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THE PRODUCT OF TWO COUNTABLY COMPACT
TOPOLOGICAL GROUPS

BY

ERIC K. van DOUWEN1

Abstract. We use MA (= Martin's Axiom) to construct two countably compact
topological groups whose product is not countably compact. To this end we first
use MA to construct an infinite countably compact topological group which has no
nontrivial convergent sequences.

1. Introduction. Novak [N] and Teresaka [T] have given an example of two
countably compact spaces whose product is not countably compact, and in fact is
not even pseudocompact. One may ask if these two spaces can be topological
groups, but this is not the case since by a theorem of Comfort and Ross
[CR, Theorem 1.4] the product of any number of pseudocompact topological
groups is pseudocompact (see [dV] for an "elementary" proof). This leaves open the
question, due to Comfort [C] (K. A. Ross has kindly informed me about the
existence of this reference) and repeated by Saks [S, Question 7.3], of whether the
product of countably compact topological groups is countably compact. We
answer this question in the negative, but unfortunately need an additional axiom.

Example 1. MA N There exist two countably compact topological groups whose
product is not countably compact.

Inspired by the example of Novak and Teresaka mentioned above we construct
Example 1 from our next example.

Example 2. MA t= There is an infinite countably compact topological group which
has no nontrivial convergent sequences.

This example also shows how much countably compact topological groups differ
from compact topological groups (at least with additional axioms): Every infinite
compact topological group has a nontrivial convergent sequence. [Argument: By a
theorem of Kuz'minov [Kz] every compact topological group is dyadic [I am
indebted to K. A. Ross for preventing me from including a dubious reference here]
and every infinite dyadic space has a nontrivial convergent sequence, cf. [El, Theo-
rem 15]]. In this connection we remind the reader that if G is a topological group
then ßG can be made a topological group in which G is a subgroup if and only if G
is pseudocompact [CR, Theorem 4.1] (see [dV] for an "elementary" proof, and
[vDl] for related results), hence in particular if G is countably compact.
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418 E. K. VAN DOUWEN

That Example 2 exists under CH is a result of Hajnal and Juhász [HJ2], see §9.
Our construction is of independent interest, not because MA is strictly weaker than
CH, but because it is a very natural way to construct Example 2. It also is
interesting (but unpleasant) that our construction needs MA in an essential way,
see §7. The question of whether or not the existence of our examples can be proved
in ZFC remains open.

I am indebted to Victor Saks for carefully reading this paper.

2. Conventions. An ordinal is the set of smaller ordinals, and a cardinal is an
initial ordinal, w is w0, c is 2". k denotes a cardinal, other Greek letters, except for co,
denote ordinals.

As usual, for a set S we define [S]<" and [Sf by

[S]<a = {/ ç S: \I\ < «},    [S]" ={I QS: \I\ = «}.
We think of 2 as a cardinal but also as a discrete topological group (C2 or Z2 in

algebraist's notation). This makes "2, the set of functions a —* 2, a (compact)
topological group if + is defined coordinatewise and "2 carries the product
topology. We do really think of "2 as a set of functions, so a typical neighborhood
of x e a2 has the form {y G a2: x \ L <Z y), with L G [a]<u, where x \ L denotes
the restriction of x to L.

All our spaces are Tx (so our topological groups are completely regular), hence a
point x is a cluster point of a set K ( = every neighborhood of x contains infinitely
many points of K) iff x G (K - {x}V\

All our groups are additively written, and we use 0 for the identity, the fact that
the identity of "2 really is the function a X {0}, where 0 is the identity of 2, will not
bother us.

We put explanatory remarks between square brackets.

3. Boolean groups. A group G will be called a Boolean group if every x G G is of
order 2 (i.e. x + x = 0). For the convenience of the reader we recall some
elementary facts about Boolean groups which will be used in the construction of
our example, not always with explicit reference.

Let G be a Boolean group. Then the solution of a + x = b is x = a + b, and G
is abelian. The latter fact implies that if A and B are subgroups of G then A + B is
the subgroup of G generated by A u B.

The following simple lemma, and its trivial corollary, will be very important in
the construction of Example 2.

3.1 Lemma. Let G and H be Boolean groups, let A and B be subgroups of G and let
p: A —> H and q: B —> H be homomorphisms. If p \Ac\B=q\AC\B, then there
is a homomorphism r: A + B —> H which extends both p and q.

□ For a e A and b G B put r(a + b) = p(a) + q(b). Check that r is well-de-
fined.    □

3.2 Corollary. Let G and H be Boolean groups, let A be a subgroup of G and let
q: A —> H be a homomorphism. For every y G G — A and b G H there is a
homomorphism p: {0, y) + A -h> H which extends q such that p(y) = b.
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COUNTABLY COMPACT TOPOLOGICAL GROUPS 419

4. Construction of Example 2. Our Example, E, will be a subgroup of c2. [This
way we get the structure of a topological group for free.] We construct E by finding

better and better approximations to the elements of larger and ,
larger subgroups.

[This we make precise below.] For bookkeeping purposes we have to index our
approximations.

What we will do. We will construct subgroups Ea of "2 for co < a < c, our
example E will be Ec. Each Ea will be indexed as Ea = {xa£: £ < aa}, where the
ordinals aa are defined by

°a = «;        °a+i = °a + \<*J        (w < « < c);

a\ = suPu><«<A a«        (co < A < c, and A a limit).

[Note that aa < c for a < c (since oa < k for a < k if k < c is regular), and that
ac = c] We will require the following conditions, which make (*) precise:

(1) if £ < 7) < aa then xai =f= xa„ (co < a < aa);
(2) if £ < aa then xa £ c x^ (co < a < ß < c); and
(3) if £, tj, £ < oa satisfy xai + xa„ = xaf, then x^ + x^ = xßS (co < a < ß <

O-
Since ctc = c we can enumerate [c]" as </£: co < | < c> in such a way that 7t Ç a{

(co < £ < c). [This is why we specify the a/s in advance.] We will find Xc < a£+,
such that

(4) if co < £ < a then xaX is a cluster point of {xay. tj G 7^} (co < a < c).
We also will make sure that

(5) |{tj G 7£: xi+Xri(£) = i)| = co for both / = 0 and / = 1 (co < £< c).
Then E is countably compact by the special case a = c of (4), but has no nontrivial
convergent sequences by (5) and the special case ß = c of (2).

How we do it. Let Ea he any countably infinite subgroup of "2, and index Ea,
making sure that (1) holds for a = co.

Next assume Ea to be known for co < a < Ô, where co < S < c.
Case 1: 8 is a limit ordinal.
Since for each £ < as there is an a with co < a < 8 such that £ < aa, condition (2)

forces us to define

xs¿ =  U {*a,£: w < a < 5 and aa > £}        (£ < as).

The only nontrivial thing to check is that (4) holds for a = 8. Pick £ with
co < £ < 8, and let L G [5]<w be arbitrary. We have to find 17 G 7£ such that
xs¿ =£ xsx and xs A [ L c xSl). There is a y with co < y < 8 such that L Q y and
£ < ay. Then by the case « = y of (4) there is tj G 7£ with x ^ xÄA and
xyX r L C x   . This tj is as required, by the special case a = y and ß = 8 of (2).

Case 2: 8 is a successor ordinal, 8 = y + 1 say.
Since y2 is compact the special case a = y of (1) implies that {x : r\ G /y} has a

cluster point c. Pick c' G Y2 - £y, with c' = c if c g £,, and let ¿/ = {0, c'} + Ey.
Since /JY n (c' + Ey) = 0, we can index H — Ey in a one-to-one fashion as {-xy>£:
aa < I < o-y+i}- Let ^ be determined by xy.   = c. Then
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420 E. K. VAN DOUWEN

(6) if co < £ < y then xy¿ is a cluster point of {xyr¡: tj G L¿}.
We plan to find a function h: H —> 2 such that we can define Ey + X by

Fy+\ = {x'h(x):x e H).

[Recall that if x G Y2 and i G 2 then x'i is the element x u {<y, i» of y+x2.] It
will be clear how to index Ey+X. It also is clear that h must satisfy the following
conditions.

(A) h is a homomorphism;
(B) if co < £ < y then xyA is a cluster point of

{xy.r -n <= /£ and /i(xy„) = /i(xyAi)};

(C) |{tj G 7y: /j(xyr)) = i}\ = co for both i = 0 and i = 1.
It is convenient to replace (B) by an easier condition. For co < £ < y define

%( " {{^W *» e 7i> xr,v * X,-V and xvAt r L C xy,„}: L G [y]<a}.

Next define

%=  U {{xy,X( + K:K e%():u><£< y).

Then (B) is equivalent to
(B') \/K e % 3x G K (h(x) = 0).
We construct h in the next section, using the fact that each member of % is

infinite. [This follows from (6).] This completes the construction.

5. Tearing apart, but not too much. The following lemma is the heart of the
construction of Example 2. We show in §7 that MA is essential.

5.1 Lemma. MA r- Let H be a Boolean group, let I G [H]u, and let % Q [H]u. If
\H\ < c and \%\ < c then there is a homomorphism h: H -^ 2 such that

(a) [ We tear apart] \I n A*~{/'}| = oofor both i = 0 and i = 1.
(b) [But not too much] K n h"~{0} ¥• 0 for K G %.

Let 5 be an infinite pairwise disjoint collection of infinite subsets of /, and let
£ = í u %. Then it suffices to find a homomorphism h: H —> 2 such that

(c) L n h*-{i] ¥- 0 for each L G Ê, for both /' = 0 and i = 1.
We consider the obvious partial order P defined by

P = {p: there is a finite subgroup A of H
such thatp is a homomorphism A —» 2};

p < q if p D q. It is clear that if F ç P is a filter [i.e. Vp, q e F 3r e F
(r < p, <?)] then 5 = U ,,<=/■ dom(p) is a subgroup of H and U F is a homomor-
phism S —» 2. Our /i is going to be \J F for a suitable filter F.

We force that dom(/i) = H by letting F intersect every member of

*D = [Dx:x e H),
where

Dx= {p e P: x e dom(p)}.
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COUNTABLY COMPACT TOPOLOGICAL GROUPS 421

We force that (1) holds by letting F intersect every member of

S = {ELy.Let,i<2},

where
ELi = [p e P: there is v G L n dom(p) withp(y) = /}.

We leave it to the reader to check that this works.
Since we assume MA, and since |^D u S | < |//| + 2 • |9C| < c, there is a filter F

which intersects every member of 'S) u & provided P satisfies the countable
antichain condition and each member of 'S) u & is dense in P. We complete the
proof by giving the (straightforward) verification of these facts.

Fact 1. P satisfies the countable antichain condition.
Let Q Q P he uncountable. We have to find distinct p, q e Q, and r G P, such

that r < p, q. For each finite A Q H there are only finitely many functions A -» 2,
hence the collection (dom(p): p G Q} is uncountable. It follows from the A-system
lemma that there are an infinite (even uncountable) Q' Q Q and a (necessarily)
finite subgroup A of H such that dom(p) n dom(c7) = A for any two distinct
p, q e Q'. As above, there are only finitely many functions A —* 2, hence there are
distinct p, q e Q' such thatp \ A = q \ A. By Lemma 3.1 there is a homomorphism
r: dom(p) + dom(c7) —> 2 which extends both p and q. These p, q and r are as
required.    □

Fact 2. Each member of 'S) is dense.
Let q e P and y G H he arbitrary. We have to find p G P such that p < q and

y G dom(p). If y G dom(c7) let p = q, otherwise use Corollary 3.2 to find a
homomorphismp: {0,y) + dom(c7) —> 2 which extends q.    □

Fact 3. Each member of £ is dense.
Let q G P, L G £ and i < 2 be arbitrary. We have to find p G P with p < q

such that p(y) = i for some y G L n dom(p). This is another application of
Corollary 3.2, based on the fact that there is ay G L — dom(<7).    □

5.2 Remark. Actually, information about \H\ is irrelevant, but we won't bother.

6. Construction of Example 1 from Example 2. We omit the proof of the following
known lemma since it is a trivial modification of the proof of the Cech-Pospisil
theorem that a compact Hausdorff space has cardinality at least 2" if no point has a
neighborhood base of cardinality less than k [CP] (See [E, Problem 3.12.11(a)] for a
recent reference.)

6.1 Lemma. Let X be a countably compact regular space. If I is an infinite subset of
X such that no infinite subset of I has precisely one cluster point, then I has at least c
cluster points.    □

6.2 The construction. Let E be any infinite countably compact topological
Boolean group without nontrivial convergent sequences. We will construct counta-
bly compact subgroups E0 and Ex of E such that \E0 n Ex\ = co. Then E0 X Ex has
a countably infinite closed subgroup, namely the "diagonal",

A = {<x,y> G E0 X Ex: x = y) = (<x, x>: x G E0 n Ex),
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422 E. K. VAN DOUWEN

for E is Hausdorff. But no countably infinite topological group is (countably)
compact. This follows from the Cech-Pospisil theorem quoted above, as is well
known. (In our particular case we also can argue as follows: A has no nontrivial
convergent sequences because E has none, but every countably infinite (countably)
compact regular space has a nontrivial convergent sequence.)

We now proceed to the construction of E0 and Ex.
Define ordinals aa for a < c by

o0 = «;        aa+i = <>a + k«l        (« < c);        °\ = sup aa       (X < c a limit).
a<\

As in §4 we have aa < c for a < c, and ac — c. Enumerate [c]w as </„: a < c> in
such a way that Ia C aa(a < c).

We will construct two (strictly) increasing transfini te sequences <£,„: a < c) of
subgroups of E; our E0 and £, will be E0c and £,c. Each ¿s,. will be indexed as
Eia = { y,£: £ < aa), and we make sure that the following holds:

'(1) if £ < tj < aa then y,.c ^ y,„ (i < 2, a < c),
(2) £■(,„ n EXa = E00 (a < c) [This ensures \E0 n £,| = co.],
(3) {y,^: £ G 7a} has a cluster point in £',_„ +] (a < c). [This ensures that E0 and

£■, are countably compact.]
The construction and indexing of Eox and Ex A for limit ordinals X < c, including

X = 0, is too easy to talk about.
Now let a < c, and assume Eia to be known. For /' < 2 choose a cluster point c,

of { y,£: £ G /„} such that c0 £ £„_„ + £la and c, ^ {0, c0} + E0a + EXa; this is
possible since { y/£: | G 7a} is infinite by (1), hence has at least c cluster points by
Lemma 6.1, and since \aa\ < c. Define

£,,„+i - {0, c,} + Elia       (i<2).
Since | £■,._„| = |aa| and since c, ^ Eia, we have

1^,«+.- EJ = \ct + EJ = \aa\        (j<2)
hence £■,„+, — £,„ can be indexed in a one-to-one fashion as {yUa: aa < £ <
aa+x}. This takes care of condition (1).

Next we observe that (c0 + E0a) n EXa = 0 since c0 ^ 7i0a n EXa, and /io.a+i
n (c, + EXa) = 0 since c, ^ £0,a+i + £"i,ai hence

*^0,o+l   H   7il,a+l   =   7io,a-t-l  H   ^l,o   =   -^0,«   H   ^l,a   =  ^0,0-

This takes care of (2). Finally, it is clear that (3) holds.
This completes the construction.
6.3 Remark. E0 X Ex is pseudocompact since as mentioned in the introduction,

Comfort and Ross have shown that the product of any number of pseudocompact
topological groups is pseudocompact. But E0 X Ex has a countable closed sub-
group, hence a closed nonpseudocompact subgroup. Comfort and Saks, [CS, Theo-
rem 2.4], have shown in ZFC that a pseudocompact topological group can have a
countable closed subgroup.

6.4 Remark. Victor Saks has asked if one can find groups E¡ (i < n) with II^„^
not countably compact but Wi<nt¡^¡E¡ countably compact for each j < n, if n > 2,
and if one can find groups E¡ (i < co) such that U¡E¡ is not countably compact but
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COUNTABLY COMPACT TOPOLOGICAL GROUPS 423

TLt<jE, is countably compact for each y < co (personal communication). I believe
that I can modify the construction so as to get groups E¡ (i < co) such that II,£, is
not countably compact but Ri^=JEi is countably compact for each y < co, but the
construction of these EJs would be at least twice as long, and I do not think this is
worth the effort.

7. Why we need MA. We let KA (for Kunen's Axiom) be the statement
KA: Some free ultrafilter on co is generated by co, sets.

Clearly CH -> KA. The following is due to Kunen, cf. [K, Remark on p. 303].

7.1 Theorem. If ZFC is consistent, then so is ZFC + KA + 2" = 2"' = co2.

Now if in Lemma 5.1 we replace conditions (a) and (b) by (c), then it is very easy
to see that we need MA, even if we only consider a countable H, and drop the
condition that the function h : H —> 2 be a homomorphism. For then we get

if % Ç [cof has | DC | < c, then there is T G co such that K n T ¥= ,^
0andK- T * 0 for all K G DC,

but clearly KA + -i CH —> -i (*). On the other hand, if we keep conditions (a) and
(b) in Lemma 5.1, and only drop the condition that the function h: //—>2 be a
homomorphism, then we get a statement which is true in ZFC. Indeed, we have the
following easy

7.2 Proposition. Let H be any set, let I G [H]u and let DC C [H]u. If |DC| < c,
then there is T Q H such that

(a) |/ n T\ - |/ - T\ - co, and
(h) \K n T\ = co for all K G DC.

□ There is & <Z [If with \<£\ = c such that \A n B\ < oo for distinct A, B G &.
There is A G & such that T = H — A works,    fj

We now proceed to the proof that (the statement in) Lemma 5.1 is false under
KA + 2" = 2U| = co2; in view of Theorem 7.1 this shows that MA is essential in
Lemma 5.1.

Recall that a space is called initially K-compact if every open cover of cardinality
at most k has a finite subcover.

7.3 Theorem. KA t= The product of any number of initially oox-compact spaces is
countably compact.

Recall that if 'S) is a free ultrafilter on co then a space X is called 'S)-compact if
every sequence <(x„ )„ in X has a S) -limit, i.e. there is a point y G X such that
{n e oo: xn e U} G <S), for every neighborhood U of y, [B, Definition 3.2]. Also
recall that the product of any number of ^-compact spaces again is ^-compact
[B, Theorem 4.2] (see [GS, Theorem 1.4] for a non-nonstandard proof), hence is
countably compact. Hence it suffices to prove

Let S) he a free ultrafilter on co which is generated by a family
§ G S)   with  |S| < k. Then every initially K-compact space is (t)
S) -compact.
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424 E. K. VAN DOUWEN

So let X be an initially K-compact space, and let <xn>„ be a sequence in X. Then
?F = {{xn: n e G}~: G G S } is a collection of closed sets with the finite intersec-
tion property and \W\ < k. Hence (*) ̂  ¥* 0- It is easy to see, using the fact that §
generates S), that every point of H *& is a S) -limit of <xn)„.    □

Let S be the statement in Lemma 5.1.
7.4 Example. S + 2" = 2"' 1= There are two initially 03x-compact topological groups

whose product is not countably compact.
□ Recall that if A' is a space and A Q X then x is called a complete accumulation

point of A if \A n U\ = \A\ for every neighborhood U of x. Also recall that X is
initially co,-compact iff every A Q X with co < \A\ < co, has a complete accumula-
tion point, cf. [AU, p. 17].

Step 1. We construct an initially co,-compact subgroup E of c2 which has no
convergent sequences.

We indicate the modifications in the construction of Example 2. Since 2" = 2"1
(hence cfic) > co,), we can enumerate [c]w u [c]"1 as </f : co < £ < c> in such a way
that /¡Ça{ (co < £ < c). Everywhere we replace "cluster point" by "complete
accumulation point". [This requires an obvious modification in the verification in
Case 1.] Finally, at the end of the construction, for every uncountable K G DC we
choose an uncountable pairwise disjoint collection c(K) Q [Kf, and replace DC by

{if G DC: |tf| = co} u U  {c(K): AT G DC, and |*| = co,}.

It is easy to see that (B) (with "condensation point" instead of "cluster point")
follows from (B') (with the new DC).

Then every A C E with co < \A | < co, has a complete accumulation point, hence
E is initially co,-compact.

Step 2. We construct two initially co,-compact subgroups of E whose product is
not countably compact.

This requires some obvious modifications in §6.    fj
This completes the proof that MA is essential in Lemma 5.1. I do not know a

simple direct proof. Since 2" = 2"' under MA + -iCH we have the following:

7.5 Corollary. MA + -iCHN There are two initially oox-compact topological
groups whose product is not countably compact.

7.6 Remark. The fact that Theorem 7.3 is true under CH for regular spaces is an
immediate consequence of the following result of Saks and Stephenson [SS, Theo-
rem 2.1]: Any regular initially 2"-compact space is K-bounded (= every set of
cardinality at most k has compact closure). The idea of the proof is the same, and
also occurs in the proof of the following result of Bernstein [B, Theorem 3.5]: A
regular space is co-bounded if (and, trivially, only if) it is 'S) -compact for every free
ultrafilter S) on co. (Bernstein assumes complete regularity, but as pointed out by
Juhász [J] (semi-) regularity suffices.)

Subremark. Saks has asked if this result is true for Hausdorff spaces [S, 7.4]; in
an "added in proof" he uses Kunen's wP-points to give a counterexample [S, p. 92].
Here we give a much more elementary counterexample: Let K be a nowhere dense

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COUNTABLY COMPACT TOPOLOGICAL GROUPS 425

noncompact co-bounded subspace of c2, e.g. a homeomorph of the countable
cardinals. Let S be the space with underlying set c2 which has {open sets of
c2} u {c2 — K) as a subbase. Then S is separable, since c2 is, but not compact,
hence is not co-bounded. But one easily checks that every countable set in 5 has the
same closure in S as it has in c2, hence S is <S) -compact for every free ultrafilter S)
on co since c2 is.

7.7 Remark. Corollary 7.5 shows that it is consistent with ZFC that initial
co,-compactness is not finitely productive. See [vD2] for further results of this sort.

7.8 Remark. It is not true that one can show that MA is essential in Example 2
by proving that under KA + -iCH every countably compact topological group is
initially co,-compact (and then use Theorem 7.3): the subgroup {x G u'2: \{a G co,:
x(a) = 1}| < co} of "'2 is countably compact but not initially co,-compact.

8. Variations of Example 2. It is obvious that E, Example 2, can be made
nondense in c2; just make sure that x(0) = 0 for x G E. The following two
variations are more interesting.

8.1 Example. MAË c2 has a separable dense countably compact subgroup which has
no convergent sequences.

□ The shortest construction is as follows. Let G be a separable closed subgroup
of Example 2, as constructed in §4. Then G is a compact Boolean group, and G has
weight c since G has. Therefore there is a topological isomorphism G —*c2

[HR, 9.15].
I believe it is more interesting to modify the construction of E as follows: we

assume that in addition to the other conditions the following holds:
(a) Da = {xak: k < co} is dense in "2.

This requires an obvious modification in Case 1. In Case 2 we make sure that Dy+X
is dense in y+x2 as follows: We define

9H = {{y G Dy - {x}:xrLC y}:xG Dy and L G[y]<w}

and then require
(D) VA/ G 911 Vi < 2[|{ y G M: h(y) = ¿)| = co].

Since Dy X 2 is dense in Y+12, it follows that Dy+X is dense in y+l2. In order to get
(D) we replace £ by £ u M in (1) of §5.    □

8.2 Example. MA^'2 has a nonseparable dense countably compact subgroup which
has no nontrivial convergent sequences.

□ We modify the construction in §4 as follows. We list [c]w as </£: co < £ < c
and £ even), again with /{ Ç a£ (co < £ < c, £ even), and let Da be a countable
dense subset of "2. We make E dense in c2 by ensuring that Da G Ea (co < a < c, a
even, a not a limit).

If X is a limit we construct Ex as before. If y < c is even then we first construct
Ey+X as before and then let Ey + 2 be the subgroup of y+22 generated by E X {0} U
D . This makes E nonseparable.    □

As we saw in §7, we used MA in an essential way in the construction of the
above two examples; this does not give any information about the question of
whether or not MA is essential for their existence. We now consider the question of
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whether MA is still essential if we only look for a subspace, not for a subgroup.
8.3 Example. c2 has a nonseparable dense countably compact subspace, which has

no nontrivial convergent sequences.
□ We proceed as in Example 8.2, but omit every algebraic statement. Then we

need the version of Lemma 5.1 in which H is just a set and h is just a function. By
Proposition 7.2, this version is true in ZFC.    □

8.4 Remark. Note that one cannot modify Example 7.4 in this way, and get two
initially co,-compact spaces, not necessarily topological groups, whose product is
not countably compact, assuming only that 2" = 2"'. This follows from Theorems
7.1 and 7.3. Note that the reason that the construction breaks down is that \T\ = co,
i.e. that one of h^{0) and /j"~{1} is countable in the version of Lemma 5.1 that we
used above. I do not know if a similar modification of Example 8.1 can be
constructed in ZFC, but I did not seriously try. Note that Example 8.1 implies:

8.5 Example. MAN c2 has a countable dense subgroup G such that no point o/c2 is
the limit of a nontrivial sequence in G.

However, one can construct such a G in ZFC. (This result has also been
obtained, independently, by Victor Saks.) The construction uses different ideas and
does not seem to give Example 8.1. Earlier, Priestley [P] has constructed in ZFC a
nonalgebraic version of Example 8.5 (this reference was contributed by K. A.
Ross):

8.6 Example. c2 has a countable dense subset S such that no point ofc2 is the limit
of a nontrivial sequence in S.

Such an example has also been constructed, for a totally different purpose, by
McKenzie and Monk, as one can see with some effort from [McKM, Theorem 3.1].

9. The Hajnal-Juhász example. Recall that a subset S of c2 is called hereditarily
finally dense (or HFD for short) if for every countable T ÇZ S there is an a < c
such that {t [- (c - «): t e T) is dense in c_a2 [HJ1, p. 153] and that an HFD
subspace of c2 is hereditarily separable [HJ1, Theorem 2] and hereditarily normal,
[HJ1, Theorem 4].

Hajnal and Juhász show that under CH there is a countably compact HFD
subgroup in c2 [HJ2]. Since clearly no HFD subset of c2 can have a nontrivial
convergent sequence, this shows that under CH, Example 2 can be made heredi-

tarily separable and hereditarily normal.
Addendum. I now can construct from MA one single countably compact group

whose square is not countably compact. I intend to publish this elsewhere.
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