

significant differences between the random networks of the two

simulated groups in the first trial (10 thresholded connectivity

matrices). However, for the second trial (25 thresholded connec-

tivity matrices) there were only significant differences in the

clustering coefficient (t(23)=22.19, p, = 0.03, Cohen’s d = 0.29)

between the two simulated groups. The analysis of the number of

edges displayed a trend to decreased number of edges in group one

(t(23)=21.83, p, = 0.07, Cohen’s d = 0.23). In the third trial (50

thresholded connectivity matrices), the random network of the first

group showed a decreased number of edges (t(48)=22.61, p

= 0.03, Cohen’s d = 0.25) and a decreased clustering coefficient

(t(48)=22.97, p = 0.02, Cohen’s d = 0.28) compared to the

random network of the second group. The path length of the first

group was significantly higher (t(48) =2.24, p = 0.03, Cohen’s

d = 0.22).

For the lower threshold range (0.001–0.06), the first and second

trials revealed no significant differences, but the third trial showed

(50 thresholded connectivity matrices) a lower number of edges

(t(48)=22.41, p = 0.02, Cohen’s d = 0.23) and a lower clustering

coefficient (t(48)=22.21, p = 0.03, Cohen’s d = 0.22) for the first

group’s random network. All the results are presented in Figure 3.

Group-level-permutation-statistics-approach
Example 1 - real data. The same data set was used as in the

first example, which made use of multiple-thresholds-approach

(see above). In line with the first example using the multiple-

thresholds-approach, we created a mean connectivity matrix

(averaged across all subjects), which was then thresholded with a set

of different thresholds (range r = 0.55–0.95, increments: 0.05). In

the second step, small-world network parameters (clustering

coefficient, path length) were calculated for the different

thresholded mean coherence matrices. Here we present the results

for the particular chosen threshold that best corresponds to a small-

world topology (r = 0.85). This threshold was applied to the mean

connectivity matrices of the low and high IQ groups. This is only

one of several possible approaches to choosing a threshold. In the

upcoming discussion section we delineate the other possibilities.

For more information regarding the results of the other thresholds

please consider Table S1 and Figure S1.

As in the first example of the multiple-thresholds-approach, the

subjects were allocated to a high or to a low IQ group based on

a median-split, as previously described. The small-world network

parameters were then calculated for the equally thresholded

(threshold r = 0.85) connectivity matrices of the low and the high

IQ groups. The small-world network parameters of the high IQ

group were then subtracted from the parameters of the low IQ

group. In order to statistically test these differences, we used

permutation statistics. Permutation tests are a sub-group of non-

parametric statistics. The basic principle has originally been

described by Fisher [26] and has been extended by others

[27,28,29,30]. The principle assumption is that within a test group

all subjects are equivalent and that every subject is the same before

sampling started [31]. From this point, one can compute a statistic

and then observe the amount to which this statistic is distinctive by

comparing the test statistics under rearrangements of the

treatment assignments [26]. In contrast to classical parametric

tests, which rely on theoretical probability distributions, permu-

tation tests can be applied when the assumptions of parametric

tests are untenable [31]. In situations where it is not feasible to

compute the statistics for all the rearrangements, as is required in

the Fisher’s exact test, a subsample can be used [27,28]. Such a test

is sometimes known as an approximate permutation test, because

the permutation distribution is approximated by a subsample, also

known as Monte-Carlo permutation tests or random permutation

tests [31]. In the present study, we used the Edgington approach.

To this end, we allocated the subjects randomly to one of two

groups and created 1000 randomly assigned pairs of groups. For

each random group pair, we calculated the mean correlation

matrix and then the small-world parameters of the networks. In

the second step of analysis, the differences in small-world network

parameters between the pairs were obtained. To statistically prove

the real differences between the high and the low IQ groups, we

tested the real differences within the distribution of the randomly

generated differences and a global level of significance was set at

p,0.05. When setting the error probability to p,0.05, the real

difference must exceed the extreme of 5% of the difference

distribution, in order to reach statistical significance.

Results. The permutation analysis revealed that the high IQ

group demonstrate significantly more edges than the low IQ group

(p,0.001). Moreover, we found an increased clustering coefficient

Figure 2. Procedure of the multiple-thresholds-approach with artificial data. Networks of two groups based on artificial data. The networks
were thresholded over a set of thresholds.
doi:10.1371/journal.pone.0053199.g002

Methods of Small-World Network Analysis
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(p,0.001) and a decreased characteristic path length (p = 0.004)

for the high IQ group compared to the low IQ group. Thus, the

high IQ group exhibits significantly more small-world topology.

All results are summarized in Figure 4.

Example 2 - simulated data. In the present example, we

used the same data set as in the second example of the multiple-

thresholds-approach with artificial random networks (connectivity

matrices). Again we assume to have two different groups with 30

subjects per group, but there is only one value per node and

subject (i.e. cortical thickness or FA value in this specific region).

We again have 84 simulated brain regions per subject, where we

again allocated random values to each simulated brain region for

each single subject. These data were used to construct the

correlation matrix between all pairs of nodes, resulting in an

84684 association matrix (network) for each group. They served

as representation for the networks of two different groups.

However, instead of using the multiple-thresholds-approach, we now

use no particular threshold, calculate the network parameters on

the basis of the unthresholded data set, and subject these

parameters to randomization tests, in order to conduct between-

group comparisons. Since we did not threshold the connectivity

matrices in this particular analysis, all connectivity matrices have

an equal number of edges. Therefore, the between-group

comparison of the number of edges is obsolete. Using unthre-

sholded networks is only reasonable in the case of weighted

networks (if every node is connected to every other node). Other

alternative and valid approaches are discussed in the discussion

section. However, the same procedure could also be applied to

thresholded connectivity matrices. In the second step of analysis,

we only computed the difference between the small-world

parameters of the two groups. To statistically bolster this

difference, we performed between-groups randomization tests by

calculating different small-world parameters on the basis of 1000

randomized assignments of the subjects to the groups. We then

computed a correlation matrix and small-world parameters for

each randomization. This resulted in 1000 random group pairs. As

for the originally assigned group, we again calculated the

difference between the small-world parameters for each of the

1000 random group pairs, which resulted in 1000 difference

values. These randomly achieved difference values now form the

test-distribution and the difference of our originally assigned group

of interest can now be tested using this distribution. A global level

Figure 3. Results of the multiple-thresholds-approach of the example with the artificial data. Displayed are the results of the second
example, which used artificial data. The comparison of the two networks, based on artificial data, revealed several significant differences. Depending
on the number of thresholds (defining the different measurement units within each group) and the threshold range used for the comparison,
completely distinct results could be obtained. For an optimized display, the numbers of edges were scaled (number of edges divided by 1000).
doi:10.1371/journal.pone.0053199.g003

Methods of Small-World Network Analysis
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of significance was set at p = 0.05. Since all groups were randomly

generated, we assumed that there would be no significant

differences regarding small-world topology.

Results. The permutation analysis revealed no significant

differences regarding the clustering coefficient (p = 0.46, p.0.05)

or the characteristic path length (p = 0.88, p.0.05). The results

are illustrated in Figure 5.

Single-subject-connectivity-matrices-approach
Example 1–real data. The same data set was used as in

Example 1 of the multiple-thresholds-approach and the group-level-

permutation-statistics-approach (See above). In contrast to the two

previous methods, we now used the correlation matrix of each

subject instead of averaging the connectivity matrices over the

entire group. The correlation matrices were thresholded by

applying a set of different thresholds (r = 0.65–0.95, increments:

0.05). The particular threshold, which identified the best small-

world topology was chosen (r = 0.85) and applied to the

correlation matrices of each individual subject. For the results of

the other thresholds, please refer to (Table S2). Obtaining single

subject correlation matrices is only available for times series data

(e.g. fMRI, EEG, MEG) or DTI with fibre tractography.

Subsequently the correlation matrix of each subject was subjected

to tnet software [21,32,33], which calculated the small-world

indices for each individual subject (for further details see [19]). For

statistical comparisons of the small-world networks, we compared

the subjects of the low IQ group with those of the high IQ group

(based on median-split in the RAPM performance) by calculating

a t-test for independent samples. The global level of significance

was set at p,0.05. Another possibility would be to calculate

a regression analysis between the performance in the intelligence

task and the small-world parameters, as was done in our previous

study [19].

Results. The t-test for independent samples comparing the

high IQ group vs. the low IQ group revealed a significantly

increased number of edges (t(57) =2.83, p = 0.006), a significantly

increased clustering coefficient (t(57) =3.54, p = 0.001), and

a significantly decreased characteristic path length (t(57)=22.70, p

= 0.009) (See [19], for the results of the regression analysis).

Figure 4. Results of the group-level-permutation-statistics-approach of the example with the real data. Displayed are the distributions of the
randomly generated group pair differences. The red arrow indicates where the differences of the real data ( = empirical difference between high and
low IQ groups) are located within the distribution. The results show that the high IQ group revealed increased small-world network parameters.
doi:10.1371/journal.pone.0053199.g004

Figure 5. Results of the group-level-permutation-statistics-approach of the example with the artificial data. Displayed are the distributions
of the randomly generated group pair differences. The red arrow indicates where the differences of the original data are located within the
distribution. The results show, that there are no significant differences regarding the clustering coefficient or the characteristic path length.
doi:10.1371/journal.pone.0053199.g005
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Example 2–simulated data. In this example we used

a similar data set as in the second example of the multiple-

thresholds-approach and the group-level-permutation-statistics-approach

with artificial random networks. Again, we assume to have two

different groups with 30 subjects per group, but in this example we

assume that each subject has an individual network, as is the case

for MEG, EEG, resting fMRI, and DTI data when using

tractography. We artificially created 60 networks with 84 nodes

per network; representing for each subject a particular network.

Subsequently the unthresholded weighted correlation matrix of

each subject was subjected to tnet software, which calculated the

small-world indices (clustering coefficient and characteristic path

length) for each individual subject. The two groups were then

compared with a t-test for independent samples (threshold was set

p,0.05).

Results. The t-test for independent samples comparing the

two groups did not reveal significant effects for the clustering

coefficient (t(58) =0.24, p = 0.81) or for the characteristic path

length (t(58) =0.56, p = 0.58).

Discussion

Graph-theoretical approaches are an elegant way to describe

functional or structural brain networks on the basis of large

anatomical and neurophysiological data sets. Although attractive,

these techniques are associated with some statistical problems,

which have been described in this paper. A major problem is on

which basis inferential statistics are performed when statistically

testing the measures obtained from graph-theoretical analyses. A

typical approach is to compare the graph-theoretical measures

between two different groups. Several papers have adopted the

multiple-thresholds-approach by using different thresholds for

which different graphs are computed separately for each group.

The obtained graph-theoretical measures for each group are then

subjected to between-groups statistical test. Typically this ap-

proach is used in the context of graph-theoretical network analyses

conducted with cortical thickness and FA data. Since for each

voxel or region there is only one data point available, connectivity

measures can only be computed for an entire group. Thus, there is

no distribution of measures available to calculate statistical tests.

To generate the necessary distribution of measures for classical

inferential statistics, some studies generated an artificial distribu-

tion by thresholding the networks on group level over a range of

thresholds and thus collected several connectivity measures. These

different measures were then subjected to between-groups

statistical tests. One problem with this approach is that these

measures are not independent from each other since information

of denser networks (thresholded using low thresholds) is also

included in sparser networks (thresholded using high thresholds).

These networks and thus the derived measures are strongly inter-

correlated and should not be treated as coming from different

subjects. This is a serious problem, especially for parametric

inferential statistical analyses, which requires independence

between the measurements. A further problem is that the power

of the statistical tests strongly depends on the number of

measurements and in this case on the number of thresholds used.

We demonstrated these problems on the basis of a real EEG

data set and simulated data. As expected the p-values strongly

depend on the number of thresholds. Thus, a researcher could

easily manipulate the obtained p-value by arbitrarily manipulating

the number of thresholds until he/she obtained the p-value she/he

would like to achieve. In order to circumvent this problem effect

size measures are more suitable because they are independent

from sample size. In fact, we demonstrated similar effect size

measurements that were independent of the number of thresholds.

Therefore, effect sizes are an important measurement, which

should be added to the p-values if one still uses the multiple-

thresholds-approach. If one is really interested in comparing the

profiles of the network parameters across the different thresholds,

randomization tests should be used since they do not need

independence of the data.

We described two different approaches, which in a valid

manner can indeed deal with the non-independency problem,

namely, the group-level-permutation-statistic-approach and the

single-subject-connectivity-matrices-approach. For intra-subject

connectivity measures, like correlations between time series of

resting-state fMRI, coherence measures of EEG or measures

dependency obtained by fibre tracking in diffusion tensor imaging

both suggested approaches are applicable. Whether the group-

level-permutation-statistic-approach or the single-subject-connec-

tivity-matrices-approach should be employed depends on the

available data and the deployed research question. The advan-

tages of the randomisation procedure are that permutation

statistics can be applied when the assumptions of classical

inferential statistics are untenable or distribution of the data is

unknown and sample size is small [31]. An additional advantage is

that an exact p-value (or a marginally exact p-value when Monte-

Carlo procedure is used) can be calculated. The disadvantages of

permutation tests are that the computation time could be very

extensive, and that they also tend to be conservative. Further

advantages and disadvantages could be found in [34] and [31].

Nevertheless, the group-level-permutations-statistics-approach is

to our knowledge the only valid approach for using connectivity

measures obtained on the basis of inter-subject correlations (i.e.

structural MRI and DTI, when only using FA-values). The

advantage of the single-subject-connectivity-matrices-approach is

that it permits the use of single subject variance for statistical

analysis (e.g. regression analysis). The disadvantage of this

approach is that it is only available for intra-subject data (e.g.,

times-series data in fMRI, MEG or EEG, as well as DTI, when

fibre tracking is used).

Another unsolved problem within the tresholding procedures is

that there is currently no definitive and generally accepted strategy

for applying particular thresholds in graph-theoretical networks

analyses. How large should the threshold steps be? What are the

smallest or largest thresholds that one can use? There are currently

no concrete answers to these questions. Nonetheless, we present

here and in our previous studies [13,19,35] several possibilities to

proceed if the connectivity measures are obtained by means of

group level dependency. Probably the best way to circumvent the

problem is to threshold the connectivity matrix over a wide range

of thresholds and to then conduct the permutation analysis for

each threshold individually as described above and in Tables S1

and S2. However, one has to face a problem with these

approaches, which is the tremendous computation time for these

analyses. For example, to perform a randomization test as

described in the context of our single-subject-connectivity-matri-

ces-approach with 84 nodes six days of computation time is

needed for a standard workstation. When using more nodes,

computation time exponentially increases to weeks or even months

for the same workstation.

Using unthresholded weighted connectivity matrices (as it was

demonstrated above) is another possibility to statistically test the

network parameters, but this approach can also generate long

computation times. In addition, thresholded networks exhibit

a clearer small-world topology, because the noise of the data is

reduced by the thresholding procedure [2]. In our previous study,

we presented a further possibility [13,19]. We first determined the
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threshold, which exhibited the best small-world topology and then

used this threshold. This is only one of several possibilities to

choose a particular threshold. Most studies use thresholds over

a predefined range that are defined a priori. This approach is

adequate if these differently thresholded matrices are not used as

independent measures or for parametric statistical tests.

Using graph-theoretical network approaches in the context of

neuroscience research is a relatively young scientific field.

Although promising this approach can be associated with some

methodological problems. Apart from the thresholding problem

there are several further methodological issues. For example the

set of nodes of the network has to be carefully selected and

determines largely the connection and therefore also the in-

terpretation of the brain networks [36,37]. For the instance of

interpretability, nodes should represent brain regions and are

supposed to be inherently independent from other nodes. The

relationship between two nodes is not meaningful when the nodes

are too similar to each other. Let’s imagine spatially smoothed

voxels sharing similar information because the spatial smoothing

filter induces similar information in these adjacently located

voxels. Thus, the spatial smoothing induces a kind of artificial

correlation between neighboring voxels and can mask physiolog-

ical similarity or dissimilarity. On the other hand parcellation

schemes that link heterogeneous brain regions into a single node

might be meaningless as well.

For most studies anatomical templates as Brodmann areas or

the Automated Anatomical Labeling (AAL) atlas were used. An

immense advantage of using an anatomical template is that

different networks of different studies, even functional and

structural networks, could be directly compared. So fMRI,

structural MRI, and DTI data most often use one of these

template maps. The disadvantage of this template maps is that the

regions can vary extremely in the size (number of voxel within

a nodes). Therefore, new approaches have been developed to

define nodes. One promising approach is to define the nodes on

the basis of data-driven techniques [38]. Most studies defined the

electrodes as nodes for brain graphs based on data obtained with

microelectrodes on cortical tissue or surface sensors in MEG and

EEG [39]. This can cause strong correlations between neighboring

electrodes due to volume conduction of electrical activity from

a single source to multiply nearby electrodes on the scalp surface,

which can confound the results of the graph-theoretical analysis

[40]. A better approach is to reconstruct the sources and define

each source as a node [19,41,42,43,44]. In practice there is no

unique answer to legitimate the choice of connection between

nodes (edges) and they are highly dependent on the conditions of

acquisition and preprocessing. There is an extensive literature

about measuring the connectivity in fMRI nicely reviewed by

Smith et al. [45]. Thus, graph theoretical analysis of neuroimaging

data is not a simple ‘‘plug and play‘‘ application. It is rather

a model-based approach, demanding arbitrary assumptions and

decisions, which can have significant effects on the outcomes of the

analysis. Moreover, there is no best way how to compare

topological metrics between graphs and it is in general not a trivial

question to solve. In addition to these relatively specific issues

about construction and comparison of brain networks, any

procedure to conduct graph theoretical analysis of neuroimaging

data also put up a number of inquires about data acquisition,

preprocessing, statistical tests, multiple comparisons and visuali-

zation.

Taken together there are several valid possibilities of dealing

with thresholding in network analysis. The choice of the applied

approach should be decided based on the particular hypothesis,

the amount of data, the methods used for network analysis, and

the resources that are available for the computations. We suggest

that if there is the possibility to calculate a connectivity matrix for

each individual subject, then one should not create mean

connectivity matrices for a whole group and compare this mean

connectivity between different groups.

Supporting Information

Figure S1 Displayed are the distributions of the randomly

generated group pair differences for all thresholds. The red arrow

indicates where the differences of the real EEG data are located

within the distribution. The results of all thresholds show, that the

high IQ group revealed increases small-worldness.

(DOC)

Table S1 Listed are the p-values for each small-world parameter

of the permutation statistics of the first example (EEG data) of all

thresholds. We compared the difference of the real EEG data to

1000 randomly generated group pairs. All threshold showed an

increased small-worldness for the high IQ group.

(DOC)

Table S2 Listed are the t-values and p-values for each small-

world parameter of the single subject method of the first example

(EEG data) for all thresholds. We compared the small-world

parameters between the high and the low IQ group for each

threshold separately. All threshold showed an increased small-

worldness for the high IQ group.

(DOCX)
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