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Abstract

This paper presents a detailed description of the process of motion capture, whereby sensor
information from a performer is transformed into an articulated, hierarchica rigid-body object.
We describe the gathering of the data, the real -time construction of avirtual skeletonwhich adir-
ector can use for immediate feedback, and the offline processing which produces the articul ated
object. This offline processinvolvesarobust statistical estimation of the size of the skeleton and
an inverse kinematic optimization to produce the desired joint angle trajectories. Additionaly, we
discuss a variation on the inverse kinematic optimization which can be used when the standard
approach does not yield satisfactory results for the specia cases when joint angle consistency is
desired between a group of motions. These procedureswork well and have been used to produce
motionsfor a number of commercial games.

1 Introduction

Motion capture is a popular process for generating human animation. In this paper we describe the
process whereby magnetic sensor information istransformed into an animated human figure. Our em-
phasisison thedatacollectionand processing that goesinto determining an animation of ahierarchical
3D rigid-body skeleton.

Human motion capture techniques may be categorized according to theintended degree of abstrac-
tion imposed between the human actor and the virtual counterpart. Highly abstracted applications of
motion capture data, analogousto puppetry, are primarily concerned with motion character, and only
secondarily concerned with fidelity or accuracy. Beyond an initial calibration to insure that the ‘ pup-
pet’ or animated figure can be adequately manipulated, the most significant calibration takes place in
the minds of the animators or puppeteers who learn to manipulate the figure indirectly as a puppet,
rather than as a direct representation of themselves. Such applications commonly require the devel-
opment of a unique capture procedure to take into account the characteristics of the puppet and its
range of motion, and often rely on a combination of multiple actors, multiple input devices and pro-
cedura effects. Furthermore they often depend on real-time el ectromagnetic or electro-mechanical
motion capture devices.

At the other end of the spectrum, effortsto accurately represent human motion depend on limiting
the degree of abstraction to a feasible minimum. These projects typically attempt to approximate hu-
man motion on arigid-body model with alimited number of rotational degrees of freedom. Thiswork

Authors address: One Microsoft Way, Redmond, WA 98052, USA. Email: {bobbyb, chuckr, sethr,
johnpe} @microsoft.com



To appear in Eurographics CAS 97 2 BASIC MOTION CAPTURE PROCESS

isnot restricted to real-time systems, and is often conducted with non-real -time techniques such as op-
tical tracking as well as with electromagnetic and el ectro-mechanical systems. It requires that close
attention be paid to actual limb lengths, offsets from sensors on the surface of the body to the skeleton,
error introduced by surface deformation rel ative to the skeleton, and careful calibration of translational
and rotational offsets to aknown reference posture.

Motion capture systems are commercially available, and the two main types of systemsare optical
and magnetic. At the present time neither has a clear advantage over the other, but magnetic systems
are significantly cheaper. Considerable literature exists on using and editing motion capture datain
animation (e.g., [1, 15, 3, 13, 14]). Motion capture for usein animation has been surveyedin [10], and
various descriptions of the end product of its use have appeared (see, for example, [9, 6]) but beyond
descriptionsof thevariousagorithmsfor inverse kinematicssuch as[2, 16], there has been little atten-
tion given to processing the datafor use by inverse kinematics routines. Thework by Molet et al. [12]
gives an alternative technique to inverse kinematics for going from sensors on an actor to an anim-
ated articulated figure. Thegoa of producing an articulated rigid body iscritical if additional motions
which depend on dynamics are to be added, either from dynamical simulation (e.g., [7]) or spacetime
constraints (e.g., [14]); additionally, accurate motion anaysisis important to the biomechanics com-
munity.

The present work deal swith the data processing discussedin [12] but givesa detailed presentation
of the processing techniques needed for a system which usesinverse kinematics as the base routinefor
producing the articul ated figure. Inverse kinematic techniques are used because they have potential to
avoid rotational error propagation which may result in unacceptable positions of end effectors when,
for example, there isinteraction with props. In the first part of our paper, we present the basic mo-
tion capture process, including sensor attachment and derivation and inference of rotational degrees
of freedom (DOF). Note that this phase is accomplished in rea time, so that a director can view the
basic quality of the captured motion. Next we determine the skel eton lengths from the recorded data,
and generate an inverse kinematic solution. In particular, we discuss our approach to the problems of
noisy sensor data caused by a limited number of sensors, sensor slip, and sensor noise. We note that
an advantage of our technique over many commercial systemsis that it generates data which can be
easily sub-sampled. Finally, we present additional stepswhich can be taken when our inverse kinemat-
ics optimization step failsto find arealistic or consistent solution between similar motionsin amotion
capture session.

2 Basic Motion Capture Process

Our motion capture data is generated from an Ascension MotionStar system and isinput directly into
a 3D modelling and animation program, Softimage, at capture time. Datais sampled at up to 144Hz.
This high sampling rate is advisable when fast motions, such as sports motions, are captured; using
slower sampling rates for such motions can often produce problems in the inverse kinematics phase,
since there is less frame-to-frame coherence. Actors are suited using from 13 to 18 six DOF sensors.
The typical location for the sensors of an actor is shown in Fig. 1. Our motion capture method is de-
signed to take advantage of (a) the real-time capability of the electromagnetic capture system which
allowsfor careful initial calibration and periodic re-calibration of sensor offsetsto the virtual skeleton
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Figure 1. Typical placement of sensors on an actor. On the left isa 13 sensor configuration; the gray
dots show sensors on the back of the body. On theright isan 18 sensor configuration.

(i.e., the non-kinematically constrai ned rotation and trandl ation data), (b) animation toolsin Softimage
which allow fine control over secondary structures used as a source of derived or inferred data, and (c)
the ability of statistical analysisand inverse kinematics to discard gross errors and outlying data, and
to fit ahierarchical rigid body with areduced set of DOFs to the data.

2.1 Sensor Placement

Our typica capture configuration relies primarily on the pelvis, forearms, head, and lower legs; for
each of these, six DOFs are captured. These body segments are chosen for the degree to which they
define the position and posture of the figure and for their comparative advantages as anchor pointsfor
the sensors. The data sampled for these segments are considered primary data, and are not processed
beyondtranslatingtheir six DOFsto their respectiverotation points. Datafor additional body segments
are considered secondary, and are inferred from the primary data. In particular, a 3D virtual skeleton
is constructed that provides translational and rotational constraints enabling us to conveniently infer
such things as the rotation of avirtual limb about its longitudinal axis, based on the orientation of a
dependent limb.
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211 Primary Data

The forearms and lower legs provide superior surfaces for immobilizing sensors relative to the skel-
eton. For the lower legs, the flat surface of the tibiajust below the patellais used. For the forearms,
the top surface of the forearm, directly behind the wrist and spanning theradius and ulnaisused. The
forearm is assumed to behave asarigid body with itslongitudinal axis of rotation slightly offset from
the center towards the radius.

The position of the hipjointsand the base of the spine are measured as offsets from a single sensor
onthepelvis. Thepelvicsensor istypically placed on the back of the pelvisnear thetop of the sacrum.
The head is represented by datafrom asingle sensor secured to atight-fitting hat or helmet.

Jointed kinematic chains for thearms and legs are avoided at this stage for two reasons. First, cap-
turing the global position and orientation of the lower legs and forearms localizes error and preserves
primary datafor the analysisand global optimization. Thisprecludes any ateration of the orientation
of the lower limbs due to migration of other sensors, as would occur if jointed kinematic structures
were used intheinitia skeleton (notethat if thiswere done, the inverse kinematics would be enforced
frame by frame by the modelling program). Second, at capture-time, visual cues that indicate deteri-
orating sensor calibration, such as excessive separation at the knee, are more valuable than real-time
inverse kinematic solutions.

2.1.2 Secondary Data

Secondary datais inferred by exploiting Softimage’s animation capabilities to enforce trandlational,
rotational, directional, and up vector constraints. The up vector is commonly used to orient avirtua
camera about the view direction. An up vector constraint providesa convenient method for constrain-
ing the rotation of a virtual limb about its longitudinal axis based on the orientation of a dependent
limb. The up vector constraint makes use of a user-specified point to determine the resolution plane
of akinematic chain. These constraints are used to infer the rotational DOFs for the upper arms and
legs, the torso, and in some cases, the neck.

Thethorax isalogica candidate for treatment as a source of primary data. However, at present,
the main application for our datais for real-time rendered 3D games featuring animated low-polygon
humanoid characters. These characters typicaly represent the torso as asingle rigid body with fixed
shoulders. Our approach to providing datafor thistype of applicationistoinfer thetorso DOFsfrom a
single segment constrained to the virtual pelvisand to the virtual nape of the neck (which is measured
asan offset from asensor on the upper back). For applicationswhich can use more DOFs, acollarbone
isadded to aid in such things as shoulder shrug. Thelongitudinal rotation of thetorso isinferred from
an up vector constraint applied to the sensor on the upper back.

The upper legs and arms are difficult to capture directly with electromagnetic sensors, due to the
absence of stableanchor locations. With adequate care, sensorson these body segmentscan beinitialy
calibrated, but are particularly susceptible to sensor migration as a result of strenuous motions. The
virtual femur is constrained by its root to the virtua hip joint and by its effector to the proximal end
of the virtual tibia. The rotation of the virtual femur about its longitudinal axisisinferred from an up
vector constraint applied to a contrived offset from the sensor on the lower leg. The small degree of
elasticity in the virtual knee that resultsfrom the natural elongation of the actual kneein the course of
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flexion and any accumulated error from sources such asimperfect calibration of offsetsor uncontrolled
sensor migration can be removed with conventional inverse kinematics techniques, or in the global
optimization phase.

The upper arm or humerus poses a more difficult challenge. Accurately representing the complex
motion of the shoulder requires an impractically large number of DOFs and is complicated by the de-
gree to which motion of the skeletal structure of the many components of the shoulder bears little re-
lation to the motion of the surface of the body [11]. Two techniques can be used for estimating the
position of the shoulder with el ectromagneti c sensors (other techniques are possiblewith optical track-
ing methods). First a sensor can be imperfectly immobilized to the top or back of the scapulaand the
position of thevirtual shoulder joint can be estimated as an offset from this sensor’sdata. This method
can be improved marginally by assuming that the direction of this estimated point from the virtual el-
bow is more accurate than the distance from the virtual elbow to this point. This assumption follows
from observations that the direction of trandational error of the shoulder sensor tends to be parallel
to the longitudinal axis of the humerus. Given this assumption, the humerus can be represented by a
singlebone constrained at itsroot to the virtual elbow joint and constrained by its effector to thevirtua
shoulder. The proximal end of this bone isthen assumed to represent the shoulder joint.

Second, the position of the shoulder joint can be estimated as an offset from a sensor on the up-
per arm. Thismethod is difficult in practice due to the difficulty of immobilizing a sensor relative to
the humerus. Even mildly strenuous motions can generate unacceptable variations between the DOFs
recorded at the surface of the upper arm, and the actual position and orientation of the humerus. This
arrangement is often acceptable for real-time puppetry-type applications but is inadequate for more
exacting motion tracking applications.

Asan example, the model for thearm isshownin Fig. 2. Inthisfigure, (A) isthe chain represent-
ing the upper arm, and (B) is the chain representing the lower arm. The position of the distal end of
(A) isdetermined by the proximal end of (B). The longitudinal rotation of the upper arm needs to be
inferred; (C) isthe axisthat controlsthe longitudinal rotation. (D) isan arbitrary point defined as an
offset from the lower arm on aline projected back along the longitudinal axis of the lower arm. (K) is
the plane defined by theroot and effector of (A) and the point (D). Astheeffector of (B) movesthrough
the trgjectory (H), the point (D) moves through the trgjectory (G). The up vector constraint applied to
(A) forces (C) to liein the resolution plane (K), thus determining the longitudinal rotation of (A). As
(D) approaches the longitudinal axis of (A) the inferred rotation becomes unstable. Thisinstability is
addressed by carefully choosing the offset (D), by substituting estimated positions for (D) based on
previous or subsequent frames, and, in some cases, by manually animating (D).

Finally, hand and foot motion is represented by rotational degrees of freedom from their respect-
ive sensors. Hands and feet are projected from wrists and anklesin aforward kinematic fashion. For
example, the hands are not articulated but are mittens attached to the wrist.

2.2 Measuring and Building the Skeleton

Our production concerns dictate that the process of preparing an actor for acapture session, and build-
ing and calibrating a virtual skeleton be as convenient as possible. Our method largely automates the
process of measuring rotationa offsets, and requires acomparatively small set of manual adjustments
for thefina calibration. It does, however, require systematic hand measurements of translational off-
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Figure 2: Upper arm model.

setsfor al sensorsfor which trandation datais used. The need for such measurements can be reduced
by relying on methods based solely on the rotations of sensors secured to each body segment, and a
single global trandlation [12]. However, the tendency of rotation-based techniquesto propagate error
can make them unwieldy for tracking motionsthat rely on the precise placement of the hands and fest,
such as self-referential motions and motions that depend on extensive interaction with props.

Prior to securing the sensors, the actor’s limbs are carefully measured. After the sensors are in
place, their trandationa offsets are measured according to a coordinate system based on an arbitrary
reference posture or “zero position.” All measurements are rounded to the nearest 0.25 inches but are
assumed to be somewhat less accurate. A skeletal model based on the measured limb lengths and off-
sets, and posed in the zero position is then generated programmatically.

This model maps the data from each sensor to that sensor’s corresponding “null model.” A null
model isanodein the virtual skeleton which has no geometry. Null models are used to introduce an
offset between themotion of two linked objects. For each capture sensor thereisanull-model that holds
itsrotational and translational offset to the virtual skeleton. The translational offsets are assumed to be
approximately correct. Therotational offsetsare arbitrary and are assumed to bewrong, asthe sensors
are oriented on the body according to practical concerns such as cable management and sensor stability.
Before a hierarchical relationship is established between the captured input and the joint centers, a
single keyframe of rotation datais recorded with the actor standing in the zero position thus setting the
offset to the frame of captured data.

Fine calibration is necessary to account for any error in the measurements of the limbs and the
tranglational offsets, and to correct for the degree to which the actor cannot perfectly assume the the-
oretical zero position of the skeleton. Thisfine calibration is accomplished by manually adjusting the
translationsand rotationsof the null model in aninteractivecalibration mode, that all owsmanipulation
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Figure 3: Articulated body modéel illustrating degrees of freedom.

of scene el ementswhilethe capture device and driversarerunning. A simple set of routine motionsis
generdly sufficient to identify any necessary refinements to the calibration; the arms may not line up,
the hands may not come together, the legs may not be parallel, and so on. In practice, thefine calibra-
tion is primarily confined to the adjustmentsto the offsets for six sensors-those on the lower legs, the
lower arms, the pelvis, and the chest. The resulting skeleton closely approximates the actor’s motions
and tendsto localize error caused by sensor migration.

At capture time, datais recorded for the sensors and used to drive the virtual skeleton. The next
stageisthe optimization step. Thedataused inthisstep isnot the sensor data, but datawhich represents
the tranglation and rotation for each joint.

3 Optimization

Given aset of databased onthevirtual skel eton described above, our goal isto construct an articul ated,
hierarchical rigid-body model. The model to which we will fit length and rotational datais shownin
Fig. 3 and contains 38 joint degrees of freedom and six degrees of freedom at the root, located in the
center of the pelvis, for positioning and orienting the entire figure. Our first task isto extract the best
limb lengths from the motion capture data. Once the scale of the segmentsis determined, an inverse
kinematics solutionis calculated to determine the joint angles for the figure. Our inverse kinematics
routine uses penalty functionsto constrain the joint anglesto approximate a human’s range of motion.

3.1 Optimizingthe skeleton

As mentioned previously, motion capture data is noisy and often contains gross errors. The source
of the noise is primarily the magnetic sensors themselves, athough we note that in our experience
optical datais as noisy. We determine the size of the skeleton by determining the distances between
the translated joint | ocations over amotion or repertoire of motions. Using the simple arithmetic mean
to compute these distances resultsin answers unduly distorted by the gross errors, and editing the data
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by hand to remove outliersisimpractical. Asan example, grosserrorsin fast motionssuch asthrowing
may, for aframe or two, give a distance between the elbow and wrist of over 3 meters. Thus arobust
statistical procedure which can minimize or reject theinfluence of these outliersisemployed. We have
found that a one-step M -estimator [5] works well. This estimator has the form

JZi ¢ (e - 1)/8)

Tn = T(O) + 57(10
! (o = T /58

n

where n isthe size of the data set, «; isadata point, T, isthe estimated statistic of location, Téo) and
57(10) areinitial estimates of thelocation and scale, and v is estimator function. In our work we usethe

Huber estimator
. b
Py = x - min (1, —)
2]

where b isthe cutoff point and is determined by the median deviation of the data. Our initial estimates
of location and scale are the recommended ones for thistype of estimator (see[5]), and are given by

T = median(z;)

S©) = 1.483median; {|z; — median;(z;)|}.

n

This estimator insuresthat any error, no matter how gross, has only afixed impact on the data set.

In this phase, an outlier is defined as any data point beyond the cutoff point b, which is typically
twicethemedian deviation (defined abovefor 57(10)). Whenanoutlierisfound, itistagged so that during
theinverse kinematics phase, datafrom that frame and for thosejointsis automatically ignored. Asan
exampleillustratingtheimportance of this, ashort motion of awalk consisting of 508 frames of motion
has 6 frames of clearly gross error. Editing these frames out by hand and computing the collarbone to
shoulder length gives 13.3 cm. Our M -estimator gives 13.2 cm, but using the arithmetic means gives
alength of 14.1 cm, a 6% difference. Errors of this magnitude will frequently cause difficultiesin the
inverse kinematics procedure, thus marking them is avauabletool. Since the statistical estimator we
are using is of the “one-step” variety, the limb length calculation is not computationally expensive.

3.2 Inverse Kinematics

Once the hierarchical model has been determined using robust statistical analysis of the data, each
frame of datamust be analyzed to producea set of joint angles. Additionally, thesejoint angles should
form reasonabl e piecewise-linear DOF curves which can be sampled at any time, not just the original
frame times. Piecewise-linearity isextremely useful if thedataisto be sub-sampled. In contrast, many
commercia data sets often contain discontinuities in the rotational data from frame to frame, which
make sub-sampling impossible. Our primary and secondary datayield information about many areas
of the body, giving us a highly constrained kinematic problem. This problem can be solved using a
non-linear optimization technique, which seeks to minimize the deviation between the recorded data
and the hierarchical model. We use a modification to the technique presented in Zhao [16].
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The fitness function we are minimizing is defined as
~\ 2
F(©) =Y w, (P, - P;) +
Jed

~ 2
wo, (007]‘ — 007]‘)

~ 2
wo,; (OL] — OL])

wCC']2

+
+

where © isthe set of joint anglesfor the set of joints.J. P; isthe positionof the jthjoint given © and
P; istherecorded joint position from the capture phase. O, ; and O, ; aretwo vectorsdefining the ori-
entation of thejoint with O, ; and O, ; being the recorded orientations. Two vectors are used because,
together with their cross product, they will form aright-handed coordinate system. The quantities w,,,
wo,, and wo, are scalar weightsthat can be tuned to achieve better results. Additionally, we employ
ajoint angle constraint term, C';, in the form of a penalty function. Joint angle constraintsfor humans
have been measured and can be found in the biomechanical literature[8].

The quasi-Newton BFGS optimization technique[4] isused to solve the system and usesthe gradi-
ent of thefitnessfunction, given by

OF; -
8—@][ =2w,(P; — P;)(u; x dj;) +

2w0, (Oo,; — Oo,j)(u; x Ou ) +
2w0, (O1,j — O1,)(u; x O15) +
2w.C

to produce our DOF curves in the form of piecewise-linear functions. If the data is relatively non-
noisy and the skeleton is well formed, this technique will work well. It can produce poor results if
these conditions are not present. Robust statistics helpsto insure these conditions by making the best
skeleton and by marking data pointswhich are considered outliers. Since a hierarchical description of
askeletonisabiologica simplification and since non-linear optimizationis hard, the analysis can still
fal into an insufficient local minimaif the starting guess for the optimization is far from the desired
solution.

Our internal representation of rotationsisas X Y 7 Euler angles. Thisrepresentationwasoriginally
used becauseit provided simplicity in our code. However, Euler angles provideonly alocal paramet-
erization of the group of rotationsin R?, and thus have singularities. While our technique works well
for many motions, it cannot be denied that the use of a global parameterization, such as quaternions,
would be better.

We mitigate this problemin two ways. The first techniqueis simple: use the result of frame 7 for
the starting guess of frame (¢ + 1). For many motions, this techniqueis perfectly valid. It suffersif
the data and the skeleton are mismatched near where the skeleton goes through a singularity or where
the data points are too far apart in time for a given motion’s velocity. Additionally, it will suffer if it
never finds agood solutionfor an initial frame. Over the shoulder reaching, fast motions, and motions
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Figure 4: Walk motion.

where the arm is extended to its limit are examples. If this happens, the solution can jump over to
another local minimaand stay there. Thisbehavior isnot desirable.

Anayzing awak motion of 6.7 seconds duration at 30 frames per second required 306 seconds
on a Pentium 133 machine with 4389 BFGS iterations for satisfactory convergence of the solution.
A selected frame showing the fit of the skeleton (yellow) to the data (black) is shown in Fig. 10 (see
Appendix). Notice that thefit is extremely good and shows only a slight discrepancy in the left arm.
The resulting walk motion is shown in Fig. 4.

A further refinement of the motion capture analysis presented here is to use motions to bootstrap
one another by providing good starting guesses to the BFGS optimization. The assumption for this
technique is that many motions of similar structure are to be analyzed, and that motions of a similar
structure will have similar joint angle curves. Such adata set might include reaches, runs, walks, etc.
These sets are likely to be a part of any motion capture session.

Assume thereis amotion M, aset of DOF curves, for amotion of type 7T'. If we have a motion
capture dataset for another motion of thistype, the joint angles for this motion will be similar to those
for motion /. Themain difference between the solutionfor the new desired motion AZ and M will be
atimewarping to account for differencesin therel ativetiming between A and the captured data. Thus
ascaling in time on the data setsis needed. We mark a set of correspondence times, key times, in M
and inthe data set. We time-warp M and then use that as the starting guess for the inverse kinematics
optimization described earlier.

Thus, this technique will not propagate errors, whereas in the previous technique a bad starting
guess may result in a bad solution, which can propagate from frame to frame. As aresult, similar
motionswill make similar use of their joints when analyzed. Thissimilar joint use isimportant when

10



To appear in Eurographics CAS 97 4 CONCLUSION

Figure 5: A low reaching motion.

these motions are later used in techniques like those presented in, for example, [15]. Note that this
technique requires operator interventionto mark the key times, and thusit isonly employed for groups
of datasets where the aforementioned method did not work.

The reach motion shownin Fig. 5 was analyzed using the same techniqueas the walk. Itsduration
is 3.8 seconds and required 1278 BFGS iterations and a total of 37.08 seconds to analyze. Unfortu-
nately, due to noise, inadequacies in the skeletal model, and the joint angle constraints model, this
method is not powerful enough to insurethat it makes similar use of thejoint angles as another reach-
ing motion previously analyzed and shown in Fig. 6. Compare the shoulder DOFs shown in Fig. 7
versus those of Fig. 8. These differences would represent a fundamental obstacleif, for example, we
tried to interpol ate between these motions to obtain areach motion of adifferent height.

Using the medium reach as areference motion, and atime warp to align it as the starting guessfor
the low reach motion capture data, we can obtain a more consistent use of shoulder angles, as shown
inFig. 9. Thisanaysistook 3295 iterations and 232 seconds. Notice that, up to atime warp, this set
of shoulder anglesis very similar to those for the medium reach shownin Fig. 8.

4 Concluson

We have presented a detailed account for taking human performance sensor data and producing an-
imations of articulated rigid bodies. Our technique involves using geometric modelling to translate
rotation datato joint centers, arobust statistical procedure to determine the optimal skeleton size, and
an inverse kinematics optimization to produce desired joint angle trgjectories. We presented a variant

11
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Figure 6: A previously analyzed medium reaching motion.

Figure 7: Shoulder DOFs for the low reaching motion.

Figure 8: Shoulder DOFs for the medium reaching motion.

12
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Figure 9: Shoulder DOFsfor the low reaching motion, using the medium reach as a reference guess.

of the inverse kinematics optimizationto be used when an initial approach has not yiel ded satisfactory
results, for the special cases when joint angle consistency is desired between several motions. This
procedure has been used to produce anumber of motionsfor various commercial games and has been
found to work well. Fig. 11 (see Appendix) shows the motion capture process at the various stages of
processing: thefirst figure showsthe capture phase, where an actor isinteracting with aprop (amodel
of an Indy car); the second shows the articul ated rigid body skeleton obtained after inverse kinemat-
ics optimization; the third shows this skeleton again repositioned with the prop; the fourth shows a
full rendering of the character and the prop. Notice that the inverse kinematics optimization has not
changed thelocation of the end effectors significantly, sincethey are still ableto interact with the prop.
Finally, we remark that if any animator intervention isrequired, thisinterventionwill occur in a step
between that of the third figure and the fourth.

Theleast satisfactory aspect of the motion capture method described hereis the gross over-simpli-
fication of the motion of the spine. Thisaspect is not an inherent limitation of the method and can be
improved by capturing or inferring data for the abdomen, thorax and neck as distinct segments. The
need to obtai n reasonably accurate transl ational offsetsfor sensorsand to carefully calibratethevirtua
skeleton has required the development of an efficient systematic approach to measuring the skeleton
and the sensor positions. This approach allows usto successfully capture complex motionsinvolving
good registration between the virtual actor and the virtual representationsof propsin the capture space.
However, it requires afairly high degree of production preparedness for its efficient execution. This
processisalikely candidate for a more general and robust solution.

Changing our internal representation of rotations from Euler angles to quaternions would likely
help our inverse kinematics processing, particularly for fast sports motions such as throwing. Better
model s of the human body, including more accurate skel etonsand more realistic joint angle constraints
will yield better analysis of motion capture data. In the statistical analysisof the data, itislikely that a
“redescending” estimator, which hastheability to reject outliersoutright, would produce better results,
and thiswill be explored further. Optimization techniques such as active set optimization [4], rather
than penalty-based ones, may give better adherence to joint angle constraints. Additionally, methods
for self-calibration and other avenues which reduce the operator workload and shorten the timeto pro-
duce an animation will be a major avenue of research.
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Figure 10: Fit between skeleton (yellow) and data (black).

Figure 11: Various phases of the motion capture process.
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