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Abstract

Within object-oriented methods, testing has received less attention than
analysis, design, and coding. However, object-orientedness does not make
testing obsolete and can even introduce new problems into the production
of correct programs and their testing.

Most work in testing has been done with "procedure-oriented" software
in mind. Traditional methods, despite their efficiency, cannot be applied
without adaptation to object-oriented systems. In an object-oriented sys-
tem, the basic test unit is a class instead of a subprogram; hence, testing
should focus on classes and objects. Moreover, it is not possible to test the
operations of a class in isolation, as they interact with each other by modi-
fying the state of the object which invokes them. However, some traditional
techniques can still be applied, though indirectly.

Sometimes, testing object-oriented software can benefit from object-
oriented technology, for instance, by capitalizing on the fact that a superclass
has already been tested, and by decreasing the effort to test derived classes,
which reduces the cost of testing in comparison with a flat class structure.

The object-oriented paradigm can also be a hindrance to testing, due to
some aspects of its very nature: encapsulation, inheritance and polymor-
phism.

1 INTRODUCTION

Within object-oriented approaches, testing has received less attention than anal-

ysis, design, and coding. This lack of interest is mainly caused by a strong belief

that the object-oriented technology is the ultimate answer to the software cri-

sis, i.e. applying an object-oriented development method will eventually lead to

quality code. Moreover, there is also much trust in some values of the traditional

software engineering methods, i.e. applications developed with an object-oriented
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development method are close enough to applications developed with a tradi-

tional method that they can be tested using traditional testing methods. For

example, although Rumbaugh and al.[12] assert their willingness to apply the

object-oriented technology to all stages of the software development life cycle,

they deny the importance of a specific testing for object-oriented software:

"Both testing and maintenance are simplified by an object-

oriented approach, but the traditional methods used in the phases

are not significantly altered.

However, an object-oriented approach produces a clean, well-

understood design that is easier to test, maintain, and extend than

non-object-oriented designs because the object classes provide a nat-

ural unit of modularity."

- J. Rumbaugh et al., [12]

In spite of this confidence, recent studies show that "object-orientedness" is not

such a silver bullet.

"The Self group has produced lOO'OOO lines of C++ and 40'000

lines of Self. We have at least as many bugs in the Self code as in the

C++ code, and these bugs are usually found by testing.

I believe that language features are no substitute for testing."

- D. Ungar, [14]

Object-orientedness does not by itself ensure the production of correct programs.

Although an object-oriented design can lead to a better system architecture and

an object-oriented programming language enforce a disciplined coding style, they

are by no means shields against programmers' mistakes or a lack of understanding

of the specification.

Therefore object-oriented systems still need testing. As a matter of fact, this

phase of the software life cycle is even more important for object-oriented soft-

ware than for traditional software, as the "object-oriented" paradigm promotes

reuse: software components will be used and re-used in various contexts, even

significantly different from those that the component's developer had in mind,

thus the need for robust and well-tested components. In [2], Birss affirms that

because of the increased level of usage, reusable components need two to four

times more testing that unique components.

In this paper, we will first show why traditional structured software testing

techniques are not sufficient for testing object-oriented software by comparing the

fundamental differences in their architecture. We will then consider the problems

introduced by some aspects of the very nature of object-orientedness:
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• Encapsulation

In the presence of encapsulation, the only way to observe the state of an

object is through its operations; there is therefore a fundamental problem

of observability.

• Inheritance

Inheritance opens the issue of retesting. Should operations inherited from

ancestor classes be retested in the context of the descendant class? A case

analysis will show that there is no definite answer.

• Polymorphism

Polymorphic names induce difficulties because they introduce undecidabil-

ity in program-based testing. Moreover, erroneous casting (type conver-

sions) are also prone to happen in polymorphic contexts and can lead non-

easily detectable to errors.

2 THE CLASS AS BASIC TEST UNIT

2.1 The testing process

Testing is the process of finding programmers errors or program faults in the

behavior or in the code of a piece of software. It is used to give confidence that

the implementation of a program meets its specifications, although it cannot

ensure the correctness of a program. There are several steps in the testing of a

program.

The first step is usually the unit test. To perform this step the tested software

is divided into the smallest possible units that can be tested in isolation, which are

called basic units [3]. Two tests are usually applied to a test unit, specification-

based testing and program-based testing.

• Specification-based testing, also known as black-box testing, is aimed at

testing a program against its specification only, i.e. regardless of the way it

is coded. It is usually accomplished by submitting a set of possible inputs,

the test data, to the program being tested and by comparing the result to

the specification. The decision of whether a test is satisfied or not is made

by an oracle [1].

• Program-based testing, also known as white-box testing is a kind of test

complementary to specification-based testing. It consists in examining the

internal structure of a piece of code to select test data or to gain confidence

from certain aspects of the code (e.g. coverage of statements, of paths, of

conditions,...).
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The other steps include integration testing, system testing, and acceptance test-

ing. These steps are not covered by this paper.

Most work in testing has been done with "procedure-oriented" software in

mind, and some good methods of testing have been developed [10]. However,

those methods can not be applied as is to object-oriented software, because the

architectures of those systems differ on several key issues. In this section, we

will compare the architectures of procedure-oriented systems to object-oriented

systems.

2.2 Procedure-oriented systems architecture

In the structured architecture, a program is decomposed functionally into sub-

programs, which independently implement the services of the program. The basic

unit of test is a subprogram, which can consist of or make use of other (possi-

bly embedded) subprograms. Bigger units of testing are assembled from already

tested subprograms (bottom-up integration), or alternatively, subprogram stubs

in a tested subprogram are replaced by subprograms to be tested (top-down in-

tegration). Data handling is accomplished by subprograms, which may not be

related, and which can be scattered throughout the system, hence the difficulty

in creating a complete test unit. Subprograms communicate either by passing

parameters, or by using global variables.

2.3 Object-oriented systems architecture

An object-oriented system is made up of objects and classes. An object is com-

posed of a set of features, which define its state, and a set of operations, which

define its behavior. A feature can either be a value or another object. A class is

a template from which objects can be instantiated. It encapsulates the definition

of the properties of its instances. A class also provides hiding of some of the

properties of its instances to conceal the data structure and the details of imple-

mentation. All the features of an object are usually hidden, such that the only

way the state can be examined or modified is by invoking its public (non-hidden)

operations. Some operations can also be hidden. They are internally used to

implement the other operations. The public (non-hidden) properties of an object

form its interface. The interface is a basis for a protocol which objects use to

communicate with each other by requesting from an object to invoke one of its

operations (or message sending). The possible result of the operation is then

returned to the caller.

The class itself can also have properties. The class features are features that

are shared between all instances of the class. The class operations are operations

that manipulate those class features.

Classes may be related through inheritance. Inheritance is a means for incre-
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mentally building a new class (the derived class) from an existing one (the parent

class) by inheriting its properties. The derived class can express differences with

its parent class by modifying, and adding properties.

2.4 Classes- vs. Procedure-oriented testing

The object-oriented architecture is indeed very different from the procedure-

oriented architecture.

• There are no global data and data handling is not shared between units. A

class contains all the properties that can affect the state of its instance.

• A class is not a testable component, i.e. it can only be tested through its

instances.

• It is not possible to test the operations of a class in isolation, as they

interact with each other by modifying the state of the object by which they

are invoked. Control flow analysis techniques are not directly applicable,

since there is no sequential order in which operations can be invoked.

Moreover, since every object carries a state, it is impossible to reduce the

testing of an object to the independent testing of operations, i.e. the tests

cannot be designed, coded and performed as if the operations were "free-

floating" subprograms instead of being all integrated in an object. Every

operation may alter the state of the object, or even the state of the class if

the latter has class variables.

We conclude that it is not possible to consider a subprogram as the basic unit of

test anymore. Within object-oriented approaches, the basic unit of organization

is the class construct. Testing an object-oriented system must concentrate on the

state of the objects and check that the state remains consistent when executing

the operations of an object. However, if not directly, traditional techniques can

still be applied for some phases of the test plan, especially functional and struc-

tural testing; for instance, coverage measures can still be used to determine the

effectiveness of a test suite.

2.5 Example

To be more concrete, a simple case of testing taken from [10] will be examined.

"The program reads three integer values from a card. The three

values are interpreted as representing the lengths of the sides of a

triangle.
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The program prints a message that states whether the triangle is

scalene, isosceles, equilateral."

- G. J. Myers, [10]

What Myers had in mind when suggesting this exercise to his readers was to show

the difficulty of writing a test case that would adequately test a unit such as the

procedure-oriented unit in figure 1.

type

Kind: (scalene, isosceles, equilateral, error);

function Kind.of (Length.l, Length_2, Length_3: Integer): Kind

begin

end;

Figure 1: "procedure-oriented" test unit

In the context of object-oriented programming, the unit to test would probably

more look like the class in figure 2 (in a pseudo object-oriented language). The

class interface Triangle

inherit Shape is

operation Create (Length.l, Length_2, Length_3: Integer)

return Triangle;

operation Length_of (Side: Integer range 1..3)

return Integer;

enumeration Kind is (scalene, isosceles, equilateral, error);

operation Kind_of return Kind;

operation Homothety (Factor: Positive);

operation Similar (A.Triangle: Triangle)

return Boolean;

end Triangle.

Figure 2: "object-oriented" test unit

noticeable changes from the first architecture to the second are:
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• encapsulation/hiding

All the operations and related types, even some which are not useful (like

Homothety or Similar) to solve the problem, are encapsulated in the class.

The operation Kind.of is not an isolated algorithm. It cannot be tested

without being invoked by an instance of Triangle, the data structure of

which is hidden. The only way to access it is by invoking selector operations

defined in the interface, such as Length.of.

• inheritance

The class Triangle inherits from the class Shape. Triangle can therefore

rely on Shape for both its representation (data structure) and its behavior

(operations implementation).

• operations binding

The operations of the class Triangle are tightly bound: it is not possible

to apply the operations Length.of and Kind.of to an object triangle before

Create is invoked to create an instance. Hence, it becomes necessary to

monitor the changes that take place in the features according to the op-

erations. Therefore, testing a class requires writing scenarios to test the

possible interactions of the operations onto its instances. Of course, ex-

haustive testing (i.e. writing all possible scenarios, which is often infinite)

is out of the question, therefore the tester will have to limit the number of

scenarios while maximizing their efficiency. C. Turner describes a technique

for writing scenarios in [13].

Besides these technical issues, another reason to consider the testing of object-

oriented software different from the traditional testing is the move in the software

life cycle. The traditional development life cycle (waterfall) is challenged by

continuous development methods (prototyping). Testing does not occur anymore

as the steady last step in the development, but as a step that occurs repetitively

for every refinement of a software component. To be efficient, a tester has to

write flexible test code and stress incremental testing, to make a maximum reuse

of existing test code.

3 ENCAPSULATION

The notion of class is a blessing for testing, since this notion involves encapsu-

lation. The test unit is clearly designed, which effectively simplifies the testing

because the determination of a test unit becomes easier. The class can thus be

tested in isolation of the rest of the system, i.e. the context in which the test is

made does not affect the testing of the class.
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3.1 Hiding

Hiding is a fundamental property of object-oriented programming. Programmers

do not need to worry about the internals of a class, since they only use the

interface to communicate with the objects. However, the resulting opacity hinders

testing, since the coherence of the state of the object cannot be checked after

invoking an operation of the class. In the presence of hiding, the only way to

observe the state of an object is through its operations; there is therefore a

fundamental problem of observability, as part of the testing relies on the tested

software itself.

There are many workarounds to that problem.

The first and most obvious solution is to modify the tested class to add opera-

tions which provide the tester with visibility on the hidden features of the objects,

e.g. test points [6]. This solution is usually not satisfactory since it is intrusive

and it involves an overhead on the tested class. Moreover, it is not guaranteed

that the class will have the same behavior in the presence of the tested code.

A refined approach is to define the added operations in a descendant class,

which is derived from the tested class, and serve to test the derived class. This

method captures the functionality of test points while being non-intrusive. How-

ever, this method is useless if the derived class does not have complete visibility

on the state of the inherited properties. For example, the internal (called private)

properties of a C++ class are not visible to its descendants.

Besides those two general methods, several programming languages support

language-specific mechanisms to break encapsulation by providing either:

• family-related constructs

C++ has intrusive friends subprograms to define operations that are not

operations of the class but have visibility on all its features. The child units

of Ada 9X are non-intrusive package extensions, which have a complete view

onto the private part of their parent package.

• low-level constructs

Smalltalk's inspectors and Eiffel's class Internal provide low-level opera-

tions to examine all the features of an object. These operations break

encapsulation by accessing the physical object structure.

• unchecked type conversion

If the type system of the programming language is weak, or if the language

provides unchecked type conversion, it is possible to break encapsulation

by writing another class, the data structure of which is a clone of the tested

class except that all its properties are public and by casting instances of

the tested class to instances of the clone class to access their features freely.
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Of course, if there is no way to break the encapsulation, or if the data structure is

inaccessible (e.g. because it is not part of the available specification), the tester

will have to gain confidence in the selector operation before testing the other

operations. The tester will have to take this order of precedence into account

when elaborating scenarios.

3.2 Non-instantiatable classes

On top of the problem of accessing the state of an object is the problem of

testing non-instantiable classes. Non-instantiatable classes are classes from which

instances cannot be created because they do not contain enough information.

There are three kinds of non-instantiatable classes: abstract classes, the imple-

mentation of which is not completely defined (and must be subsequently defined

in derived concrete classes), generic (parameterized) classes (some components of

which are unspecified to be more general, for instance the type of the items to be

put in a class Stack), and mixin classes (abstract subclasses that can be derived

from any base class to create a new class).

Since instances of those classes cannot be created, it is impossible to test them

as is. The tester will therefore have to develop a minimal test suite that provides

the different bindings for the lacking information to achieve an exhaustive test of

those non-instantiatable classes. This topic is still a subject of research in which

further work is needed.

4 INHERITANCE

Inheritance is a mechanism that allows for a class, the derived class, to inherit

properties, features and operations, from one (single inheritance) or many classes

(multiple inheritance), its base classes. The derived class can then be refined by

modifying or removing the inherited operations, or adding new properties.

Since the derived class is obtained by refinement of its parent class, it seems

natural to assume that a base class that has been tested can be reused without

any further retesting of the inherited properties. This intuition is however proved

false in [11], with the help of Weyucker's axioms for adequate testing: some of the

inherited properties need retesting in the context of the derived class. Therefore,

to take advantage of the testing already completed for the base class to test the

derived class, i.e. to do incremental testing, and not to retest the whole set of

inherited properties, we must diagnose which of those properties need retesting,

i.e. the minimal set of properties the behavior of which is different from the

parent class.

As the inheritance scheme differs from one language to another, there is no
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language-independent method to define this set. In the following discussion, we

will examine the most commonly found schemes. An algorithm that determines

this minimal subset for the C++ programming language can be found in [4].

4.1 Strict inheritance

Strict inheritance is the simplest scheme of inheritance. A derived class is a strict

heir of its parent class if it keeps the exact inherited behavior of its parent. The

inherited properties cannot be modified (e.g. overridden); the derived class can

only be refined by adding new properties.

Once more, despite intuition, strict inheritance involves retesting of some of

the inherited properties. As discussed before, the advantage of encapsulation

is that clients do not have direct access to the data structure of the objects.

Inheritance does however break encapsulation: the derived class has access to

the features of the base class, and can modify them. While encapsulation builds

a wall between the class and its clients, it does not prevent the derived class to

mess up with the inherited features.

Thus, although the specification and the code of the inherited operation are

the same in the base and the derived class, the increments in the derived class can

lead to changes in the execution of the inherited operations: the added operations

can have an impact on the state of the object, so that portions of code that were

previously unreachable, and were thus not tested, may become reachable in the

context of the subclass, and thus need testing.

4.2 Subtyping

The second, and most common, scheme of inheritance is subtyping. Besides the

properties of strict refinement, subtyping allows for the redefinition (overriding)

of the inherited properties (i.e. to give a new implementation to an inherited

operation, to be used in the derived class). Overriding occurs when the behavior

of an inherited operation is not appropriate in the context of the derived class.

Overriding does of course imply retesting the overridden operation. If the

programmer has felt the need to give a new implementation to an operation, the

latter will not reproduce the exact behavior of the inherited code. Moreover, a

side effect of overriding is that it also implies the retesting of all the operations

that invoke the overridden operation as part of their implementation, no matter

if they are inherited from the class in which the overridden operation was first

defined or in a latter subclass in the inheritance hierarchy: since those opera-

tions make use of an operation the behavior of which has been modified, their

own behavior is also modified and they need retesting. In the example of the

figure 3, inspired from Interviews [7], a class Button has two operations, Redraw

and Choose, the implementation of which makes use of Redraw. In the class

                                                Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Building Quality into Software 421

with Coordonates; use Coordonates;

with Displays; use Displays;

package Buttons is

type Button is tagged private;

procedure Redraw (B: Button; C:Coord);

procedure Choose (B:Button);

type PushButton is new Button with private;

procedure Redraw (P: PushButton; D: Display);

end Buttons;

Figure 3: Operation Overriding in Ada 9X

PushButton, which is derived from Button, the operation Redraw is overridden,

but not Choose. However, since the implementation of Choose makes use of an

overridden operation, it will have to be retested, although its code is not modified.

4.3 Subclassing

Subclassing is a scheme of inheritance in which the derived class is not considered

as a specialization of the base class, but as a completely new abstraction which

bases part of its behavior on a part of another class. This scheme is also called

implementation inheritance.

The derived class can therefore choose not to inherit all the properties of its

parent. As a consequence of subclassing, the test suite defined for the subclass

must therefore be modified to suppress all references to the removed properties.

The tester must also take care that no operation makes a call to a removed

operation. This is easy to achieve in program-based testing.

Subclassing can also introduce other problems that will be discussed in the

section on polymorphism.

4.4 Multiple inheritance

Multiple inheritance does not introduce problems other than the problem exposed

above, unless the properties inherited from the various base classes "step on each

others feet".

This case occurs when two or more base classes have homograph operations

(i.e. with similar name and profile), and the language resolves the ambiguity of
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choosing by implicitly selecting which one of the homograph operation is inherited

for the derived class (for example by a precedence rule like in CLOS [5]). The

homograph operation inherited from one of the base classes overrides the other

homograph operations, even in the classes where those other operations have

been defined, Therefore, it will be used for all calls of this operation, changing

the behavior of operations that makes use of it. In the example of figure 4, a class

; definition of class first

(defclass first-class

0
(first-slot))

(defmethod a-method ((an-object first-class))

(format t "Method of First"))

(defmethod first-method ((an-object first-class))

(a-method an-object))

; definition of class second

(defclass second-class

o
(second-slot))

(defmethod a-method ((an-object second-class))

(format t "Method of Second"))

; definition of class third

; (multiple inheritance of second-class and first-class, nothing else)

(defclass third-class

(second-class first-class)

0)

Figure 4: A case of multiple inheritance in CLOS

third-class is built by deriving from first-class and second-class. Both first-class

and second-class have an homograph operation a-method. In the class third-

class, the operation first-method, which is inherited from first-class, and used

to call a-method defined in first-class will call a-method defined in second-class.

Therefore, any call to first-method with an instance of third-class will result in

outputting "Second Method".

Note that in most object-oriented languages that support multiple inheritance

(C++, Eiffel), such ambiguities must be explicitly resolved by the programmer

himself.
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5 POLYMORPHISM

Polymorphism is the possibility for a name, i.e. a variable or a reference (called

polymorphic name below) to denote instances of various classes. It is usually con-

strained by inheritance, in which these various classes must belong to a hierarchy

of classes made up of a root class or its descendants. If the inheritance scheme is

subtyping, the denoted objects all have at least the properties of the root class of

the hierarchy. Thus, an object belonging to a derived class could be substituted

into any context in which an instance of the base class appears, without causing

a type error in any subsequent execution of the code. (This principle is known

as Liskov's substitution principle [8]). Note that this hierarchy of classes can be

as vast as the totality of all classes in the system if all classes are descendants of

a unique root class (e.g. Smalltalk's Object, Eiffel's Any).

We will now examine different uses of polymorphism that can affect the cor-

rectness of a program and cause trouble to testing.

5.1 Undecidability of dynamic binding

Polymorphism brings undecidability to program-based testing. Since polymor-

phic names can denote objects of different classes, it is impossible, when invoking

an operation of a polymorphic name, to predict until run-time, what the code is,

that is about to be executed, i.e. whether the original or a redefined implemen-

tation will be selected. (This is called dynamic binding.)

Therefore, to gain confidence in an operation a statement of which is a call

to a dynamically invoked operation, it becomes necessary to make assumptions

regarding the nature of the polymorphic parameters, i.e. a "hierarchy specifica-

tion" must be provided for each of their operations, which specifies the expected

minimal behavior of their operation and all their possible redefinitions. This "hi-

erarchy specification" is only a subset of the specification of the operation: the

exact behavior expected from an operation is usually not wanted in its redefini-

tions (thus the need to override the unwelcome behavior with a proper one).

These assumptions are the assertions of the operation: the conditions that

must be respected by every implementation of the operation (the original imple-

mentation and its redefinitions). Assertions can be refined for the specification

of an overridden operation, but cannot be relaxed. (A mechanism to implement

assertions is part of the Eiffel programming language [9].)

5.2 Extensibility of hierarchies

A similar problem occurs when testing (specification-based and program-based)

an operation one or more parameters of which are polymorphic. As testing an
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operation consists in checking its effects when executed for various combinations

of actual parameters, a test suite must ensure that all possible cases of bindings

are covered.

However, given a polymorphic call or an operation with one or more polymor-

phic parameters, it is impossible to plan a test in which you check the operation

with parameters of all the possible classes, because a hierarchy of classes is freely

extensible: it is possible, at any moment, to add a derived class to a hierarchy,

without even causing the recompilation of the considered operation.

In this case too, the use of assertions can facilitate the task of the testers.

5.3 Heterogeneous containers and type casting

Heterogeneous containers are data structures the components of which may be-

long to various classes, constrained in the same way as polymorphic names.

However, some objects do not have the same set of properties as the root class

of the hierarchy to which they belong. To let those objects make full use of their

properties, it is possible to cast the objects contained in the heterogeneous data

structures to any class in the hierarchy.

This can lead to two common faults:

• an object being casted to a class to which it does not belong, and being

therefore unable to select a feature or invoke an operation, because it lacks

these properties. This is called downcasting.

• if the scheme of inheritance is subclassing, an object being not casted to

its class and being compelled to invoke a message that was removed for its

class.

Since these typing faults can usually not be caught at compile-time, care must

be taken when designing test suites not to overlook them.

6 CONCLUSION

This paper shows that, although the test of object-oriented software can resort to

some techniques developed for the test of traditional procedure-oriented software,

the differences that arise between those two paradigms are important enough

to develop a test methodology specific to object-orientation. It also show that

its nature: encapsulation inheritance, polymorphism conveys identifiable, albeit

nontrivial, problems.
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We should not dismiss the importance of testing. The more object-oriented

technology gains recognition, the more components repository will grow, gather-

ing components developed in various environments. If we want reuse to finally

occur, programmers must be daring enough to import those components in their

applications, without being afraid of a possible lack of correctness, thus the need

to induce confidence in those components by testing them meticulously.
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