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Abstract 

We propose a variant of the Kolmogorov 

concept of complexity which yields a 

common theory of finite and infinite 

random sequences. The process complexity 

does not oscillate. We establish some con- 

cepts of effective tests which are proved 

to be equivalent. 

i. Notations 

Let X ~ (X ~) be the set of all finite (in- 

finite) binary sequences. A 6 X denotes 

the empty sequence. For x &X ~ we denote 

~x~ the length of x. The product xy e 

X~v X ~ denotes the concatenation of 

sequences x eX ~ and y 6 X~v X~ Clearly 

this yields a product ABc X~v X~ of sets 

A cX ~ and B c X~v X ~. For z 6 X ~v X ~ we 

denote z(n) the initial segment of z with 

length n. l%A~J denotes the cardinality 

of a set A. We shall write x = y iff the 

sequence x is an initial segment of the 

sequence y. N (R) denotes the set of 

natural (real) numbers. For two functions 

f,g: Y --> R we write f ~ g iff ~c 6 N: 

V x &Y: f(x) ~ g(x) + c 

f ~ g iff f ~ g ~ g ~ f. 

denotes the product measure on X ~ re- 

lative to the probabilities 1/2 for 0 and 

I. L(n) denotes the logarithm of n+l re- 

lative to the basis 2. D(g) denotes the 

domain of the partial function g. 

2. THE KOLMOGOROV 

COMPLEXITY OF FINITE SEQUENCES 

Let A: X ~ ~> X ~ be a partial recursive 

(p.r.) function, then the program com- 

plexity KA(X) of x e X ~ relative to A is 

defined by 

KA(X) = min{ IPl IA(P) = x}. 

Hereby we use the convention min @ = oo. 

It is well-known from 121,171 that there 

exists a universal p.r. function 

A:Xt->X ~ such that K A ~ K B for any p.r. 

function B: X'--~ X*. This implies K A ~ K B 

for any two universal p.r.functions A and 

B. In the following A is any fixed univer- 

sal p. r. function. 

The original intention was to define 

random sequences z ~X ~ as those sequences 

such that lim(n - KA(Z(n))) <~. This would 
n 

mean that there must not be regularities 

in any initial segment of z (We consider 

a sequence x to be regular iff KA(X) is 

essentially smaller than Ixl) . This inten- 

tion failes because of the following 

theorem of Martin-L~f 141. 

Theorem 1 Let f: N ~ N be a rec. function 

such that ~2-f(n)< ~, 

then for any z 6 X ~ the following holds: 

l~m(n-KA(Z(n)) - f(n)) = ~. 

Since there exist arbitrary long sequences 

x such that KA(X) ~Ixl Theorem 1 implies 

that for any f as above and any n 6 N there 

exist sequences x of length greater than 

n such that 

KA(X ) ~ Ixl and KA(X(n)) ~ n - f(n) . 

This means that x is irregular although 

the initial segment x(n) is regular. This 

fact is hard to conceive and is the main 

obstacle for a common theory of finite and 

infinite random sequences. The following 

modification of the concept of program 

complexity will circumvent these difficul- 

ties. 

3. THE PROCESS COMPLEXITY 

It has already been observed that there 
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must be some difference in the concept of 

regularity of finite objects which do not 

involve a direction (for instance a 

natural number) and the concept of re- 

gularity of infinite sequences (as well 

as finite subsequences of an infinite 
a 

sequence) where natural direction is in- 

volved. For example, he who wants to under- 

stand a book will not read it backwards, 

since the comments or facts which are 

given in his first part will help him to 

understand subsequent chapters (this 

means they help him to find regularities 

in the rest of the book). Hence anyone 

who tries to detect regularities in a 

process (for example an infinite se- 

quence or an extremely long finite se- 

quence) proceeds in the direction of the 

process. Regularities that have ever been 

found in an initial segment of the pro ~ 

cess are regularities for ever. Our main 

argument is that the interpretation of 

a process (for example to measure his 

complexity) is a process itself that pro- 

ceeds in the same direction. 

Definition A p.r. function f : X ~-~ Y~ 

is called a process, if f(x) = f(xy) for 

all x,xy in the domain of f. 

Basic properties of processes have been 

developped independently in I5I and 18I . 

Processes are called p.r. monotonous 

• X ~ y functions in 15] A process f: --~ 
y~ 

yields a partial function ~: X -~ the 

domain of which is given by 

D(~) = n0N f-I (Yny~)X~ 

and the values of which are determined by 

f(z(n)) c ~ (z) (z { D(f) , n eN) 

Two processes f,g: X ÷ ~ Y~ are called 

equivalent if ~ = g. For instance, a re- 

cursive infinite sequence z ~ X ~ is 

an equivalence class of processes 

f: {i}~--~X * where I is a single symbol. 

A process f: X~ --~ Y ~ is called recursive 

(primitive recursive, resp.) if the 

function f is recursive (primitive 

recursive, resp.). It is known from 151, 

181 that there is an algorithm which con- 

structs for any given process an equivalent 

recursive (primitive rec., resp.) process. 

It is obvious that the set of processes 

from X~to Y* can be recursively enumerated. 

This means that there exists a p.r. func- 

tion H: N ~ X~ --~ Y ~ such that any function 

Hi ~ef H(i, ) is a process, and such that 

for any process F there is an i such that 

H.=F. 
1 

This fact implies the following 

Theorem 2 There exists a universal process 

P: X~--~ X ~ such that Kp ~ K B for all pro- 

cesses B: X *-~ X ~. 

Proof Define P(i i O x) = H(i,x) for all 

i & N, x e X ~. 

Next we shall prove that the process com- 

plexity circumvents the difficulties in- 

volved in the Kolmogorov complexity. The 

process complexit Y K P is to be the pro- 

gram complexity of a fixed universal pro- 

cess P. 

Theorem 3 

A sequence z e X ~ is a Martin-L~f (M.L.) 

random sequence iff l~m(n -KP(z(n)) ~ ~. 

Let us restate the definition of a M.L. 

random sequence 131 • A rec. sequential 

test is a r.e. set Y &N m X ~ such that 

~Yi x~ ~- 2-i (i E N). Hereby Yi is to be 

ix I (i,x) & Y] . A rec. sequential test 

/~ ~ which Y yields a null set ~y = i ~ NYi X 

is called a recursive null set. A sequence 

z is a M.L. random sequence iff z is not 

contained in any recursive null set. 

Proof " => " Assume lim(n - KP(z(n))) = ~. 

We define Yi = ix I K~(x) ~ I xl - i}. we 

x ~ ~ 2-i~ are going to prove that ~Yi - 

Assume ~YiX~ > 2 -i. Then there exist se- 

quences Xl, x 2 .... ,x n & X ~ such that: 

n xi 2- i (a) ~ 2-l I > 
j = l  
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.X a- • (b) x] r~ XrX = @ (j :~ r) 

(c) KP(xj) ~_ Ixjl- i (j = 1 ..... n) 

Let P : xm-~ X m be the universal process 

such that Kp = K P. Hence there exist se- 

quences Wl,...,w n ~ X m such that 

(d) P(wj) = xj (j = 1 ..... n) 

(e) lwjl ~ Ixjl-i (j = 1 ..... n) 

Since P is a process it follows from (b) 

that 

X e (f) w X n w = ~ (j ~r) 
3 r 

Hence (a), ~e) , (f) lead to the contra- 

diction ~--i wjX~}>l" 

This proves that~i x~ ~ 2 -i. Since Yi 

can be rec. enumerated (uniformly for any i) 

this defines a rec. sequential test Y 

such that z e ~. 

" ~" Let Y c N~X ~ be a rec. sequential 

test. We construct a process P :X+-~ X ~ 

such that l~m(n -Kp(z(n))) =~ for all 

z 6 ~. We assume ~ ~ ~ and ~Yi x~ ~ 2 i. 

Then we prove the following 

Lemma To any i we can effectively con- 

struct a process Pi such that for any 

y &Y.X ~ there is an x ~ X ~ satisfying. 
l 

Ixl = lyl - i, PiCx) = y 

Proof Let h: N ~Y.X ~ be a recursive bi- 
1 

jective function. Such a function can easi- 

ly be found. To x & X ~ we define 

[xli  li Ixl} x 

and we set U : = ~J h(j) 
n j _~n 

We construct a recursive function g: N --~ 

such that i(g(i) , h(i)) ] i & N] is the 

graph of the process Pi in the lemma. We 

set V : = ~ g(j) . 
n ~n 

We choose g(o) & X ~ such that I g(o) I = 

lh(o) I - i. Suppose g(i) is already 

defined for all k < j. We consider two cases 

cases. 

(I) h(j) ~ Uj_ I. Then two cases (a) and 

(b) are possible 

(a) there exists k < j and w 6 X'such that 

h(j) = h(k) w. In this case we set g(j) = 

g(k)w. 
(b) there exists k < j and w such that 

h(k) = h(j)w, in this case we decompose 

h(k) such that h(k)= uv with Ivl = lwl 

and we set g(j) = u. 

(2) h(j) 6 Uj_ I" In this case we choose 

g(j) such that 

Ig(J) I = lh(j)I - i, g(j) ~ Vj_ 1 and 

(.) ~Vj r~ X kII is minimal for all 

k < ~h(j)l - i. 

Let us illustrate this last condition. 
~ v  

Suppose Vj_ 1 = 0001 and lh(j)~ -i = 4, 

then the above condition implies g(j) = 

0000. This means that g(j) has to be 

chosen such that there is a maximal 

initial segment of g(j) which coincides 

with an initial segment of some sequence 

in Vj_ 1 . 

It can be verified that there exists g(j) 

satisfying the above conditions iff 

~) IIVj_i n X lh(j) l-i~| ~ 21h(J ) l-i. 

In this case an appropriate g(j) can be 

effectively found. We claim that condition 

(~) implies that for all j,r ~ N: 

II Vj  ,~ X r II = ~ r  ~.( U g (k) x~) ]  
k~_j 

where [ q denotes the last natural number 

greater than. 

Observe that in fact condition (~) implies 

that g(j) has to be chosen such that 

~[Vj ~ xk~ is minimal for all k e N. 

Obviously F2 r ~.( ~J g(k)X~)l is an lower bound 
kej 

for ((Vj r~ X l{and our construction ensures 

that this lower bound is attained. Because 

of [ 2r e ( [ ]  = jg(k)X')] [2i+r ~(kejV h(k) X')7£ 
k% 

2 i+r ~Yi x~< 2 r it follows that (i) holds. 

Hence the procedure for g continues 

for all j. Hence [(g(j) , h(j)) I J ~ N} 

is the graph of a process Pi that 

satisfies the above lamina. 
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We continue the proof of Theorem 3. The 

above lemma implies 

Kp. (y) = IYl - i (y &YiX~)- 

Let uslconsider the set 

W = {XlX 1 ..... XnXnOl I n & N, x i e X}. 

We can construct a recursive bijective 

f: N ~W such that If(n) I ~ 2 L(n) + 2. 

Finally we construct the process P: X~-->X ~ 

as follows 

P(f(i)x) = Pi(x) for all x ~ D(Pi) - 

This implies Kp(y) g IYl - i + 2 L(i) + 2 

for all i & N, y 6 Y.X ~. Hence 
l 

iim(n - Kp(z(n))) =~ (z e~) q.e.d. 
n t 

It is clear that the identity function 

idx~ X~X ~ is a process satisfying 

Kid (x) = Ixl. Hence there exists a 

natural number c such that for all 

x & X ~ : KP(x) ~Ixl + c. This fact and 

Theorem 3 yield the following 

Corollary 4 

X ~ z & is a M.L. random sequence iff 

there exists c & N such that for all 

n g N: IKP(z(n)) -n I ~ c. 

Let Y ~N x X ~ be a rec. sequential test. 

We define the critical level function my 

my(Xl : sup [i i x ~ YiX~], 

hereby we use the convention sup ~ = O. 

It is known from 131 that there exists a 

universal rec. sequential test Y such 

that my ~ my for any rec. sequential test 

~. Let m be the critical level function 

of a fixed universal rec. sequential test 

Y. The proof of Theorem 3 yields the 

following 

Corollary 5 

There exists c ~ N such that for all 

x eX : 

- c (m(x) + KP(x) - IxI(2 L(m(x)) + c. 

Martin-L~f has pointed out that the 

Kolmogorov complexity oscillates in a 

very strange way 141. Next we are going 

to prove that the process complexity does 

not oscillate. We shall show that the 

function n - KP(z(n)) is nearly monotonous. 

This implies that all initial segments of 

an irregular x (i.e. KP(x) ~ Ixl are ir- 

regular too. 

Theorem 6 There exists c & N such that 

for all x & X ~ and j ~ Ixl : Ix - KP(x) 

j - KP(x(j)) -2 L(lj-KP(x(j))~) - c. 

Proof Let P: X * --TX ~ be a process. In order 

to prove the theorem we construct a pro- 

cess h:X~--gX ~ such for all x e X ~ ,j~_Ixl: 

(~) Ixl- Kh(X) _> j - Kp(X(j) 

- 2 L(Ij--Kp(X(j))I) - 3. 

We set 

= X ~ Yi ix I  pCXl Ixl -iS 

Hence ~YiX~< 2 -l and we can effective- 

ly construct a process hi: X~ --~X ~ 

such that for any y & Y.X* there exists 
1 

X ~ x & satisfying 

Ixl = fyl - i, hilx) = y 

This implies 

Kh. (Y) ~IYl - i for all y & Yi x~. 
1 

We consider the set 

W =[XlXlX2X2...XnX n Ol I n & N,x i & X~ 

We can easily construct a rec. bijective 

function f: N -~W such that 

I f(n) I < 2 L(n) + 3 

we construct the process h:X~--~X~as 

follows 

h(f(i)x) = hi(x) for all x & D(hi) . 

This implies that the relation (~ holds. 

Hence Theorem 5 follows from Theorem 2. 

The following theorem shows that Kolmogorov 

complexity K A and process complexity K P 

do not differ very much. 

Theorem 7 

There exists a constant c such that for 

all x & X~: 

KP(x) <KA(X) + 4 nlx I + c 
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Proof We set 

= X ~ z i Ix ~ I i < Ixl -~A(X) -2 Llx I} 

and 

Z .(n) 
1 

x 6 Z .(n) 
1 

= Z.nX n 
1 

implies KA(X)< n - i - 2 L(n) 

Z (n) X ~ ~ 2 -i-2L(n) Hence ~ i 

It follows ~Zi x~ ~- 2-i n~N~n-2 

-2 

We choose k such that 2 k • ~ n and 
ne N 

define a rec. sequential test 

X ~ Y c N ~ by 

Yi = Zi+k (i ~ N) 

It follows from Corollary 5 that there 

exists c I E N such that for all x e X ~ : 

KP(x) < Ixl- re(x) +2Lixl ÷ c I 

Since my~ m there exists c 2 6 N such that 

for all x e X~: 

KP(x) < Ixl- my(x) + 2 L1xl + c 2 

It follows from the definition of Z. that 
1 

for all x ~ X * : 

½(x) ~ Ixl - KA(X) - 2 Llxl- k 

Hence 

K P (x) < K A (x) + 4Llxl + c 2 + k 

(X e X ~) , q.e.d. 

4. RECURSIVE SEQUENTIAL TESTS 

ARE NOT EFFECTIVE 

Next we are trying to analyse whether the 

previously defined random tests are 

effective. What does "effective" mean? It 

is our intuition that given an effective 

random test T and finite sequences x and 

z we can effectively measure whether x 

withstands the test T better than z. For 

instance, let Y = N *X * be a recursive 

sequential test and x,z e X ~ . If we know 

that the critical level function my 

satisfies my(x) > my(z) than we can say 

that z withstands the test Y better than 

x. However, we are able to prove the 

following 

Theorem 8 The critical level function of 

a universal recursive sequential test must 

not be recursive. 

Proof Let Y c N × X ~ be a universal 

effective random test. Without restricting 

generality we can assume that 

Yi+l c Y'X"l (i 6 N) . This implies 

x ~ Y1X~ <=> my(X) < I. 

2-1 From ~Yi x ~ follows that 

Vn ~ N: 9 x 6 xn:my(X) < 1 

If my is recursive than we can construct 

a recursive function f: N ~X'such that 

(i) Vn ~ N: (myf(n) < 1 A f(n) e X n) 

However, the recursive function f yields 

a rec. sequential test Y such that Y. = 
1 

{f(i) }. Hence myf(n) = n. It follows 

from the universality of Y: 

c e N: Vn ~ N: myf(n) > n - c 

This contradicts relation (i) . Therefore, 

the assumption my recursive does not 

hold, q.e.d. 

The same argument proves that the re- 

lation my(X) < my(Z) cannot be recursivelv 

decided. 

We analyse the process complexity K P 

in the same way. If Ix I- KP(x) > Izl- KP(z) 

than we can say that the sequence z with- 

stands the random test given by K P better 

than x. However, the above method of proof 

also yields the following 

Theorem 9 

The process complexity is not recursive. 

The above theorems constitute a challenge 

to find a more restrictive concept of 

random tests. It seems to be natural re- 

quiring that an effective recursive 

sequential test Y c NxX ~ is a recursive 

set. However, it has been shown in 151 

that for any rec. sequential test YcN ~X ~ 

there is a rec. sequential test ~cN ~X ~ 

such that ~ = ~y and ~ is a rec. set. Thus, 

if we would accept this concept of effec- 

tive test then there 
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exists an effective test such that any 

recursive sequence does not withstand this 

test. Hence such a concept of effective 

test would not yield a concept of re- 

cursive pseudo-random sequences, i.e. re- 

cursive sequences withstanding all 

effective tests that have a bounded com- 

putational complexity. 

5. Effective Random Tests. 

Let P,B: X~--~ X * be partial functions 

Then B is called a right invers (r.i.) of P 

if P B = idx,. A r.i. to P exists if and 

only if P is surjective. Any r. i. is a 

total i-i function. 

A process P together with a recursive r.i. 

B can be conceived to be an effective test. 

In case IzJ-IB(z) [ > Ixl-IB(x) I we can 

say that x withstands this test better 

than z. This relation can be effective- 

ly decided. IB(x) I is a recursive lower 

bound for Kp(X). 

In the following a rec. monotonous and 

unbounded function g:N --~N shall be called 

a ~rowth function. We shall use these 

functio~ for measuring the increase of 

real functions. 

Definition 

A tripel T = (P,B,g) where P is a process, 

B is a rec. r.i. of P, and g is a growth 

function, is called an effective random 

= X ~ test. ~ {z G ll~m(n-IB(z(n)) I ) / 

g(n) > O] is defined to be the set of 

sequences that do not withstand test T. 

We say that test T is mortal for the se- 

in ~. The above definition quences 

means that for a sequence z there exists 

a mortal effective random test if and 

only if there is a process P such that 

short programs B(z(n)) for the initial 

segments z(n) of z can be effectively 

found and the sequence n - I B (z(n)) 1 

increases in an effective way beyond all 

bounds. Obviously this implies 

lira (n - Kp(z(n))) = 
n 

Next we establish some equivalent concepts 

of effective random tests. 

Let Y c N × X ~ be a rec. sequential test. 

Without restricting generality we shall 

assume that YO = X" and Yi = Yi xa for 

all i ~ N. A function h: X -~ Y is called 

a decode to Y, if ~lh(X) = x for 

X ~ all x e . Hereby ~i: N ~ X~--~ N, ~2: 

N × X*--~ X" denote the projections. 

A rec. sequential test Y together with a 

recursive decode can be conceived to be 

an effective test. In case ~lh(X) < ~lh(Z) 

we can say that x withstands this test 

better than z. This relation can be 

effectively decided. ~lh(X) is a re- 

cursive lower bound for my(X). 

Theorem i0 

Let z ~ X ~be any sequence. Then there 

exists a mortal effective test for z if 

and only if there exist a rec. sequential 
~ec. 

test Y, a~decode h, and a growth function 

g, such that lim ~lh(Z(n))/g(n) > O. 
n 

Proof (i) Let T = (P,B,g) be an effective 

test. We define Y c N ~X* as follows: 

YO = X* and Yi = 

~X~I ~j~Ixl: IB(x(j))I~j - i] . 

Since P is a process it follows 
-i 

~YiX~ 2 

Hence Y is a rec. sequential test. The 

decode h is defined by 

• (fxl-[B(x) l,x) if Ix[~IB(x) 1 

h(x)= [(O,x) otherwise 

Hence l~m(n - IB(z(n))l)/g(n) > O 

implies inim~l h (Z (n) ) /g (n) > O. 

(2) Let Y c NK~be a rec. sequential test 

with Y = X * , h a recursive decode, and 
o 

g a growth function. We construct a process 

P:X~--~ X ~ as has been done in part (2) 

of the proof of Theorem 3. It can easily 

be verified that this construction yields 
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a recursive r.i. B:X -->X~such for all 

x eX : 

O ~ ~lh(X)+IB(x) I - IXl~ 2L(~lh(X)) +3 

Hence l~m~lh(Z(n))/g(n ) > 0 implies 

iim(n- IB(z(n)) l)Lg(n) / g(n) > O. 
n 

Obviously this proves the theorem. 

Another equivalent concept of effective 

random tests can be derived from martin- 

gales. A function V:X~-~ R + (R + denotes 

the set of all non-negative real numbers) 

is called a martingale if it satisfies: 

V(x) = 2 -1 (V(xo)+V(xi)) (x ~ X ~) . 

A martingale can be conceived to be the 

capital of a gambler when playing on 

binary sequences. V(x) denotes the capital 

after the Ixl -th trial when the sequence 

of the gambling system has the initial 

segment x. We consider recursive martin- 
Q+ Q+ gales V:X -~ where is the set of 

all non-negative rational numbers. 

Intuitively a recursive martingale 

X" Q+ V: -~ constitutes an effective random 

test. In case V(x) < V(z) we can say that 

x withstands this test better than z. 

This relation can be effectively de- 

cided. We can prove the following 

Theorem ii 

X ~ Let z ~ be any sequence. Then there 

exists a mortal effective test for z if 

and only if there exists a recursive 

martingale V:X~--~ Q + and a growth function 

g such that lim V(z(n))/g(n) > O. 
n 

Proof (i) let V:X*-~ Q+ be a recursive 

martingale and g a growth function. We 

define a recursive set Y c N ~ X ~ by 

X a Yi = {X e I ~ J IXl : V(x(3)) > 2iv(AO 

The structure of a martingale implies that 

~YiX ~ e2-i 

Hence Y is a rec. sequential test. We 

construct a decode h to Y by h(x) = 

(max [ i  I ~ j ~Ixl : VCxCj)) a 21VCA)~ ,x) 

It can easily be verified that 

limV(z(n))/g(n) > O implies 
n 

l~m~lh(Z(n))/Lg(n) > O. This proves one 

direction of the theorem. The other 

direction will be proved lateron. 

A recursive sequential test Y C N~X ~ 

is called a total recursive sequential 

test, if f(i) =~Yi x~ defines a computable 

function f:N -~R. 

Theorem 12 

Let z e X ~ be any sequence. Then there 

exists a mortal effective test for z if 

and only if there exists a total re- 

cursive sequential test Y such that 

z~ ~y. 

Proof (I) Let T = (P,B,g) be an effective 

random test. First of all we construct 

a growth function f such that lim g(n) 
n 

/f(n) = = . Then we define Y c N ~X ~ by 

~= 
IX I IB(x)I ~ Ixl - i,lxl- B(X)[>f(Ixl)} . 

Hence lira( n - IB(z(n)) l)/g(n) > 0 implies 
n 

z e q~ . We prove that Y is a total rec. 
Y 

sequential test. It satisfies showing 

that ~Yi x~ can be effectively computed. 

In order to compute ~Yi x with an error 

less than 2 -j one determines n such that 

f(n) > 2 j. This implies 

~[z g X~l 9k ~n:IB(z(k)) I ~_k-i A 

k-IB(z(k)) I > f(k)} ~_ 2 -j 

Hence 

I t~Yi x~ - ~[zl~k < n:IB(z(k)) ] ~k-i 

k-IB(z(k)) I > f(k) } I e2 -j 

Since 

~{z & X~I ~ k ~ n:IB(z(k)) ] mk-i ^ 

k-IB(z(k)) I > f(k) } 

can be recursively computed from i and n 

it follows that ~Yi X~ can be effectively 

computed from i. This proves one direction 

of the theorem. Those directions of 

Theorem i0 and ii that have not yet been 

proved are a consequence of the following 

Theorem I 5] 

Let z % X ~ be any sequence. Then the 

following relations (i) and (2) are 
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equivalent: 

(i) there exists a recursive martingale 

V:X'-~R + and a growth function 

g such that limV(z(n))/g(n) > O 
n 

(2) there exists a total recursive 

sequential testy such that z e ~y. 

It should be mentioned that all equivalen- 

ces of this chapter are not merely 

existential but can be proved by effective 

methods. Hence all these concepts of 

effective random tests do not differ 

essentially. Finally we restate a theorem 

of 151 which ensures that our concept of 

effective tests yields a concept of re- 

cursive pseudo random sequences. An ex- 

tensive treatment of the theory of pseudo 

random sequences as well as some more 

equivalent concepts of effective tests 

can be found in 151. 

Theorem 151 

Given any rec. enumerable set ~ of 

effective tests we can effectively find a 

recursive sequence z which withstands 

all tests in ~t. 

Because of this theorem it is entirely 
~f~_t//zcc ' e 

clear that there cannot exist a unTvers~ 

random test. However, the concept of an 

universal p.r. process (universal rec. 

sequential test rasp.) can also be used 

relative to effective tests. For instance 

it can be shown that there exists a 

universal process A : X~--~ X ~ such that 

for any effective test ~ = (A, B g) one 

can effectively find a test T = (A,B,g) 

satisfying IBI ~ IBI. Hence all effective 

test can be referred to A. However, this 

does not hold for any universal process. 

It can easily be seen that this only 

holds for the following concept of 

admissible universal processes. 

Definition 

A process A:X~--~ X~is called admissible 

universal if for any process B:X --~ X 

there exists a recursive function 

C:X~--~ X * such that [C I ~ lidx~ I and A C= B 

Obviously the process that has been con- 

structed in the proof of Theorem 2 is ad- 

missible universal. The methods developped 

in Schnorr 161 yield the following iso- 

morphism theorem for admissible universal 

processes: 

Theorem i81 

Let A,B:~ --~X* be two admissible univers~ 

processes, then there exists a bijective 

recursive function C:X~X * such that 

IC ~ lidx. I and A C = B. 

71 
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CORRECTION 

The case (a) in the proof of the lemma used 
in the proof of theorem 3 has to be changed as 
follows : 

(a) if there exists k < j such that h(j)~ h(k)X~' 

then choose a maximal k with this property 

and choose any y ~ g(k) X ~ N X ]h(j)] - i w h i c h  

h a s  n o t  y e t  b e e n  u s e d  a s  v a l u e  of  g a n d  s e t  

g( j )  = y .  
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