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ABSTRACT

General purpose technologies (GPTs) such as AI enable and require significant complementary 
investments, including co-invention of new processes, products, business models and human 
capital. These complementary investments are often intangible and poorly measured in the 
national accounts, even when they create valuable assets for the firm. We develop a model that 
shows how this leads to an underestimation of productivity growth in the early years of a new 
GPT, and how later, when the benefits of intangible investments are harvested, productivity 
growth will be overestimated. Our model generates a Productivity J-Curve that can explain the 
productivity slowdowns often accompanying the advent of GPTs, as well as the increase in 
productivity later. We use our model to analyze empirically the historical roles of intangibles tied 
to R&D, software, and computer hardware. We find substantial and ongoing Productivity J-Curve 
effects for software in particular and computer hardware to a lesser extent. Our adjusted measure 
TFP is 11.3% higher than official measures at the end of 2004, and 15.9% higher than official 
measures at the end of 2017. We then assess how AI-related intangible capital may be currently 
affecting measured productivity and find the effects are small but growing.
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After I left academe in 2014, I joined the technical organization at iRobot. I quickly learned how challenging it is to 
build deliberative robotic systems exposed to millions of individual homes. In contrast, the research results presented in 
papers (including mine) were mostly linked to a handful of environments that served as a proof of concept. 

-Alexander Kleiner1  
 
 

I. Introduction 

Robert Solow (1987) pointed out that “a technological revolution, a drastic change in our 

productive lives” had curiously been accompanied by “a slowing-down of productivity growth, not 

by a step up.” His famous productivity paradox, that one “can see the computer age everywhere but 

in the productivity statistics,” named a challenge for economists seeking to reconcile the emergence 

of exciting technological breakthroughs with tepid productivity growth (Brynjolfsson 1993). 

Solow’s Paradox was not unique. In this paper, we argue it was one example of a more 

general phenomenon resulting from the need for intangible investments in early stages of new 

general purpose technologies. General purpose technologies (GPTs) are “engines for growth.” 

Specifically, they are pervasive, improve over time, and lead to complementary innovation 

(Bresnahan and Trajtenberg 1995). However, along with installing more easily measured items like 

new types of physical equipment and structures, we emphasize that realizing their potential also 

requires large intangible investments and a fundamental rethinking of the organization of production 

itself. Firms must create new business processes, develop managerial experience, train workers, 

patch software, and build other intangibles. This raises productivity measurement issues because 

intangible investments are not readily tallied on a balance sheet or in the national accounts. 

                                                 
1 Kleiner, Alexander. 2018. “The Low-Cost Evolution of AI in Domestic Floor Cleaning Robots” AI 
Magazine, (Summer). 
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The presence and timing of this sort of intangible investment is one reason why Solow’s 

Paradox could occur. When a new GPT emerges, there will be a period, possibly of considerable 

length, during which measurable resources are committed, and measurable output forgone, to 

building new, unmeasured inputs that complement the GPT.2 For example, the technologies driving 

the British industrial revolution led to “Engels’ Pause,” a half-century-long period of capital 

accumulation, industrial innovation, and wage stagnation (Allen 2009; Acemoglu and Robinson 

2013). In the later GPT case of electrification, it took a generation for the nature of factory layouts 

to be re-invented in order to fully harness the new technology’s benefits (David 1990). Solow 

highlighted a similar phenomenon roughly two decades into the IT era. 

We call the measurement aspect of this phenomenon the Productivity J-Curve. As firms adopt a 

new GPT, total factor productivity growth will initially be underestimated because capital and labor 

are used to accumulate unmeasured intangible capital stocks. Later, measured productivity growth 

overestimates true productivity growth because the capital service flows from those hidden 

intangible stocks generates measurable output. The error in measured total factor productivity 

growth therefore follows a J-curve shape, initially dipping while the investment rate in unmeasured 

capital is larger than the investment rate in other types of capital, then rising as growing intangible 

stocks begin to contribute to measured production. In the long run, as intangible investments and 

capital stocks reach their steady-state growth rates, the return-adjusted value of the unmeasured 

intangible capital stock service flows (in expectation) approaches the value of the initial unmeasured 

investment. This means that some of the mismeasurement effects on productivity growth can persist 

even in the long run.  

                                                 
2 In Hornstein and Krusell (1996) and Greenwood and Yorukoglu (1997), the key intangibles are the skills and 
knowledge required to put new GPT-related capital to use, and these investments are made over a “learning” period. 
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In our more general discussion of the current productivity paradox in the context of 

Artificial Intelligence (AI) in Brynjolfsson, Rock, and Syverson (2019), we explained the basic idea of 

the Productivity J-Curve, building on earlier work by Yang and Brynjolfsson (2001). This paper 

formalizes and expands on this concept and provides a set of quantitative methods designed to 

measure the productivity effects of intangible investments. Namely, we augment a traditional growth 

accounting framework to include intangible capital, deriving an expression for productivity 

mismeasurement as a function of the growth rates, size, and shadow values of intangible capital. 

Next, following Hall (2001 and 2004), Yang and Brynjolfsson (2001), and Hall (2006), we use a set 

of measures derived from stock market valuations to obtain measures of these intangible values. The 

basic idea of this approach is that market valuations reflect the value of intangibles even if they are 

otherwise hidden on firms’ balance sheets. We then use these measures of implied intangibles to 

compute productivity growth mismeasurement associated with a four technologies: generic R&D 

investments, computer hardware, software, and more speculatively, AI. 

 

II. Technology, Investment Theory, and Productivity Growth 

  Economic historians have emphasized the transformative effects of GPTs. We mentioned 

the work of David (1990), Allen (2009), and Acemoglu and Robinson (2013) above. Rosenberg and 

Trajtenberg (2004) identify the Corliss steam engine as an “icon of the Industrial Revolution,” 

shifting population centers from rural to urban areas as water power was abandoned in favor of 

steam. Crafts (2004) explores the contribution of steam power to growth for the British economy 

during the Industrial Revolution. Lipsey, Carlaw, and Bekar (2006) offer a list of possible GPTs 

(including electrification, mass production, and the factory system) while relating those inventions to 

the presence of a productivity paradox. Bresnahan (2010) conducts a wide review of the GPT 

concept, making the point that the information and communication technologies (ICTs) of the 
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modern era broadly constitute a GPT. Particularly relevant to our analysis is Helpman and 

Trajtenberg (1994), which notes how GPTs can generate alternating periods of investment and 

harvesting. Likewise, Jacobs and Nahuis (2002) suggest that GPTs can cause an initial productivity 

slowdown as high-skilled workers invest in knowledge instead of production. 

An important motivation for our analysis is the most recent potential GPT, artificial 

intelligence (AI). AI, and in particular the subfield of AI called machine learning, is pervasive, 

improves over time, and spawns complementary innovation, thereby meeting Bresnahan and 

Trajtenberg’s (1995) three canonical GPT criteria. Accordingly, after an implementation lag period, 

AI might significantly impact economic growth as other GPTs have (Aghion, Jones, and Jones 2017; 

Agrawal, McHale, and Oettl 2018; Cockburn, Henderson, and Stern 2018; Trajtenberg 2018; 

Brynjolfsson, Rock, and Syverson 2019). That said, the formal arguments presented here are 

applicable to other technologies and intangible capital accumulation more generally. Indeed, we 

empirically apply the approach to investments in R&D, computer hardware, and software in recent 

decades, generating a set of updated productivity series. 

Our approach applies Tobin’s q-theory of investment to infer productivity mismeasurement 

attributable to unmeasured intangible capital. We estimate the quantity of intangible investment 

using market value regressions where part of q is interpreted as reflecting intangible capital. 

Intuitively, when we observe a firm’s market value rise by an amount greater than observed 

investment, we infer the difference as reflecting the value of intangible capital investments that were 

correlated with the tangible investment. We call these intangible correlates. Our framework also handles 

the case in which intangible capital is used to produce more intangible capital. 

This approach has antecedents in the literature. Yang and Brynjolfsson (2001) note that 

combining q-theory of investment (Hayashi 1982; Wildasin 1984; Hayashi and Inoue 1991) and 

neoclassical growth accounting (Solow 1956; Solow 1957; Barro 1998; Corrado, Hulten, and Sichel 
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2009; Oliner and Sichel 2000; Oliner, Sichel, and Stiroh 2008) can deal simultaneously with the 

magnitudes of the intangible component of GPT-related investment and implementation lags. The 

recognition that q could reflect intangibles has led to numerous proposed updates to standard 

growth accounting frameworks and an emphasis in recent productivity studies on IT’s role in 

productivity dynamics (Jorgenson and Stiroh 2000; Marrano, Haskel, and Wallis 2009; Corrado, 

Hulten, and Sichel 2009; McGrattan and Prescott 2010; Byrne, Fernald, and Reinsdorf 2016), and 

specifically in the ICT-as-GPT case in (Basu, Fernald, Oulton, and Srinivasan 2003).3 

The broader notion that intangibles might have a substantial role and growing role in 

productivity and growth is not new. See, for example, Brynjolfsson and Hitt (2000); Hall (2000); Hall 

(2001); Brynjolfsson, Hitt, and Yang (2002); McGrattan and Prescott (2010); Tambe, Hitt, and 

Brynjolfsson (2012); Saunders and Brynjolfsson (2016) and McGrattan (2017). Haskel and Westlake 

(2017) summarize and evaluate many of the relevant arguments. 

The Productivity J-Curve that we describe in this paper is related to, but distinct from, the 

trade balance J-curve of Magee (1973) and Rose and Yellen (1989).4 Their J-curve describes how 

trade balances react over time to changes in real exchange rates.5 The similarity between the two J-

curves is that there is a change in the sign of derivatives of focal quantities with respect to time as 

time passes (trade balances in the earlier case, productivity in this one), reflecting the adjustment of 

production processes in response to an external shock. In Rose and Yellen, the shock comes from a 

large change in exchange rates. In our paper, it is from a large technological innovation. 

                                                 
3 We also note that the existence of significant intangible assets can explain the relatively poor historical performance of 
Tobin’s Q (the ratio of a firm’s market-to-book value) in explaining capital investment (Crouzet and Eberly 2018). 
Accounting for organizational investments, human capital, and business processes can strengthen the link between 
observed investment and asset prices (Hall 2000; McGrattan and Prescott 2001; Eisfeldt and Papanikolaou 2013, 2014; 
Peters and Taylor 2017; Kogan et al. 2017; Andrei, Mann, and Moyen 2018). 
4 We thank Larry Summers for suggesting how the dynamics we model are similar to the trade J-curve. 
5 Assuming export prices between countries are sticky, when a country depreciates its currency it initially makes sticky-
priced imports more expensive which leads to more spending on imports. Later, consumption habits and production 
systems adjust so foreign import demand decreases.  
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III. Growth Accounting in the Presence of Intangibles 

Our setup builds on the approach of Yang and Brynjolfsson (2001). Assume the aggregate 

(economy- or industry-wide) production function is the product of Hicks-neutral total factor 

productivity A and a function F(·) that is weakly increasing and has constant returns to scale in 

inputs K and L (each potentially vectors). Further assume that markets are perfectly competitive. 

Then 

𝑌𝑌 = 𝐴𝐴𝐴𝐴(𝐾𝐾, 𝐿𝐿)     (1) 

where Y is output (and the numeraire), which can be either consumed or invested as capital.6 With 

flexible capital and factor prices r and w equaling the aggregate marginal product values of capital 

and labor, we have the following (g denotes a growth rate): 

𝑔𝑔𝑌𝑌 ≡
𝑑𝑑𝑑𝑑
𝑌𝑌

=
𝐴𝐴𝐴𝐴𝐾𝐾𝑑𝑑𝑑𝑑 + 𝐴𝐴𝐴𝐴𝐿𝐿𝑑𝑑𝑑𝑑 + 𝐹𝐹(𝐾𝐾, 𝐿𝐿)𝑑𝑑𝑑𝑑

𝑌𝑌
= �

𝑟𝑟𝑟𝑟
𝑌𝑌
�𝑔𝑔𝐾𝐾 + �

𝑤𝑤𝑤𝑤
𝑌𝑌
� 𝑔𝑔𝐿𝐿 + 𝑔𝑔𝐴𝐴     (2) 

𝑔𝑔𝐾𝐾 ≡
𝑑𝑑𝑑𝑑
𝐾𝐾

;  𝑔𝑔𝐿𝐿 ≡
𝑑𝑑𝑑𝑑
𝐿𝐿

;  𝑔𝑔𝐴𝐴 ≡
𝑑𝑑𝑑𝑑
𝐴𝐴

 

Productivity growth is then 

𝑔𝑔𝐴𝐴 = 𝑔𝑔𝑌𝑌 − �
𝑟𝑟𝑟𝑟
𝑌𝑌
�𝑔𝑔𝐾𝐾 − �

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐿𝐿          (3) 

This is the familiar Solow Residual. It is the growth in output not accounted for by the 

growth in capital or labor inputs, with each input weighted by its payment share of output. Under 

the assumptions of the model it represents an improvement in productive efficiency, or more 

modestly a kind of “measure of our ignorance” about how producers convert inputs to outputs.7 

Equation (3) is the basis for traditional growth accounting. 

                                                 
6 F(K,L) might, for example, take the Cobb-Douglas form 𝑌𝑌 = 𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿1−𝛼𝛼, in which case 𝛼𝛼 = 𝑟𝑟𝑟𝑟

𝑌𝑌
= 1 − 𝑤𝑤𝑤𝑤

𝑌𝑌
. 

7 Abramovitz (1956) 
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Now suppose there are unmeasured intangible capital investments and capital service flows 

emanating from the resulting accumulating intangible stocks. Despite being unmeasured, these 

intangibles are true outputs when created as investment goods and, when put into place, inputs into 

the aggregate production function. In this case, the aggregate production becomes a combination of 

factor neutral productivity A* (to denote its difference from A in the standard production function 

above) and a constant returns to scale function of tangible capital K, labor L, and intangible capital 

U.8 Output now consists of both tangible output Y and intangible investment IU, which has a price 

of 𝜙𝜙 relative to the numeraire, again with perfect competition in all markets. Therefore, using 𝐹𝐹∗to 

denote the production function that includes unmeasured intangible capital stocks, we have 

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈 = 𝐴𝐴∗𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿)        (4) 

We can write growth in total factor productivity in this intangible-inclusive economy as: 

𝑔𝑔𝐴𝐴∗ = �
𝑌𝑌

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
� �𝑔𝑔𝑌𝑌 − �

𝑟𝑟𝑟𝑟
𝑌𝑌
�𝑔𝑔𝐾𝐾 − �

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
�𝑔𝑔𝑈𝑈 − �

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐿𝐿� + �

𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈

�𝑔𝑔𝐼𝐼      (5) 

where the factor price of intangible capital is rU.9 We have kept the factor prices for both types of 

capital and labor constant between F* and F by assumption. In practice these prices are often taken 

from empirical sources to calculate capital service flows.  

Incorporating intangibles leads to two adjustments to the standard model. First, capital 

services from the stock of intangibles 𝑈𝑈 are an input into production.10 Its influence on measured 

productivity growth is readily apparent in the �𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
� 𝑔𝑔𝑈𝑈 term on the right-hand side of Equation (5). 

The second difference is in the final term. Because output now includes intangible capital 

                                                 
8 This factor neutral productivity is once again in terms of measured output for equation (5) to hold, not the total output 
including unmeasured intangibles. The Appendix has detailed derivations. 
9 In this case, the Cobb-Douglas version of the production function is 𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈 = 𝐴𝐴∗𝐾𝐾𝛼𝛼𝐿𝐿𝛽𝛽𝑈𝑈1−𝛼𝛼−𝛽𝛽 and 𝛼𝛼 =
� 𝑟𝑟𝑟𝑟
𝑌𝑌+𝜙𝜙𝐼𝐼𝑈𝑈

� ,𝛽𝛽 = � 𝑤𝑤𝑤𝑤
𝑌𝑌+𝜙𝜙𝐼𝐼𝑈𝑈

�. 
10 We discuss intangibles U as a type of capital, but unmeasured labor service flows would be treated analogously. 
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investment 𝐼𝐼𝑈𝑈, initial production of these intangibles shows up positively in productivity to the 

extent that they represent part of total output. Thus intangibles influence both the input and output 

parts of the growth accounting framework. Note that just like tangible investment goods, intangible 

investment output is produced by a combination of all three inputs: tangible capital, labor input, and 

intangible capital.11 

Equation (5) may represent a more accurate picture of productivity growth, but its key 

additions of intangible capital inputs and outputs are difficult to measure in practice. 

The difference between the Solow Residuals implied by these two measurement contexts 

elucidates the sources of productivity growth mismeasurement when intangibles exist but standard 

measurement techniques are applied. Let Δ denote (3) minus (5), the difference between the 

standard Solow Residual and true productivity growth in the presence of intangibles. Rearranging 

terms yields an expression that offers an intuitive decomposition of how intangibles lead to a 

difference between measured and actual productivity growth: 

Δ = 𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗
 = �

𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈

� �𝑔𝑔𝑌𝑌 − �
𝑟𝑟𝑟𝑟
𝑌𝑌
�𝑔𝑔𝐾𝐾 − �

𝑤𝑤𝑤𝑤
𝑌𝑌
� 𝑔𝑔𝐿𝐿 − 𝑔𝑔𝐼𝐼𝑈𝑈� + �

𝑌𝑌
𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈

� �
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
�𝑔𝑔𝑈𝑈          (6) 

The first term on the right hand side of (6) is productivity mismeasurement because of the 

fact that the standard productivity growth measure does not count intangible investment goods as 

output when they are produced. That causes measured productivity growth to understate true 

productivity growth (i.e., makes Δ negative). The second term reflects an overstatement of true 

productivity due to the fact that the standard Solow Residual attributes outputs made by intangible 

inputs to productivity rather than those inputs. This term is weighted by measured output’s share of 

total output. Whether Δ is positive or negative depends on the relative size of these two terms. Note 

                                                 
11 There is a theoretical case when only intangible capital is used to produce only intangible capital and no other outputs. 
In that situation, measured output and productivity reflect only the measurable component of the economy, but within 
that domain there is no mismeasurement. 
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that, as reflected in the first term, influences that would raise the standard Solow Residual will 

increase the overstatement of measured relative to true productivity growth, a discrepancy that 

increases in unmeasured intangible investment’s share of true output. 

A related way to think about productivity growth mismeasurement in the context of 

intangibles is to recognize that there are four possible ways input service flows can yield output in 

the presence of unmeasured intangibles:  

1) measured inputs produce measured output,  

2) measured inputs produce unmeasured output,  

3) unmeasured inputs produce measured output, and  

4) unmeasured inputs produce unmeasured output.  

The standard Solow Residual in equation (3) handles the first and the fourth cases (the 

fourth by ignoring it entirely). Equation (5) includes all four. Equation (6) explicitly describes the 

source of these differences. 

We can express the difference between measured and true productivity growth as a function 

of the four possible ways inputs can yield output of both types. Define 𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡 + 𝜙𝜙𝑡𝑡𝐼𝐼𝑈𝑈𝑡𝑡  and the 

ratio 𝜂𝜂𝑡𝑡 to represent the proportion of 𝑌𝑌𝑡𝑡∗ represented by unmeasured intangible investment 

(subscript 𝑡𝑡 denotes the time period).12 Then, 

𝑌𝑌𝑡𝑡 = (1 − 𝜂𝜂𝑡𝑡)𝑌𝑌𝑡𝑡∗     (7) 

𝜂𝜂𝑡𝑡 =
𝜙𝜙𝑡𝑡𝐼𝐼𝑈𝑈𝑡𝑡

𝑌𝑌𝑡𝑡+𝜙𝜙𝑡𝑡𝐼𝐼𝑈𝑈𝑡𝑡
= 𝑌𝑌𝑡𝑡∗−𝑌𝑌𝑡𝑡

𝑌𝑌𝑡𝑡∗
  . 

 In any given period 𝑡𝑡, the difference between the Solow Residuals implied by these different 

measurement contexts reveals another expression for the drivers of productivity growth 

mismeasurement: 

                                                 
12 We thank Richard Rogerson for suggesting this formulation. 
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Δ = �
𝑑𝑑𝑌𝑌 

𝑌𝑌 −
𝑑𝑑𝑌𝑌∗

𝑌𝑌∗
� + ��

𝑟𝑟𝑟𝑟
𝑌𝑌∗
� �
𝑑𝑑𝑑𝑑
𝐾𝐾
�  − �

𝑟𝑟𝑟𝑟
(1 − 𝜂𝜂𝑡𝑡)𝑌𝑌∗

� �
𝑑𝑑𝑑𝑑
𝐾𝐾
��

+ ��
𝑤𝑤𝑤𝑤
𝑌𝑌∗
� �
𝑑𝑑𝑑𝑑
𝐿𝐿
� − �

𝑤𝑤𝑤𝑤
(1 − 𝜂𝜂𝑡𝑡)𝑌𝑌∗

� �
𝑑𝑑𝑑𝑑
𝐿𝐿
�� + �

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

� �
𝑑𝑑𝑑𝑑
𝑈𝑈
�           (8) 

 Rearranging terms and combining with equation (7), we get: 

Δ = −𝜂𝜂𝑡𝑡 ��
𝑟𝑟𝑟𝑟
𝑌𝑌
�𝑔𝑔𝐾𝐾 + �

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐿𝐿�

�����������������
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑏𝑏𝑏𝑏 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

+ (1 − 𝜂𝜂𝑡𝑡) �
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
�𝑔𝑔𝑈𝑈

�������������

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

+ 𝑔𝑔(1−𝜂𝜂𝑡𝑡)���
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

    (9) 

Similarly to the terms in (6), the first two components of (9) have opposite effects on the 

difference between measured and actual productivity growth. The first term is the unmeasured 

intangible capital investment output produced by tangible capital stock service flows and labor 

inputs. This causes measured productivity to understate true productivity. The second term is the 

measured final goods output produced by the unmeasured intangible capital stock service flows. It 

causes measured productivity to overstate true productivity. The last term is zero in the case that the 

share of unmeasured intangible output is constant. Should unmeasured output grow as a share of 

total true output, this third term will be negative. Fixing the first two difference terms, that implies 

that measured productivity growth will be otherwise less than true productivity growth.13 

Equation (9) captures measured inputs producing unmeasured output in its first term and 

unmeasured inputs producing measured output in its second term.14 The main difference between Δ 

                                                 
13 The quantitative effect of a changing unmeasured output share on productivity mismeasurement could be substantial, 
perhaps in the tenths of a percent per year, under certain circumstances. See the appendix for details. 
14 There is a similar description in equation (5) of Brynjolfsson, Rock, and Syverson (2017), where the mismeasured 
components of investment and capital stock work against each other to generate the difference between measured and 
actual productivity growth. 
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in (6) and Δ  in (9) is whether unmeasured intangible output is first subtracted from the input side (as 

in equation 6) or if it maintained as output (as in equation 9) in calculating differences between 

adjusted and unadjusted Solow Residuals. These two formulations are equivalent.15 

This framework does not mathematically imply a generalized pattern for the relative size of 

the two measurement effects over time, but the economics of the situation make certain dynamics 

likely. When a new intangible enters the economy (when a new GPT is invented, for example), it 

must first be produced. This intangible investment output is the first term in (9). At the same time, 

because the intangible is new, its stock and share of payments in the second term of (9) are likely to 

be small. Thus initially the first term is likely to be larger than the second, and measured productivity 

growth will understate true productivity growth. Later, however, as the stock of intangible capital 

continues to build, the second term grows and, eventually, begins to dominate. At this point, 

productivity is overstated because intangible inputs are not being “credited” with their contribution 

to output.16 This pattern of productivity being initially understated and then rising to eventually 

being overstated, creates the Productivity J-Curve. In the long run, the capital service flows from 

unmeasured intangible capital stocks will in expectation be equal to the return-adjusted present value 

of other inputs used to create the capital stock in the first place. Thus, in the very long run, 

productivity levels will be mismeasured less and less even if intangibles remain significant. Over an 

infinite time horizon, the productivity level contribution of unmeasured service flows will be 

equivalent to the unmeasured investment output. Figure 1 shows a stylized version of the resulting J-

Curve.17  

                                                 
15 See appendix. 
16 The path of mismeasurement in growth is contingent on the relative size of these effects. In very early stages of a new 
technology, it is possible that the growth rate of unmeasured inputs in the extreme might exceed the growth rate of 
unmeasured investment. The relative effects of unmeasured investment goods output and unmeasured input are neither 
dominated by unmeasured investment output nor unmeasured capital input as a rule. Clearly, however, the absolute size 
of the effects are not likely to be meaningful when unmeasured components are a very small component of output. 
17 The logic presented here applies principally to productivity growth rates, but we present a version that applies to 
productivity levels as well in the Appendix. We have assumed “smooth” investment and capital growth in early periods 
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Figure 1: Productivity Growth Mismeasurement  

 

However, another measurement problem arises in typical income accounting practice. The 

analysis above assumed inputs’ income shares were separately observable. However, measuring 

payments to capital (even observable capital) is difficult. As a result, national accountants and 

researchers often leverage the constant returns to scale assumption to measure capital’s share as the 

residual of labor’s share (i.e., 𝑟𝑟𝑟𝑟
𝑌𝑌

= 1 − 𝑤𝑤𝑤𝑤
𝑌𝑌

)) when constructing the standard Solow Residual. This is 

incorrect if intangibles are present. Instead, still assuming constant returns to scale, 𝑟𝑟𝑟𝑟
𝑌𝑌

= 1 − 𝑤𝑤𝑤𝑤
𝑌𝑌
−

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

+ 𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

. Plugging these respective expressions into (3) and (5) and recomputing Δ as in (6) gives: 

                                                 
for illustrative purposes. Toy economy J-Curve parameters and spreadsheet file available at 
http://drock.mit.edu/research. 

http://drock.mit.edu/research
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Δ = �
𝑌𝑌

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
���

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
� (𝑔𝑔𝑈𝑈 − 𝑔𝑔𝐾𝐾) − �

𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌
� �𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾��

+ �
𝜙𝜙𝐼𝐼𝑈𝑈

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
� �𝑔𝑔𝑌𝑌 − �

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐿𝐿 − �1 −

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐾𝐾�

= (1 − 𝜂𝜂) �
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
� (𝑔𝑔𝑈𝑈 − 𝑔𝑔𝐾𝐾) + 𝜂𝜂�𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐼𝐼𝑈𝑈�     (10) 

and the total growth in productivity equation is 

𝑔𝑔𝐴𝐴∗ = �
𝑌𝑌

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
� [𝑔𝑔𝑌𝑌 − �

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐿𝐿 − �1 −

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐾𝐾 − �

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌
� (𝑔𝑔𝑈𝑈 − 𝑔𝑔𝐾𝐾) + �

𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌
� (𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾)]         (11) 

Equations (10) and (11) describe discrepancies using 𝑌𝑌 as measured output and 𝑔𝑔𝑌𝑌 as measured 

output growth. With this setup it is easier to plug-in estimated values for measured quantities of 

outputs and inputs to retrieve 𝑔𝑔𝐴𝐴∗, the true productivity growth under the stated assumptions. Now, 

because of the error introduced by substituting for capital’s share of income, productivity 

mismeasurement still depends on the growth rates of intangible investments and stocks, but instead 

of their absolute values, it depends on their growth rates relative to the growth of observable capital. 

The intuition for relative growth rates mattering in (10) is as follows. Because using the 

residual of labor’s share mismeasures observable capital’s share, capital’s contribution to output 

growth will be misstated. Early on, when intangible investment outputs are likely larger than the 

contribution of intangible inputs, the residual share will be smaller than the true share. This results in 

an understatement of tangible capital’s growth effect on output growth, with the gap instead 

attributed to productivity growth. This productivity overstatement effect will counteract the direct 

productivity understatement effect of missing intangible investment discussed above. The net 

unmeasured investment effect depends on the relative growth rates of intangible investment output 

and observable capital. The larger is the latter, the larger is the countervailing “share-misattribution” 

effect, which will, depending on its size, either mitigate productivity understatement or actually cause 

net overstatement of productivity growth. Part of the overall mismeasurement of productivity 
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growth will come from the components making up the ordinary Solow Residual as that productivity 

is allocated to unmeasured output. This is one of the cases described earlier: measured growth being 

allocated to unmeasured output. 

Later, when intangibles become more important as inputs and this effect starts to dominate 

missing intangible outputs, observable capital’s share will be overstated because some of the output 

used to pay intangible inputs will be mistakenly attributed to observable capital. This overstates 

capital’s contribution to output growth, which in isolation is a productivity growth understatement. 

Analogously to the intangible output effect described in the prior paragraph, this counteracts the 

direct productivity overstatement effect of intangible inputs. Net measurement depends on the 

relative growth rate of the intangible and observable capital stocks. In the special case that the 

growth rate of the unmeasured intangible stock is equal to both the growth rate of the measured 

capital stock and the growth rate of unmeasured intangible investment, then the standard growth 

accounting method produces the correct productivity growth estimate. Figure 2 shows the path of 

net measured investment shares of measured output for research and development, computer 

hardware, and computer software investments, three types of capital that will be central to our 

empirical investigations below.18 

 

Figure 2: Measured Investment Shares of Measured Output (GDP) for Selected Capital Varieties 
 

                                                 
18 We calculate these as the measured net investment from the BEA net fixed asset investment series in each type of 
capital, divided by measured contemporaneous GDP. 
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In (10) and (11) the differences in output growth (and productivity growth measurement) 

depend on the growth rates of the intangible input stock and intangible investment output. The first 

component is the unmeasured intangible output share multiplied by the difference in growth rates 

between intangible and tangible capital (third term in the brackets of the right side of equation (11)). 

If the intangible stock grows faster than the tangible stock, actual productivity will be lower than 

measured productivity. Typically, however, we do not know the intangible output share nor do we 

have an independent measure of intangible capital. However, if tangible and intangible investments 

must be made together, the growth rate of tangible capital stocks and correlated intangible capital 

stocks will be similar (McGrattan (2017) offers an argument for this). This would allow adjustment 

of productivity growth estimates with only an estimate of the relative quantities of the two capital 

types. We therefore make the simplifying assumption that 𝑔𝑔𝑈𝑈 = 𝑔𝑔𝐾𝐾.19 The new aggregate capital 

share (combining U and K) is defined as: 

                                                 
19 Some might argue that intangibles have become an increasingly important component of capital investment. 
Historically, however, there has always been substantial unmeasured intangible capital in the economy. For example, the 
widespread increase of literacy rates accompanied a proliferation of intangible know-how. Likewise, the business process 
redesign associated with the dynamo (as described in David (1990)) is another example of intangible capital investment 
going unmeasured. Writ large, this type of capital has always been an important production input. 



 17 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑌𝑌

= 1 −
𝑤𝑤𝑤𝑤
𝑌𝑌

+ �
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌
�         (12) 

With factor neutral productivity, growth is then properly decomposed as follows: 

𝑔𝑔𝑌𝑌 = �
𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐿𝐿 + �1 −

𝑤𝑤𝑤𝑤
𝑌𝑌
�𝑔𝑔𝐾𝐾 − �

𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌
� �𝑔𝑔𝐼𝐼 − 𝑔𝑔𝐾𝐾 � + �

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

�𝑔𝑔𝐴𝐴∗       (13) 

Given the aforementioned assumptions, this leads to a convenient formulation for the adjusted 

productivity growth value as: 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂)(𝑔𝑔𝐴𝐴) + 𝜂𝜂�𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾�     (14) 

The intangible-adjusted productivity growth rate is a convex combination of the standard 

productivity growth rate and the difference between the growth rates of unmeasured investment and 

overall capital, with the unmeasured investment share of true output as the weight on the growth 

rate differential. If this growth rate differential is zero or not too positive, adjusted productivity 

growth will be less than standard measured productivity growth. If capital inputs grow fast enough 

relative to intangible investment, however, adjusted productivity growth will be larger than the 

standard measured value. We refer to the unmeasured investment share of output-weighted 

investment growth and capital stock growth components respectively as the “investment” and 

“capital stock” effects. 

Again, equations (12) and (13) describe discrepancies using 𝑌𝑌 as measured output and 𝑔𝑔𝑌𝑌 as 

measured output growth. The ideal approach would be to measure each input quantity and its 

associated factor cost with high fidelity rather than assume that observable factor shares sum to one. 

But absent sufficient data to follow that route, the difference between the investment growth rate 

and the capital stock growth rate informs the extent to which there is a drag (or acceleration) of 

productivity growth. The third term of the right side of equation (13) is typically unmeasured. If it is 

negative (positive), productivity growth will have to be larger (smaller) than under the standard 

growth accounting conventions to compensate for the negative (positive) addition. If for example 
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investment is positive, unmeasured investment unit prices are larger than measured investment 

prices, and investment is growing faster than capital stocks, true productivity growth will be larger 

than measured productivity growth. 

The intuition behind needing to subtract the overall growth rate of capital is that part of this 

effect would otherwise be captured by overestimating capital’s share of output. The third term of 

(13) serves two functions. First, it purges capital’s share of output of the hidden investment share 

introduced in the standard approach by treating capital’s share as the residual to labor’s share. This 

subtracted capital growth rate need not correspond to the specific type of capital that has gone 

unmeasured. Faster growth of intangible capital relative to tangible capital nevertheless introduces an 

overestimation of productivity growth into standard growth accounting methods, going against the 

direction of the investment growth effects. 

The type of capital growth differenced from the investment growth rate must correspond to 

the type that is incorrectly attributed factor payments from unmeasured capital service flows. Most 

growth accounting approaches adjust the capital share term to make factor shares add to one. 

Whenever a factor share is estimated as the leftover share of output, it will partially reflect payments 

to intangibles. The third term of equation (13) differences this out. Mechanically this also means that 

an increasing output share of capital (both measured and unmeasured) will be taken out of the labor 

share of output.20 If measured capital growth and labor growth are constant, but the unmeasured 

intangible share of output is increasing, labor’s share will decline. For measurement purposes, capital 

services growth need not be differenced out if all output shares are measured directly by dividing 

service flow values by output (see, for example Barkai and Benzell (2018)). 

 The third term of equation (13) also separates the production of unmeasured capital output 

from productivity growth. Equation (13) now accounts for the unmeasured intangible capital stock 

                                                 
20 McGrattan (2017) investigates in detail the ties between intangible capital output and labor input measurement. 
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via the increased capital share of output and unmeasured intangible capital investment through the 

third term on the right side. Productivity growth 𝑔𝑔𝐴𝐴∗ is therefore more accurately measured.  

In the short run, the use of different types of resources to produce measured and 

unmeasured outputs can influence the extent of productivity growth mismeasurement. Unmeasured 

intangible capital stocks might produce even more unmeasured intangible assets, in which case the 

hidden output and hidden input effects can offset. If intangible capital production accelerates and 

uses increasingly large quantities of measured capital and labor services, the J-curve effects will be 

more pronounced.21 This will also occur if the quantity of intangible investments correlated with 

each unit of tangible investment grows over time. 

 

IV. A Method to Measure Intangibles 

To adjust measured productivity growth for intangibles in practice, we of course need to 

estimate intangible investments. In terms of the equation (13), we need a measure of the intangible 

investment value 𝜙𝜙𝐼𝐼𝑈𝑈 . 

If 𝑧𝑧 is defined as the price of measured investment output, the investment share of output 𝑧𝑧𝑧𝑧
𝑌𝑌

 

and the growth rate of investment 𝑔𝑔𝐼𝐼𝑈𝑈 can be taken from observable investment and output series. 

One way of estimating intangible investments is to assume that each unit of measured investment is 

the observable component of a combined investment unit that also includes intangibles. In other 

words, assume that there are 𝜙𝜙 units of unmeasured intangible investment per 𝑧𝑧 units of measured 

investment (the “intangible correlates” mentioned above). 

We apply a method to estimate these intangible correlates. The Appendix details its 

microfoundations, but the basic logic is to use the q-theory of investment to recover the amount of 

                                                 
21 As mentioned earlier, there is also a degenerate scenario in which firms shift toward focusing on intangible output 
production using intangible assets. In this case, the standard productivity measurement apparatus loses its value. 
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intangibles correlated with tangible capital from the relationship between firms’ market valuations 

and their stocks of measured capital.  𝜙𝜙+𝑧𝑧
𝑧𝑧

= 𝜆𝜆
𝑧𝑧
 represents the ratio of total asset value to book asset 

value; it is a measure of Tobin’s q for the aggregate economy (Tobin 1969; Hayashi 1982; Hayashi 

and Inoue 1991). Following the setup in the Appendix, the market value at 𝑡𝑡 = 0 for firms where 

each unit of observable capital variety 𝐾𝐾𝑗𝑗 coincides with 𝜙𝜙𝑗𝑗 more units of unmeasured intangible 

capital is: 

𝑉𝑉(0) =  �𝜆𝜆𝑗𝑗(0)𝐾𝐾𝑗𝑗(0)
𝐽𝐽

𝑗𝑗=1

      (15) 

That is, the value of the firm 𝑉𝑉(0) is equal to the sum of the value of the asset varieties, each priced 

at their shadow values inclusive of unmeasured intangible correlate assets 𝜆𝜆𝑗𝑗 . If the market prices 

firms correctly, the equilibrium valuations will reflect all varieties of productive capital independent 

of measurement. Equation (15) implies that the shadow prices can be recovered by taking advantage 

of omitted variable bias in a regression of market value on observable asset types. 

If, for example, measured R&D is correlated with $1 of additional intangible investment, a 

regression of market value on the dollar value of R&D capital across firms will return a coefficient 

of 2. That is, 𝜆𝜆
𝑧𝑧

= 𝑞𝑞 = 2. (This is roughly what we find below.) This q in excess of 1 captures the 

unmeasured intangible correlate assets at the firm. In practice it might also reflect any capitalized 

investment adjustment costs associated with observable investments. These too can also be 

considered a type of intangible asset, as replicating $1 of the (installed) observable R&D capital 

stock would also require adjustment costs to be capitalized. Either the intangible correlate or 

adjustment cost story is consistent with the idea that applying R&D requires complementary 

intangible investments to reorganize production. 
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Now consider how this logic relates to the influence of GPTs on intangible investments and 

productivity measurement. Suppose firms adopting a new GPT must invest proportionately in two 

assets: computer equipment and firm-specific GPT specialist training (e.g., training AI engineers). 

Further assume that asset and securities markets efficiently price firms inclusive of both measured 

and unmeasured assets. For a firm with a measurable quantity of tangible computer equipment, the 

market price for the computer equipment investment will exceed the replacement cost of computer 

equipment by the value of the complementary training. The training is not capitalized on the firm’s 

formal balance sheet, yet the financial market must also value the future service flows from training 

(and any other correlated business process innovations) if no arbitrage conditions are to hold. The 

market value premium over book value implies a Tobin’s q above unity; the firm’s value is higher 

than the simple replacement cost of its observed assets. If we can measure q, we can infer the 

amount of intangibles and adjust measured productivity growth using the framework in the prior 

section.22 

Note that we are not investigating the question of whether unmeasured intangibles cause 

market value here. Instead, we are looking for descriptive price coefficients of the market value and 

intangible investment equilibrium as a starting point for valuing the intangible investment in the 

economy. This brings in another set of concerns about whether 𝜆𝜆
𝑧𝑧

= 𝜙𝜙+𝑧𝑧
𝑧𝑧

 (that is, the q value) for a 

particular capital variety should represent an estimated average valuation or an estimated marginal 

valuation over all vintages of unmeasured intangible capital. The answer lies in matching the timing 

of the growth accounting pricing to the timing of the observed pricing of investment quantities and 

                                                 
22 There are a couple caveats to our approach. First, our method requires intangibles have a nonzero correlation with 
measured capital. If any intangible investments are completely uncorrelated with measurable assets, we will not be able 
to measure them. Second, using firm-level data to infer the aggregate ratio of intangible to tangible capital requires an 
assumption about aggregation that may be problematic in some circumstances (Houthakker 1955; Basu and Fernald 
1997). Those issues noted, we conduct our exercises below using multiple values of this ratio to allow readers to gauge 
for themselves how the particular value influences implied productivity mismeasurement. 
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capital service flows. If the presence of measured tangible assets indicates the presence of 

unmeasured intangible assets, and both are valued by investors, then firms’ valuations net of their 

tangible assets can help account for intangible capital (Hall 2001). We aim to measure on an annual 

basis the total value of the new unmeasured intangible investment output and pair it with the value 

of the unmeasured intangible capital service flow through the year. For this purpose, coefficients 

should reflect the average price across firms of unmeasured intangible assets by year when possible. 

A firm-level regression of market value on measurable capital types that are expected to have strong 

correlation with hidden intangible assets can quantify that intangible shadow value. 

 

V. Deploying the Framework: R&D, Software, and Computer Hardware Investment 

 We begin by exploring whether technology-related intangible investments in recent decades 

have created J-curve dynamics. 

Specifically, we estimate the per-unit magnitudes of intangible capital investment that 

coincide with observable investments in R&D, computer hardware, and software capital. We then 

use those values to adjust total factor productivity estimates using our framework above and explore 

the adjusted series to see if substantial J-curve effects exist for those capital types. To estimate the 

magnitude of intangible investments, we use the approach described above for obtaining intangible 

capital shadow values by comparing firms’ observable investments to their market capitalization. We 

use these to build up time series estimates of the distinct intangible stocks correlated with R&D, 

software, and hardware investments over 1961-2017. We embed these intangible shadow values for 

all three capital varieties in the adjustment method described by equations (13) and (15) since this 

most directly applies to the data available to researchers. 

 We obtain our productivity baselines, net capital stocks for measured capital varieties 

including computer hardware and software, and investments by these capital varieties from Fernald 
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(2014), extended through 2017.23 We take estimates of the total stock of R&D capital and the total 

stock of capitalized selling, general, and administrative (SG&A) expense from Peters and Taylor 

(2017). We extend these measures through 2017 as well, using Wharton Research Data Services data 

and following the guidelines in their paper. This data is merged into Compustat firm-level data to 

construct a panel from 1961-2017 of market values, book values, R&D capital, “organizational” 

capital (the capitalized SG&A expenditure), and other identifiers of all publicly held companies in 

the U.S. We define industry by four-digit NAICS code. 

 R&D capital provides a useful context for understanding Productivity J-curve dynamics for a 

few reasons. Corporate research leads to the development of new technologies that diffuse over 

time, and there has been a steady flow of investment into R&D for decades. Further, the link 

between R&D investment and market value is well established (Hall 1993 and 2006). Because 

investment in R&D has persisted over the long term, we are more likely to find investment in R&D 

at nearly steady-state levels. This implies that the intangible-related challenges for productivity 

estimation coming from R&D are likely to be minimal at present. In fact, that is exactly what we 

find below. (Recall that as the growth rates of intangible investment and stocks converge, 

productivity mismeasurement falls to zero even when intangibles are present.) 

In contrast, large investments in software and computer hardware are a more recent 

phenomenon in which firm behavior might not yet have entirely matured, so J-curve dynamics may 

affect productivity estimates. We find evidence of this as well. 

 The first step in estimating the productivity mismeasurement effect of intangible correlates is 

estimating 𝜆𝜆𝑗𝑗(𝑡𝑡) as described above. We begin with R&D and capitalized SG&A stock measures 

from Peters and Taylor (2017), which follow a perpetual inventory approach to build stocks of these 

                                                 
23 Capital stock estimates for these series are also available from the U.S. Bureau of Economic Analysis (BEA). 



 24 

assets out of the expense measures. We then use these stocks in a market value regression of the 

style in Hall (1993) and Brynjolfsson, Hitt, and Yang (2002). 

Specifically, the market value of firm i in industry j at time t is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑅𝑅&𝐷𝐷𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑗𝑗𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖 

The coefficient on R&D picks up the ratio of dollars of market value created per unit of the firm’s 

R&D stock in a given year. This, which we refer to as the intangible multiplier, is the ratio 𝜆𝜆
𝑧𝑧
 from our 

analysis above. We estimate specifications both including and excluding capitalized SG&A and 

industry-year fixed effects. The results are in Table 1. 

 

Table 1: Market Value Regressions on R&D and SG&A Stocks 
 (1) (2) (3) (4) (5) (6) 

Market Value 
Regressions 
(1962-2017) 

Basic R&D Basic R&D 
and SG&A 

Industry-
Year Fixed 

Effects: 
R&D 

Industry-
Year Fixed 

Effects: 
R&D and 

SG&A 

Firm and 
Year Fixed 

Effects: 
R&D 

Firm and Year 
Fixed Effects: 

R&D and 
SG&A 

       
Total Assets 1.016 0.998 1.015 0.999 1.013 0.997 
 (0.002) (0.002) (0.009) (0.011) (0.007) (0.011) 
R&D Stock 2.730 1.753 2.841 1.953 2.161 1.509 
 (0.105) (0.097) (0.479) (0.399) (0.297) (0.278) 
SG&A Stock  1.755  1.657  1.453 
  (0.102)  (0.399)  (0.374) 
Constant 656.8 458.7     
 (14.32) (18.06)     
       
Firm-Year 
Observations 

268,687 268,687 266,795 266,795 267,683 267,683 

R-squared 0.987 0.988 0.989 0.989 0.993 0.993 
Industry-Year 
FE 

No No Yes Yes No No 

Firm and 
Year FE 

No No No No Yes Yes 

Notes: Total Assets are the total assets on the firm’s balance sheet, Industry is the four-digit NAICS code. Market Value 
is the sum of the book value of debt, preferred stock, and the end-of-year equity share price multiplied by common 
shares outstanding. Specifications (5) and (6) include firm and year fixed effects, but not firm-year fixed effects. Standard 
errors in parentheses (robust for (1) and (2), clustered by industry in (3) and (4), clustered by firm in (5) and (6)). 
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The coefficients on total assets are very close to 1. In other words, each $1 of property, 

plant, and equipment is valued by the market at $1, as would be expected in an efficient financial 

market. On the other hand, estimated coefficients for R&D are significantly higher than 1. Even 

after including firm and year fixed effects, the point estimate remains above 2. Including capitalized 

SG&A does decrease the R&D coefficients, though in all cases they remain significantly larger than 

1. Furthermore, capitalized SG&A itself has point estimates greater than 1 (though not always 

significantly so). Thus, these models suggest that on average each $1 of capitalized R&D is 

correlated with intangible capital valued at around $1 or, depending on if one interprets capitalized 

SG&A as being a similar type of observable capital to capitalized R&D, perhaps as much as $2.50 (= 

1.753 + 1.755 – 1) of intangibles. These intangible correlates show up both in the cross section and 

within the firm over time. 

To examine the stability of the relationships between observables and intangible correlates, 

we also estimate our market value regression while allowing the coefficients on observable capital 

types to vary by year. (We include industry fixed effects in this specification.) Figure 3 plots the time 

series of R&D coefficient estimates for that specification.24 The year-by-year regressions reveal 

substantial variation in the shadow value of R&D-related intangible assets. To allow such dynamics 

to potentially influence productivity measurement, we use this set of estimates to compute the 

implied productivity growth adjustments for our model. Figure 4 shows the same coefficient 

estimates for total assets, which are considerably lower in comparison (note the vertical scale is an 

order of magnitude smaller than Figure 3). 

 

                                                 
24 The full table of coefficients is available in the Online Appendix. Available: http://drock.mit.edu/Research  
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Figure 3: R&D Market Value Year-by-Year Regression Coefficients 1962-2017 

 

Figure 4: Total Asset Market Value Regression Coefficients 1962-2017 

 

Figure Notes for Figures 3 and 4: Coefficients estimates come from regressions within year of 
market value on Total Assets, capitalized R&D stocks, capitalized SG&A stocks, and 4-Digit NAICS 
fixed effects. Dotted lines represent the 95% confidence interval with standard errors clustered by 
industry. 

 
 Using the yearly estimates of the amount of intangible correlates per unit of R&D 

investment, we adjust standard productivity growth Solow Residuals to include the missing 

intangible outputs and inputs. Figure 5 shows the time series of total factor productivity (TFP) 
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growth (five-year moving averages), both as measured in Fernald’s data and adjusting for 

unmeasured R&D-related intangibles. Figure 6 shows the effects in level terms, obtained by 

integrating the growth rates. 

The unadjusted series differs very little from the net adjusted series. The reason is that, as 

mentioned above, R&D capital investment rates have been relatively steady over the observation 

period, roughly canceling out the countervailing influences of intangible outputs and intangible 

inputs. This is made clear by the dotted and lines in Figure 6, which isolate the influence of the twin 

effects of intangible investment growth and misattribution of intangible capital input growth. The 

higher dotted line reflects the upward adjustment to productivity due to uncounted outputs tied to 

intangible investment. The lower dotted line shows the nearly equal-sized downward adjustment to 

measured productivity due to the failure to measure intangible capital input service flows. The net 

adjusted productivity level is 1.6% lower than the measured series as of the end of 2017. 

 

Figure 5: R&D-Related Intangible Capital-Adjusted Annual Total Factor Productivity Growth 
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Figure 6: R&D-Related Intangible Capital-Adjusted Total Factor Productivity Levels 

 

 
 Although the net measurement effects of R&D-related intangibles are negligible, the same is 

not true for software and computer investments. We do not have similar firm-level data on IT 

capital stocks and investment to run the market value regression above for IT, so we conduct the 

analysis using a range of plausible values for the intangible multiplier λ/z. Here, we are guided by 

the Brynjolfsson, Hitt, and Yang (2002), who estimate that each unit of observable software and 

computer hardware is associated with roughly $12 (standard error $4) of firm market value, and 

Saunders and Brynjolfsson (2016), who found similar values. Hence we will employ a value of λ/z 

of 10, but we will also explore how our estimates change for values of 5, 3, and 2. 

The calculations imply that, in contrast to the adjustment for R&D-related intangibles, the 

Productivity J-curves for both computer hardware and software capital (we separately analyze each) 

have yet to reach positive territory in terms of levels. 
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Figures 7 and 8, analogously to Figures 5 and 6 for R&D-related intangibles, show the 

analysis for computer hardware-related intangibles. They plot adjusted and measured TFP growth 

and levels assuming λ/z = 10 for each dollar of hardware investment. The divergence between 

measured and corrected TFP becomes most noticeable in the 1990s. Figure 8 breaks out the implied 

TFP level as measured (black), adjusted for intangibles (grey), isolating only the missing intangible 

inputs effect (lower dotted line), and isolating only the missing intangible outputs effect (higher 

dotted line). To show the influence of our assumption about the quantity of intangibles correlated 

with each $1 of observable hardware capital, Figure 9 compares the adjusted series for an intangibles 

value of $10, $5, $3, $2, and $1 (unadjusted). These effect differences are weighted by the 

unmeasured intangible share of total output following the difference derivations in the previous 

section and the appendix. 

 
Figure 7: Computer-Hardware-Related Intangible Capital-Adjusted Annual TFP Growth Rates 

 

 

Figure 8: Computer-Hardware-Related Intangible Capital-Adjusted TFP Levels 
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Figure 9: TFP Levels Adjusted Assuming Different Hardware Intangible Multipliers 

 

 

We see that the accumulated mismeasurement due to hardware-correlated intangibles is 

noticeable but modest. Adjusted TFP (assuming λ/z = 10) at the end of 2016 is 3.2% higher than 

the measured series. Figures 10 and 11 show the magnitudes of the deviations in TFP growth and 
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levels between the measured and corrected series (i.e., the vertical distances between the adjusted 

and measured series in Figures 7 and 8) for different levels of the intangible multiplier. Interestingly, 

the recent slowdown in the rate of hardware investment has actually caused a small overstatement of 

productivity growth for parts of the past two decades. As a result, adjusted TFP has moved back 

toward measured TFP in levels. The reversal started following the dot-com bust, reverted as 

computer hardware investment rebounded in the following years, and then reversed again at the 

start of the Great Recession. The growth overestimate was about 0.3% at the end of our sample. In 

level terms, productivity understatement has stabilized. 

 
Figure 10: Hardware-Related Annual TFP Growth Mismeasurement 

 

 

Figure 11: Hardware-Related TFP Level Mismeasurement 
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 We move on to software, which has the least mature J-curve of the three capital varieties we 

investigate in this section. Software investment has been growing faster than overall capital 

investment, and its level is sufficiently large to suggest that it might have a substantial 

mismeasurement effect. Figures 12 and 13 plot the five-year moving average of annualized quarterly 

growth rates and levels of measured TFP and software-intangible-adjusted TFP. The differences 

between measured and corrected estimates are starkly larger than those arising from R&D. 

 

Figure 12: Software-Related Intangible Capital-Adjusted Annual TFP Growth 
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Figure 13: Software-Related Intangible Capital-Adjusted TFP Levels 

 

 The J-curve dynamics of software investment began in the 1990s and have not waned since. 

If we assume an intangible multiplier of 10, somewhat lower than the levels estimated in 

Brynjolfsson, Hitt, and Yang (2002) and Rock (2019), then the net adjusted TFP level is over 12.4% 

higher than measured TFP at the beginning of 2017. Figure 14 shows the productivity level 
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adjustments for more conservative intangible multipliers. Even for lower levels of the multiplier, the 

productivity level differences are notable and growing. 

 

Figure 14: TFP Levels Corrected for Different Software Intangible Multipliers 

 

The growing understatement of productivity due to software-related intangibles reflects the 

still-growing rate of software investment. Aside from brief periods following the dot-com bust and 

the financial crisis, investment in software has typically grown significantly faster than other 

investments. As a result, software-related intangible investment rates are far from steady state. Our 

J-curve model shows that when the investment growth rate dominates the growth of the stock of 

intangible inputs, productivity growth is understated. Since 2010, when the productivity growth 

mismeasurement effect was near zero, average annualized quarterly productivity growth 

underestimation increased to 0.30% by the end of 2016. The implied understatement was even larger 

at the end of the 1990s, where the three-year rolling mean of the understatement of measured 

productivity growth relative to software-adjusted productivity growth was as much as approximately 

1.25%. Figures 15 and 16 show the respective mismeasurements of TFP growth and levels for 
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software-related intangible capital outputs for intangible multipliers of 2, 5, and 10. At least in level 

terms, we are still in the capital accumulation phase of a deep Productivity J-curve.25 This is reflected 

in the relative changes of the measured output shares of investment for these three capital varieties 

(Figure 17). The output share of software investment is growing rapidly over time, whereas the 

growth of computer hardware investment’s output share has slowed. 

 

Figure 15: Computer Software-Related TFP Growth Mismeasurement 

 

 

 
Figure 16: Computer Software-Related TFP Level Mismeasurement 

                                                 
25 Tables in the Online Appendix show the productivity growth adjustments for R&D, computer software, and 
computer hardware from 1967-2017. Available at http://drock.mit.edu/Research 
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VI. Can Intangible Capital Outputs Explain the Productivity Slowdown? 

 We now take the above estimates of the TFP adjustments due to intangible capital related to 

R&D, computer hardware, and software to ask if the measured productivity slowdown after 2004 

(see, e.g., Gordon 2015; Summers 2015; Syverson 2017) can be accounted for by such intangibles. 

Some role seems plausible; while our calculations above imply intangibles related to software and (to 

a lesser extent) hardware started having a noticeable influence on true TFP in the 1990s, they also 

contributed in more recent periods. If these recent effects are larger than their earlier influence, they 

would in part explain the measured productivity slowdown. 

 The slowdown in measured annual TFP growth from 1995-2004 to 2005-2017 was 

approximately 1.23% per year.26 Had measured TFP grown since 2005 at the same rate it did from 

                                                 
26 We calculate this as the difference between the average quarterly TFP growth values for 1995-2004 and 2005-2017, 
respectively. We then annualize this average difference. 
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1995-2004, and holding labor and tangible capital inputs fixed at their observed levels, U.S. GDP at 

the end of 2017 would have been about $3.5 trillion higher than it was.27 

To see if intangible capital accumulation tied to R&D, computer hardware, and software 

investments can account for any of this shortfall, we use our calculated TFP growth adjustments 

above to construct an intangible-adjusted TFP series. As discussed above, the adjusted productivity 

levels are substantially higher than the measured values in the post-slowdown period. Adjusted 

annual TFP growth over 2005-2017 was 0.71%, as opposed to the measured value of 0.40%. 

However, the adjusted series was also larger before the productivity slowdown, averaging 

2.20% growth per year from 1995-2004, higher than the measured value of 1.63%. The productivity 

slowdown therefore also exists in the adjusted series. Indeed, at 1.49% per year it is larger than the 

measured slowdown of 1.23%.28 

Of course, this analysis assumes that the multiplier for intangibles—the amount of 

intangibles associated with each dollar of tangible investments—is constant throughout the period. 

If it were higher in recent periods, mismeasurement would be greater in recent periods. The 

opposite would hold if it were lower more recently. 

Note that the fact that intangibles, at least in the simplest formulation with a constant 

multiplier, do not explain the productivity slowdown, and actually somewhat deepen it, does not 

imply that intangibles’ influence on productivity levels or total GDP is small. Adjusted TFP (again 

holding observed labor and tangible capital constant) is 11.3% higher than observed at the end of 

2004, and 15.9% higher than observed at the end of 2017. In other words, in addition to all the 

                                                 
27 At the end of 2017, counterfactual TFP would be 1.235 (= 1.00407^52) times its level at the end of 2004, where 
0.407% was average quarterly TFP growth over 1995-2004. Measured TFP was instead 1.052 times larger. Assuming 
observed labor and capital inputs remain as observed, counterfactual GDP at the end of 2017 would thus be 1.174 (= 
1.235/1.052) times larger than the observed value of $19.83 trillion. The difference, $3.46 trillion, is 17.4% of $19.83 
trillion. 
28 For the adjusted series, counterfactual TFP is 1.33 (=1.0055^52) times its end of 2017 level at the end of 2004, where 
0.55% is the average quarterly adjusted TFP growth over 1995-2004. Measured TFP was 1.095 times larger in 2017 than 
in 2004 in adjusted terms. 
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measured assets, including housing, property plant and equipment, and so on that the U.S. economy 

produced over the past several decades, it also produced trillions of dollars’ worth of unmeasured 

intangible capital. It is just that the long-lived nature of intangibles’ effects itself causes these upward 

adjustments to be differenced out when seeking to explain the slowdown. 

 

VII. Is Hidden AI Capital Investment Already Causing a Productivity Shortfall? 

 Gross Domestic Product in the U.S. in 2017 was $19.5 trillion and in real terms grew at an 

average annual rate of 2.17% over 2010 to 2017, down from 2.72% per year from 2000 to 2007 (the 

eight years prior to the Great Recession). This implies that unmeasured intangible capital investment 

over 2010 to 2017 would need to average $107 billion per year (= 19.5 trillion * [2.72% - 2.17%]) in 

2017 dollars to explain the entire slowdown in in GDP growth. How much of this slowdown could 

a Productivity J-Curve for investment in AI and related intangibles explain? 

The economy is very early in the AI adoption cycle, but recent growth has been impressive. 

There has been a rapid increase in the use of AI and robotics technology over the past decade 

(Furman and Seamans 2018). Startup funding for AI has increased from $500 million in 2010 to $4.2 

billion by 2016 (growing by 40% between 2013 and 2016) (Himel and Seamans 2017). Though 

concentrated heavily in the IT sector, overall measurable corporate investment in AI in 2016 was 

$26-39 billion, marking 300% growth since 2013 (Bughin et al. 2017). Similarly, international 

industrial robot shipments since 2004 have nearly doubled overall and almost quadrupled in the 

consumer electronics industry (Furman and Seamans 2018). Nonetheless, relatively little AI has 

translated into changed in business processes or new products. Despite large investments, we are yet 

not aware of any autonomous taxis in regular service replacing human drivers or machine learning 

systems reading images in lieu of human radiologists. 
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For AI to account for the 0.55% of “lost” output growth in 2017 GDP, the quantity of 

correlated intangible investments per unit of tangible investment must be between roughly 2.7 and 

4.1 times the observable investment values (using the Bughin et al. (2017) estimate).29 This is not 

implausible. Brynjolfsson, Hitt, and Yang (2002) find that the total market value of measured 

computer capital investments is as much as $11.8 per $1 in measured expenditure, with a standard 

error of $4.025. Similarly, Rock (2019) finds an estimated $11.9 of market value per $1 of 

engineering worker wage bill expenditure, with a standard error of $4.93.30 None of the intangible 

“shadow” output value will show up in the productivity statistics. Because the foregone output 

cannot be explained by growth in labor or observable capital inputs alone, the output shortfall will 

be attributed to slower productivity growth. Further, this investment (discounted and risk-adjusted) 

will later generate a capital service flow that produces measurable output and will be partially 

attributed to capital growth. 

Of course, these numbers are just for 2017, when measured AI investment was several 

multiples of what it was only a few years prior. Thus analogous pre-2017 values would be notably 

smaller, and it is unlikely that much of the GDP slowdown gaps in those earlier years would be 

attributable to AI-related intangibles. However, given that AI investments are likely to continue 

growing quickly. Further, the fact that existing AI capital has a high market valuation and as such 

suggests a considerable shadow value for intangible correlates, indicates that we may be entering the 

period in which AI-as-GPT will have noticeable impacts on estimates of productivity growth.  

   

VIII. Conclusion 
 

                                                 
29 The required forgone output in 2017 was $107 billion (= $19.5 trillion x 0.55%). Dividing by the low observed 
investment figure of $26 billion implies a required intangible investment that was 107/26 = 4.1 times the observed 
investment. Using the larger $39 billion figure implies intangibles that were 107/39 = 2.7 times observed investment. 
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 Our approach has shown how accounting for intangible investments that are correlated with 

observable investment in new technology can meaningfully change estimates of productivity growth 

and dynamics. Intangibles are both capital inputs and capital outputs. Productivity is underestimated 

when the contribution of intangibles to outputs exceeds their contribution as inputs, and it is 

overestimated when opposite holds. The output effect tends to dominate early in the capital 

accumulation cycle, when firms and organizations devote resources to building unmeasured 

intangible capital. The input effect dominates later, when these unmeasured assets generate capital 

services that increase measured output. Finally, when the capital accumulation reaches steady state, 

there is no longer any mismeasurement. These dynamics generate what we call the Productivity J-

curve. 

Because technological improvement often leads to the creation of new capital varieties and 

necessitates investment in intangible complements, the introduction of a new GPT is especially likely 

to cause such a J-curve to occur. In fact, the more transformative the new technology, the more 

likely its productivity effects will initially be underestimated. We analyze a series of recent, 

overlapping J-curves and show how productivity has been mismeasured for IT-related capital in 

recent decades. Our calculations suggest that trillions of dollars of intangibles output has been 

produced but not counted in the national income accounts, resulting in a 15.9% underestimate of 

TFP levels 2017. There is also some evidence that the phenomenon appears to have begun again, 

very recently, for AI-related intangible investments. 

 The mere presence of intangible correlate investment is not a guarantee of the existence of 

the Productivity J-curve. Although R&D investments are large and are associated with large 

intangibles, we find that mismeasurement related to R&D investments currently has a negligible 

effect on the estimation of productivity growth. On the other hand, computer hardware and to a 

greater extent software have had noticeable effects. The difference reflects the interaction of three 
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quantities: the investment share of output of the asset type, the intangible correlate quantity and 

adjustment costs per unit of observable investment, and the difference between the growth rate of 

investment in the asset and the growth rate of capital services. In the case of R&D, the investment 

share is large. But, as a mature asset type, the difference between the growth rate of R&D 

investment and the growth rate of capital is not significant. Software, in contrast, has smaller, but 

still meaningfully large investment share of output while the investment growth rate in software has 

substantially exceeded the growth of capital services overall. 

 By integrating aspects of the q-theory of investment and traditional growth accounting 

methods, we offer a means of adjusting the productivity statistics such that new, seemingly 

omnipresent GPTs might show up in the productivity statistics. Assuming that capital markets price 

corporate securities efficiently in expectation, then market value regressions provide a way to 

estimate the value of intangible correlates and adjustment costs per unit of observable capital. The 

forward-looking nature of market valuation means that lags in capital services would rationally be 

considered correctly on average. Of course, these multipliers reflect a risk-adjusted discounted 

expected value of the accumulated asset stock which might to come to bear. The mismeasurement 

issues might accordingly be sensitive to differences in the timing of expected returns. Lower interest 

rates, for example, could encourage longer duration investments and therefore prolong the effects of 

the J-Curve. This investment timing component of productivity mismeasurement is left to future 

research. 

The J-Curve method also suggests an indicator of whether or not a new technology is indeed 

a GPT. If measures of the investment in a given new technology fail to generate economically 

significant intangibles, that particular technology at that moment in time would not qualify as a 

GPT. This framework also might inform whether intangible capital accounts for the wide 

differences between frontier and median productivity firms (Andrews, Criscuolo, and Gal 2015). 
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The Productivity J-curve helps explain why productivity paradoxes can be both a recurrent and 

expected phenomenon when important new technologies are introduced. Adjusting productive 

processes to take advantage of new types of capital requires intangible investments that official 

statistics miss. To paraphrase, Solow, in the future, after making appropriate adjustments accounting 

for the Productivity J-curve, we will see new technologies everywhere including the productivity 

statistics. 
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Appendix 

Derivations of Differences between Standard Productivity Growth and Unmeasured 
Intangible Capital Output-Adjusted Productivity Growth 

We begin with the standard growth accounting framework as in (1): 

𝑌𝑌 = 𝐴𝐴𝐴𝐴(𝐾𝐾, 𝐿𝐿) 

leading to 

𝑔𝑔𝑌𝑌 =
𝑑𝑑𝑑𝑑
𝑌𝑌

=
𝐴𝐴𝐹𝐹𝐾𝐾𝑑𝑑𝑑𝑑 + 𝐴𝐴𝐹𝐹𝐿𝐿𝑑𝑑𝑑𝑑 + 𝐹𝐹(𝐾𝐾, 𝐿𝐿)𝑑𝑑𝑑𝑑

𝑌𝑌
 

𝑔𝑔𝑌𝑌 =
𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 +

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 + 𝑔𝑔𝐴𝐴 

noting that the marginal products of capital and labor are 𝐴𝐴𝐹𝐹𝐾𝐾 = 𝑟𝑟 and 𝐴𝐴𝐹𝐹𝐿𝐿 = 𝑤𝑤. This yields 

𝑔𝑔𝐴𝐴 = 𝑔𝑔𝑌𝑌 −
𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 −

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 

as in equation (3). 

Now for the case that total output includes measured output 𝑌𝑌 and unmeasured investment output 
𝜙𝜙𝐼𝐼𝑈𝑈 , we have: 

𝑌𝑌∗ = 𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈 = 𝐴𝐴∗𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿) 

where 𝜙𝜙 is the price of unmeasured output, 𝑈𝑈 is the stock of unmeasured capital, and other inputs 
are as before. This is equation (4). Differencing the unmeasured intangible investment from the 
output side, 

𝑌𝑌 = 𝐴𝐴∗𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿) −𝜙𝜙𝐼𝐼𝑈𝑈 

Importantly, 𝑌𝑌still corresponds to measured output. Following similar steps as above, 

𝑑𝑑𝑑𝑑 = 𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿)𝑑𝑑𝐴𝐴∗ + 𝐴𝐴∗𝐹𝐹𝐾𝐾∗𝑑𝑑𝑑𝑑 + 𝐴𝐴∗𝐹𝐹𝐿𝐿∗𝑑𝑑𝑑𝑑 + 𝐴𝐴∗𝐹𝐹𝑈𝑈∗𝑑𝑑𝑑𝑑 − 𝜙𝜙𝜙𝜙𝐼𝐼𝑈𝑈 

with the same observed marginal factor prices (plus a different cost of capital for unmeasured 
intangible capital),  𝐴𝐴∗𝐹𝐹𝐾𝐾∗ = 𝑟𝑟, 𝐴𝐴∗𝐹𝐹𝑈𝑈∗ = 𝑟𝑟𝑈𝑈, and 𝐴𝐴∗𝐹𝐹𝐿𝐿∗ = 𝑤𝑤. Then, 

𝑑𝑑𝑑𝑑
𝑌𝑌

=
𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿)

𝑌𝑌
𝑑𝑑𝐴𝐴∗ +

𝐴𝐴∗𝐹𝐹𝐾𝐾∗𝐾𝐾
𝑌𝑌

𝑑𝑑𝑑𝑑
𝐾𝐾

+
𝐴𝐴∗𝐹𝐹𝐿𝐿∗𝐿𝐿
𝑌𝑌

𝑑𝑑𝑑𝑑
𝐿𝐿

+
𝐴𝐴∗𝐹𝐹𝑈𝑈∗𝑈𝑈
𝑌𝑌

𝑑𝑑𝑑𝑑
𝑈𝑈
−
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

𝑑𝑑𝐼𝐼𝑈𝑈
𝐼𝐼𝑈𝑈

 

or in growth terms, 

𝑔𝑔𝑌𝑌 =
𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈

𝑌𝑌
𝑔𝑔𝐴𝐴∗ +

𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 +

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 +

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 −
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

𝑔𝑔𝐼𝐼𝑈𝑈 

This allows for direct comparison between the growth rates of productivity in (3) and (5). 
Productivity growth in (5) is then: 



 47 

𝑔𝑔𝐴𝐴∗ = (
𝑌𝑌

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
)(𝑔𝑔𝑌𝑌 −

𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 −

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 −

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 +
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

𝑔𝑔𝐼𝐼𝑈𝑈) 

This is equivalent to equation (5). Notably we assume that the marginal products of 𝐹𝐹and 𝐹𝐹∗ are the 
same to get the same prices 𝑟𝑟 and 𝑤𝑤. for capital and labor respectively. Since these capital and labor 
service flows and attendant output shares are in this framework measured directly, we can compare 
productivity growth rates. 

Let 𝜂𝜂 = 𝐼𝐼𝑈𝑈
𝑌𝑌∗

 and therefore. 𝑌𝑌∗(1 − 𝜂𝜂) = 𝑌𝑌. We will hold this constant for now but relax that 
assumption later. Then: 

𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗ = 𝑔𝑔𝑦𝑦 − (1 − 𝜂𝜂)𝑔𝑔𝑦𝑦 −
𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 + (1 − 𝜂𝜂)

𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 −

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 + (1 − 𝜂𝜂)

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 + (1

− 𝜂𝜂)(
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 −
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

𝑔𝑔𝐼𝐼𝑈𝑈) 

And  𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

= 𝜂𝜂
1−𝜂𝜂

, therefore 

𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗ = 𝑔𝑔𝑦𝑦 − (1 − 𝜂𝜂)𝑔𝑔𝑦𝑦 −
𝑟𝑟𝑟𝑟
𝑌𝑌
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𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 −

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 + (1 − 𝜂𝜂)

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 + (1

− 𝜂𝜂)
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 − 𝜂𝜂𝑔𝑔𝐼𝐼𝑈𝑈 

= 𝜂𝜂𝑔𝑔𝑦𝑦 − 𝜂𝜂𝑔𝑔𝐼𝐼𝑈𝑈 − 𝜂𝜂(
𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 +

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿) + (1 − 𝜂𝜂)

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 

= 𝜂𝜂𝑔𝑔𝑦𝑦 − 𝜂𝜂
𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 − 𝜂𝜂

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿 + (1 − 𝜂𝜂)

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 − 𝜂𝜂𝑔𝑔𝐼𝐼𝑈𝑈 

= 𝜂𝜂(𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐼𝐼𝑈𝑈) + (1 − 𝜂𝜂)
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 

= (
𝜙𝜙𝐼𝐼𝑈𝑈

𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈
)(𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐼𝐼𝑈𝑈) + (

𝑌𝑌
𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈

)(
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

)𝑔𝑔𝑈𝑈 

= 𝛥𝛥 

This is the derivation of equation (6). We call this the “right-hand side method”. This is a useful 
framing for adjusting empirical estimates of productivity growth. Another approach leaves 
unmeasured investment on the output side of the equations such that output includes measured 
output and unmeasured capital investment. This is the “left-hand side approach” and leads to 
equation (9) as well. 

As before, 

𝑌𝑌∗ = 𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈 = 𝐴𝐴∗𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿) 

and then 

𝑑𝑑𝑌𝑌∗

𝑌𝑌∗
=
𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿)

𝑌𝑌∗
𝑑𝑑𝐴𝐴∗ +

𝐴𝐴∗𝐹𝐹𝐾𝐾∗𝐾𝐾
𝑌𝑌∗

𝑑𝑑𝑑𝑑
𝐾𝐾

+
𝐴𝐴∗𝐹𝐹𝐿𝐿∗𝐿𝐿
𝑌𝑌∗

𝑑𝑑𝑑𝑑
𝐿𝐿

+
𝐴𝐴∗𝐹𝐹𝑈𝑈∗𝑈𝑈
𝑌𝑌∗

𝑑𝑑𝑑𝑑
𝑈𝑈
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Now productivity refers to the aggregate economy’s productivity in producing all types of output. 
As such, the growth of output reflects all output as well. Then, 

𝑔𝑔𝑌𝑌∗ = 𝑔𝑔𝐴𝐴∗ +
𝑟𝑟𝑟𝑟
𝑌𝑌∗

𝑔𝑔𝐾𝐾 +
𝑤𝑤𝑤𝑤
𝑌𝑌∗

𝑔𝑔𝐿𝐿 +
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

𝑔𝑔𝑈𝑈 

Rearranging terms, 

𝑔𝑔𝐴𝐴∗ = 𝑔𝑔𝑌𝑌∗ −
𝑟𝑟𝑟𝑟
𝑌𝑌∗

𝑔𝑔𝐾𝐾 −
𝑤𝑤𝑤𝑤
𝑌𝑌∗

𝑔𝑔𝐿𝐿 −
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

𝑔𝑔𝑈𝑈 

Some important differences between this equation and the growth accounting equation in (5) are 
that shares are computed in terms of total output now, not measured output. Productivity 𝐴𝐴∗ 
reflects that. Now the unmeasured investment output is included in 𝑌𝑌∗ instead of treated separately. 

𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗ =
𝐹𝐹(𝐾𝐾, 𝐿𝐿)

𝑌𝑌
𝑑𝑑𝑑𝑑 −

𝐹𝐹∗(𝐾𝐾,𝑈𝑈, 𝐿𝐿)
𝑌𝑌∗

𝑑𝑑𝐴𝐴∗

= (𝑔𝑔𝑌𝑌 − 𝑔𝑔𝑌𝑌∗) + (𝑟𝑟𝑟𝑟𝑔𝑔𝐾𝐾 + 𝑤𝑤𝑤𝑤𝑔𝑔𝐿𝐿)(−
1
𝑌𝑌

+
1
𝑌𝑌∗

) +
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

𝑔𝑔𝑈𝑈 

= (𝑔𝑔𝑌𝑌 − 𝑔𝑔𝑌𝑌∗) − (𝑟𝑟𝑟𝑟𝑔𝑔𝐾𝐾 + 𝑤𝑤𝑤𝑤𝑔𝑔𝐿𝐿)(
𝜂𝜂
𝑌𝑌

) +
𝑟𝑟𝑈𝑈𝑈𝑈(1 − 𝜂𝜂)

𝑌𝑌
𝑔𝑔𝑈𝑈 

If 𝜂𝜂 is constant, then 𝑑𝑑𝑑𝑑
𝑌𝑌
− 𝑑𝑑𝑌𝑌∗

𝑌𝑌∗
= 𝑑𝑑𝑑𝑑

𝑌𝑌
−

𝑑𝑑𝑑𝑑
1−𝜂𝜂
𝑌𝑌

1−𝜂𝜂

= 0, and the difference in productivity growth terms is 

simply: 

𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗ = (−𝜂𝜂)
(𝑟𝑟𝑟𝑟𝑔𝑔𝐾𝐾 + 𝑤𝑤𝑤𝑤𝑔𝑔𝐿𝐿)

𝑌𝑌
+ (1 − 𝜂𝜂)

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 

This is the result in equation (9) without the final term. 

We relax the assumption of constant 𝜂𝜂. If 𝜂𝜂 = 𝜂𝜂𝑡𝑡 and changes over time, we need an additional 
term for the difference in growth rates between measured and total output. The steps are as follows: 

𝑌𝑌∗ = 𝑌𝑌 + 𝐼𝐼𝑈𝑈 

𝑌𝑌∗ =
𝑌𝑌

1 − 𝜂𝜂𝑡𝑡
 

ln𝑌𝑌∗ = ln𝑌𝑌 + ln
1

1 − 𝜂𝜂𝑡𝑡
 

ln
𝑌𝑌∗

𝑌𝑌
= −ln(1− 𝜂𝜂𝑡𝑡) 

ln
𝑌𝑌
𝑌𝑌∗

= ln(1 − 𝜂𝜂𝑡𝑡) 

so then we have: 

𝑑𝑑ln𝑌𝑌 − 𝑑𝑑ln𝑌𝑌∗ = 𝑑𝑑ln(1 − 𝜂𝜂𝑡𝑡) 
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or in growth terms since change in logs is the growth rate, 

𝑔𝑔𝑌𝑌 − 𝑔𝑔𝑌𝑌∗ = 𝑔𝑔1−𝜂𝜂𝑡𝑡 =
𝑑𝑑(1 − 𝜂𝜂𝑡𝑡)

1 − 𝜂𝜂𝑡𝑡
 

This reflects the change in intangible output share’s contribution to the productivity growth 
differences in (9). If 𝜂𝜂𝑡𝑡 goes up (down), this last term will be negative (positive). 

𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗ = (−𝜂𝜂𝑡𝑡)
(𝑟𝑟𝑟𝑟𝑔𝑔𝐾𝐾 + 𝑤𝑤𝑤𝑤𝑔𝑔𝐿𝐿)

𝑌𝑌
+ (1 − 𝜂𝜂𝑡𝑡)

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈 + 𝑔𝑔(1−𝜂𝜂𝑡𝑡) 

Note that this is also equivalent to an earlier line with respect to deriving equation (6) (reproduced 
below): 

𝑔𝑔𝐴𝐴 − 𝑔𝑔𝐴𝐴∗ = (𝜂𝜂𝑡𝑡𝑔𝑔𝑦𝑦 − 𝜂𝜂𝑡𝑡𝑔𝑔𝐼𝐼𝑈𝑈 − 𝜂𝜂𝑡𝑡(
𝑟𝑟𝑟𝑟
𝑌𝑌
𝑔𝑔𝐾𝐾 +

𝑤𝑤𝑤𝑤
𝑌𝑌
𝑔𝑔𝐿𝐿) + (1 − 𝜂𝜂𝑡𝑡)

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

𝑔𝑔𝑈𝑈) 

in the case that we have the following relationship: 

𝑔𝑔1−𝜂𝜂𝑡𝑡 = 𝜂𝜂𝑡𝑡(𝑔𝑔𝑦𝑦 − 𝑔𝑔𝐼𝐼𝑈𝑈) 

Solving for this growth rate, 

𝑔𝑔1−𝜂𝜂𝑡𝑡 =
𝑑𝑑(1 − 𝜂𝜂𝑡𝑡)

1 − 𝜂𝜂𝑡𝑡
=
−𝑑𝑑𝜂𝜂𝑡𝑡
1 − 𝜂𝜂𝑡𝑡

=
−𝑑𝑑𝜙𝜙𝐼𝐼𝑈𝑈𝑌𝑌∗
1 − 𝜂𝜂𝑡𝑡

=
−1

1 − 𝜂𝜂𝑡𝑡
(
𝜙𝜙𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌∗

−
𝜙𝜙𝐼𝐼𝑈𝑈𝑑𝑑𝑌𝑌∗

(𝑌𝑌∗)2
)

=
−1

1 − 𝜂𝜂𝑡𝑡
((
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌∗

)(
𝑑𝑑𝐼𝐼𝑈𝑈
𝐼𝐼𝑈𝑈

) − (
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌∗

)(
𝑑𝑑𝑌𝑌∗

𝑌𝑌∗
)) 

= (
𝜂𝜂𝑡𝑡

1 − 𝜂𝜂𝑡𝑡
)(𝑔𝑔𝑌𝑌∗ − 𝑔𝑔𝐼𝐼𝑈𝑈) 

we also have that 

𝑌𝑌∗ = 𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈 

𝑑𝑑𝑌𝑌∗ = 𝑑𝑑𝑑𝑑 + 𝜙𝜙𝜙𝜙𝐼𝐼𝑈𝑈 

𝑑𝑑𝑌𝑌∗

𝑌𝑌∗
=
𝑌𝑌𝑌𝑌𝑌𝑌
𝑌𝑌∗𝑌𝑌

+
𝜙𝜙𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌∗

𝐼𝐼𝑈𝑈
𝐼𝐼𝑈𝑈

 

𝑔𝑔𝑌𝑌∗ =
𝑌𝑌
𝑌𝑌∗
𝑔𝑔𝑌𝑌 +

𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌∗

𝑔𝑔𝐼𝐼𝑈𝑈 = (1 − 𝜂𝜂𝑡𝑡)𝑔𝑔𝑌𝑌 + 𝜂𝜂𝑡𝑡𝑔𝑔𝐼𝐼𝑈𝑈 

Therefore combining results above, 

𝑔𝑔1−𝜂𝜂𝑡𝑡 =
𝜂𝜂𝑡𝑡

1 − 𝜂𝜂𝑡𝑡
(𝑔𝑔𝑌𝑌∗ − 𝑔𝑔𝐼𝐼𝑈𝑈) =

𝜂𝜂𝑡𝑡
1 − 𝜂𝜂𝑡𝑡

((1− 𝜂𝜂𝑡𝑡)𝑔𝑔𝑌𝑌 + 𝜂𝜂𝑡𝑡𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐼𝐼𝑈𝑈)

=
𝜂𝜂𝑡𝑡

1 − 𝜂𝜂𝑡𝑡
((1 − 𝜂𝜂𝑡𝑡)𝑔𝑔𝑌𝑌 − (1 − 𝜂𝜂𝑡𝑡)𝑔𝑔𝐼𝐼𝑈𝑈) 

= 𝜂𝜂𝑡𝑡(𝑔𝑔𝑌𝑌 − 𝑔𝑔𝐼𝐼𝑈𝑈) 
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as we wanted to show, proving that equations (6) and (9) are equivalent.31  

Another formulation mirrors our empirical analysis. Recall the formula for adjusted TFP substituting 
the residual share net of labor and other measured components for the capital share of output with 
the assumption that 𝑔𝑔𝑈𝑈 = 𝑔𝑔𝐾𝐾: 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂𝑡𝑡)(𝑔𝑔𝑌𝑌 − 𝑔𝑔𝐾𝐾 − (
𝑤𝑤𝑤𝑤
𝑌𝑌

)(𝑔𝑔𝐿𝐿 − 𝑔𝑔𝐾𝐾) − (
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

)(𝑔𝑔𝑈𝑈 − 𝑔𝑔𝐾𝐾) + (
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

)(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾)) 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂𝑡𝑡)(𝑔𝑔𝐴𝐴 − (
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

)(𝑔𝑔𝑈𝑈 − 𝑔𝑔𝐾𝐾) + (
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

)(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾)) 

𝑔𝑔𝑌𝑌 = (
1

1 − 𝜂𝜂𝑡𝑡
)𝑔𝑔𝐴𝐴∗ + 𝑔𝑔𝐾𝐾 +

𝑤𝑤𝑤𝑤
𝑌𝑌

(𝑔𝑔𝐿𝐿 − 𝑔𝑔𝐾𝐾) −
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾) 

This implies: 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂𝑡𝑡)(𝑔𝑔𝑌𝑌 − (
𝑤𝑤𝑤𝑤
𝑌𝑌

)𝑔𝑔𝐿𝐿 − (1 −
𝑤𝑤𝑤𝑤
𝑌𝑌

)𝑔𝑔𝐾𝐾 +
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾)) 

With 𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

= 𝜂𝜂
1−𝜂𝜂

 (supressing time subscripts) 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂)(𝑔𝑔𝑌𝑌 − (
𝑤𝑤𝑤𝑤
𝑌𝑌

)𝑔𝑔𝐿𝐿 − (1 −
𝑤𝑤𝑤𝑤
𝑌𝑌

)𝑔𝑔𝐾𝐾 +
𝜂𝜂

1 − 𝜂𝜂
(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾)) 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂)(𝑔𝑔𝑌𝑌 − (
𝑤𝑤𝐿𝐿
𝑌𝑌

)𝑔𝑔𝐿𝐿 − (1 −
𝑤𝑤𝑤𝑤
𝑌𝑌

)𝑔𝑔𝐾𝐾)) + 𝜂𝜂(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾) 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂)(𝑔𝑔𝐴𝐴) + 𝜂𝜂(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾) 

This shows that the adjusted productivity growth is a convex combination of the standard 

productivity growth and the difference between the growth rate of unmeasured intangible 

investment and ordinary capital. The weights sum to one, and the weight on the second term is 

simply the true output share of unmeasured intangible investment (eta). 

Clearly increasing the true output share of unmeasured intangible investment puts more 

weight on the investment growth of intangibles, but also on the growth of the capital stock. We will 

(creatively) call the investment growth piece the “investment effect” and the capital stock growth 

                                                 
31 We thank an anonymous referee for helping us to clarify this approach. 
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piece the “capital stock effect”. Without the assumption of equal growth rates of different types of 

capital stocks, we have a similar formula: 

𝑔𝑔𝐴𝐴∗ = (1 − 𝜂𝜂)(𝑔𝑔𝐴𝐴 − (
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌

)(𝑔𝑔𝑈𝑈 − 𝑔𝑔𝐾𝐾)) + 𝜂𝜂(𝑔𝑔𝐼𝐼𝑈𝑈 − 𝑔𝑔𝐾𝐾) 

 

 
 
Derivation of Firm-Level Intangible Multipliers 
 
To incorporate adjustment costs and multiple capital varieties, we modify equation (1) following 

Lucas (1967). Production is now: 

𝑌𝑌 = 𝑝𝑝𝑝𝑝𝑝𝑝(𝑲𝑲,𝐿𝐿, 𝑰𝑰)    (𝐴𝐴1)      

Assume perfect competition between firms and constant returns to scale in factor inputs. Now the 

production function incorporates an investment vector 𝑰𝑰 with market price vector 𝒛𝒛 such that the 

total cost of investment in one unit of capital goods is (𝒛𝒛 –  𝒑𝒑𝑭𝑭𝑰𝑰). 𝐹𝐹 represents the final output net 

of adjustment costs and is assumed non-increasing and convex in all types of 𝑰𝑰. This reflects that 

adjustment costs grow increasingly costly for larger 𝑰𝑰. In other words, the firm must forgo an 

increasing amount of output as its rate of capital investment increases. This helps explain why firms 

cannot, for example, instantaneously replicate the capital stocks of their competitors without 

incurring larger costs. 

 We can relate firm investment behavior to market value using this production function.32 We 

assume perfect competition and constant returns to scale. For the price-taking firm, market value 

equals the sum of the capitalized adjustment costs. Let the jth entry of vectors 𝑲𝑲, 𝑰𝑰,𝜹𝜹,𝝀𝝀 correspond 

to the jth capital variety. For simplicity’s sake, there is only one type of labor. The firm must solve: 

                                                 
32 See, for example, Hayashi (1982), Wildasin (1984), and Hayashi and Inoue (1991). 
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max
𝑰𝑰,𝐿𝐿

�� 𝜋𝜋(𝑡𝑡)𝜁𝜁(𝑡𝑡)𝑑𝑑𝑑𝑑
∞

0
� = 𝑉𝑉(0) 

where      𝜋𝜋(𝑡𝑡) =  𝑝𝑝𝑝𝑝𝑝𝑝(𝑲𝑲,𝐿𝐿, 𝑰𝑰) − 𝑤𝑤𝑤𝑤 − 𝒛𝒛′𝑰𝑰 

and     
𝑑𝑑𝐾𝐾𝑗𝑗
𝑑𝑑𝑑𝑑

= 𝐼𝐼𝑗𝑗 − 𝛿𝛿𝑗𝑗𝐾𝐾𝑗𝑗  ∀𝑗𝑗 = 1, 2, … , 𝐽𝐽.    (𝐴𝐴2) 

That is, 𝐾𝐾𝑗𝑗 is the capital stock of type j (indexes capital variety), L is labor, 𝜁𝜁(𝑡𝑡) denotes the 

compound discount rate at time 𝑡𝑡, and 𝛿𝛿𝑗𝑗 is the depreciation rate of capital of type j. As in Yang and 

Brynjolfsson (2001), 𝐹𝐹 is assumed non-decreasing and concave in 𝑲𝑲 and 𝐿𝐿. With homogeneity of 

degree one for 𝐹𝐹, we get the solution to the maximization of the Hamiltonian at time 0: 

𝐻𝐻(𝑲𝑲,𝐿𝐿, 𝑰𝑰,𝐴𝐴) = (𝑝𝑝𝑝𝑝𝑝𝑝(𝑲𝑲,𝐿𝐿, 𝑰𝑰) − 𝑤𝑤𝑤𝑤 − 𝒛𝒛′𝑰𝑰)𝜁𝜁(𝑡𝑡) + ∑ 𝜆𝜆𝑗𝑗(𝐼𝐼𝑗𝑗 − 𝛿𝛿𝑗𝑗𝐾𝐾𝑗𝑗)𝐽𝐽
𝑗𝑗=1      (𝐴𝐴3)  

with constraints: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑗𝑗

= 𝐾𝐾𝚥̇𝚥 = 𝐼𝐼𝑗𝑗 − 𝛿𝛿𝑗𝑗𝐾𝐾𝑗𝑗     ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽},∀𝑡𝑡 ∈ [0,∞] 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐾𝐾𝑗𝑗

= −𝜆𝜆𝚥̇𝚥 = 𝑝𝑝𝐹𝐹𝐾𝐾𝑗𝑗𝜁𝜁(𝑡𝑡) − 𝜆𝜆𝑗𝑗𝛿𝛿𝑗𝑗      ∀𝑗𝑗,∀𝑡𝑡 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑰𝑰𝑗𝑗

= 0 = �𝑝𝑝𝐹𝐹𝑰𝑰𝑗𝑗 − 𝑧𝑧𝑗𝑗� 𝜁𝜁(𝑡𝑡) + 𝜆𝜆𝑗𝑗     ∀𝑗𝑗,∀𝑡𝑡 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 = (𝑝𝑝𝐹𝐹𝐿𝐿 − 𝑤𝑤)𝜁𝜁(𝑡𝑡)   ∀𝑡𝑡 

lim
𝑡𝑡→∞ 

𝝀𝝀(𝑡𝑡)𝑲𝑲(𝑡𝑡) = 0  

leading to an equation for the value of the firm: 

𝑉𝑉(0) =  �𝜆𝜆𝑗𝑗(0)𝐾𝐾𝑗𝑗(0)
𝐽𝐽

𝑗𝑗=1

      (𝐴𝐴4) 
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Equation (A4) (the same as equation 15) shows that the value of the firm at t = 0 is the sum 

over all varieties of the capital stock quantities multiplied by the “shadow price” of investment of 

the respective varieties. In our context, this shadow price reflects adjustment costs.33 

Assuming all asset stocks are measured correctly and market prices correctly represent the 

value of claims on publicly traded firms, equation (A4) suggests that a regression of firm value on 

dollar quantities of asset varieties will yield a coefficient vector that represents the average present 

value of one unit of each type of capital. In a frictionless efficient market, that vector would be a 

series of ones for all assets, i.e. assets are priced precisely at replacement cost. In the presence of 

adjustment costs and hidden yet correlated intangible investments, however, the coefficient will be 

greater than one. Sunk adjustment costs can be considered intangible assets as well. Therefore the 

ratio 𝝓𝝓𝑖𝑖+𝑧𝑧𝑖𝑖
𝒛𝒛𝑖𝑖

= 𝜆𝜆𝑖𝑖
𝑧𝑧𝑖𝑖

 for some asset type 𝑖𝑖 reflects the hidden intangible asset value per unit of observable 

installed capital for the firm. 

 

 The J-Curve in Productivity Levels 
 

For an ordinary Cobb-Douglas production function, the productivity level differences are 

dependent on 𝜂𝜂 (the ratio of unmeasured intangible output to total output), 𝑈𝑈(unmeasured 

intangible capital inputs), and 𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

 (the output share of unmeasured intangible capital inputs where 

                                                 
33 Following equation (6) in Hall (2000), if 𝜆𝜆𝑗𝑗 represents the marginal q value (incremental market value created divided 
by asset replacement cost), then the marginal adjustment cost for the firm (set by the firms’ competitors) at its chosen 
capital investment rate is set by: 

𝑐𝑐′ �
𝑘𝑘𝑡𝑡 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡−1

𝑘𝑘𝑡𝑡−1
� = 𝑞𝑞𝑡𝑡 − 1 = 𝜆𝜆𝑡𝑡 − 1 

Where c’(x) is the marginal adjustment cost function and 𝛿𝛿 is the depreciation rate of capital. In this case, there are no 
unmeasured intangible correlates, only adjustment costs of investment. Our framework below allows for both 
adjustment costs and unmeasured intangibles. In that case, the sum of these two elements is our 𝜆𝜆 value. (One 
interpretation of this summation is that capitalized convex adjustment costs are, in effect, a nonlinear component of 
correlated intangible investments.) 
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𝑌𝑌∗ = 𝑌𝑌 + 𝜙𝜙𝐼𝐼𝑈𝑈). Equation A5 below shows the standard case, and equation A6 shows the 

unmeasured intangibles-adjusted case. 

ln𝑌𝑌 = ln(1 − 𝜂𝜂)Y∗ = ln(𝐴𝐴) + �
𝑟𝑟𝑟𝑟
𝑌𝑌
� ln(𝐾𝐾) + �

𝑤𝑤𝑤𝑤
𝑌𝑌
� ln(𝐿𝐿)      (𝐴𝐴5) 

ln𝑌𝑌∗ = ln �
𝑌𝑌

1 − 𝜂𝜂
� = ln(𝐴𝐴∗) + �

𝑟𝑟𝑟𝑟
𝑌𝑌∗
� ln𝐾𝐾 + �

𝑤𝑤𝑤𝑤
𝑌𝑌∗
� ln 𝐿𝐿 + �

𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

� ln𝑈𝑈        (𝐴𝐴6) 

The difference in log levels is a pass-through of the difference in output inclusive of unmeasured 

intangibles and ordinary output: 

Δlog _𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ln (𝑇𝑇𝑇𝑇𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − ln (𝑇𝑇𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = ln(𝐴𝐴) − ln(𝐴𝐴∗)      (𝐴𝐴7) 

 The difference is trivially equal to zero if all output is measured. The condition for the 

productivity level gap to be equal to zero otherwise sets the unmeasured intangible output derived 

from measured inputs to be equivalent to the capital service flows from unmeasured intangible 

input, added to the difference in logs of measured output and total true output, as below: 

��
𝑟𝑟𝑟𝑟
𝑌𝑌∗
� 𝑙𝑙𝑙𝑙(𝐾𝐾) + �

𝑤𝑤𝑤𝑤
𝑌𝑌∗

� 𝑙𝑙𝑙𝑙(𝐿𝐿)�
𝜙𝜙𝐼𝐼𝑈𝑈
𝑌𝑌

= �
𝑟𝑟𝑈𝑈𝑈𝑈
𝑌𝑌∗

� 𝑙𝑙𝑙𝑙(𝑈𝑈)  + 𝑙𝑙𝑙𝑙(1 − 𝜂𝜂)    (𝐴𝐴8) 
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