
28 CommuniCationS oF thE aCm | DeCembeR 2009 | vOL. 52 | NO. 12

V
viewpoints

C
oMPutinG riGhtFully CoMeS up
in many discussions of uni-
versity organization and cur-
ricula, high school courses,
job qualifi cations, research

funding, innovation, public policy, and
the future of education. In repeated at-
tempts to characterize our fi eld in these
discussions, our leaders continue to en-
counter sometimes contentious debate
over whether computing is a fi eld of en-
gineering or science. Because it leaves
others with a sense that we lack a clear
focus, that debate negatively infl uences
policies involving computing.

There seems to be agreement that
computing exemplifi es engineering and
science, and that neither engineering
nor science characterizes computing.
What then does characterize comput-
ing? In this column, we will discuss
computing’s unique paradigm and of-
fer it as a way to leave the debilitating
debate behind.

The word “paradigm” for our pur-
poses means a belief system and its as-
sociated practices, defi ning how a fi eld
sees the world and approaches the solu-
tions of problems. This is the sense that
Thomas Kuhn used in his famous book,
The Structure of Scientifi c Revolutions.
Paradigms can contain sub-paradigms:
thus, engineering divides into electri-
cal, mechanical, chemical, civil; science
divides into physical, life, and social sci-
ences, which further divide into sepa-
rate fi elds of science.

Roots of the Debate
Whether computing is engineering or
science is a debate as old as the fi eld

itself. Some founders thought the new
fi eld a branch of science, others en-
gineering. Because of the sheer chal-
lenge of building reliable computers,
networks, and complex software, the
engineering view dominated for four
decades. In the mid-1980s, the science
view began to assert itself again with
the computational science movement,
which claimed computation as a new
sub-paradigm of science, and stimu-
lated more experimental research in
computing.

Along the way, there were three waves
of attempts to provide a unifi ed view.
The fi rst wave was by Alan Perlis,9 Allen
Newell,8 and Herb Simon,11 who argued
that computing was unique among all
sciences and engineering in its study of
information processes. Simon went so
far as to call computing a science of the
artifi cial.

The second wave started in the late
1960s. It focused on programming,
seen as the art of designing information
processes. Edsger Dijkstra and Donald
Knuth took strong stands favoring pro-

gramming as the unifying theme. In
recent times, this view has foundered
because the fi eld has expanded and the
public understanding of programmer
has become so narrow (a coder).

The third wave was the NSF-spon-
sored Computer Science and Engineer-
ing Research Study (COSERS), led by
Bruce Arden in the mid-1970s. It defi ned
computing as automation of informa-
tion processes in engineering, science,
and business. It produced a wonderful
report that explained many exotic as-
pects of computing to the layperson.1

However, it did not succeed in reconcil-
ing the engineering and science views
of computing.

Peaceful Coexistence
In the mid-1980s, the ACM Education
Board was concerned about the lack of
a common defi nition of the fi eld. The
Board charged a task force to investigate;
its response was a report Computing as
a Discipline.4 The central argument of
the report was that the computing fi eld
was a unique combination of the tradi-
tional paradigms of math, science, and
engineering (see Table 1). Although all
three had made substantial contribu-
tions to the fi eld, no single one told the
whole story. Programming—a practice
that crossed all three paradigms—was
essential but did not fully portray the
depth and richness of the fi eld.

The report in effect argued for the
peaceful coexistence of the engineer-
ing, science, and math paradigms. It
found a strong core of knowledge that
supports all three paradigms. It called
on everyone to accept the three and not

the Profession of it
Computing’s Paradigm
Trying to categorize computing as engineering, science, or math is fruitless;
we have our own paradigm.

DOI:10.1145/1610252.1610265 Peter J. Denning and Peter A. Freeman

V
viewpoints

december 2009 | vol. 52 | no. 12 | communications of the acm 29

try to make one of them more important
than the others.

Around 1997, many of us began to
think the popular label IT (information
technology) would reconcile these three
parts under a single umbrella unique
to computing.3,7 Time has proved us
wrong. IT now connotes technologi-
cal infrastructure and its financial and
commercial applications, but not the
core technical aspects of computing.

A Computing Paradigm
There is something unsatisfying about
thinking of computing as a “blend of
three sub-paradigms.” What new para-
digm does the blend produce?

Recent thinking about this question
has produced new insights that, taken
together, reveal a computing paradigm.
A hallmark of this thinking has been
to shift attention from computing ma-
chines to information processes, in-
cluding natural information processes

such as DNA transcription.2,6 The great
principles framework interprets com-
puting through the seven dimensions
of computation, communication, co-
ordination, recollection, automation,
evaluation, and design (see http://
greatprinciples.org). The relationships
framework interprets computing as a
dynamic field of many “implementa-
tion” and “influencing” interactions.10
There is now a strong argument that
computing is a fourth great domain of
science alongside the physical, life, and
social sciences.5

These newer frameworks all rec-
ognize that the computing field has
expanded dramatically in the past
decade. Computing is no longer just
about algorithms, data structures, nu-
merical methods, programming lan-
guages, operating systems, networks,
databases, graphics, artificial intelli-
gence, and software engineering, as it
was prior to 1989. It now also includes

exciting new subjects including Inter-
net, Web science, mobile computing,
cyberspace protection, user interface
design, and information visualization.
The resulting commercial applications
have spawned new research challenges
in social networking, endlessly evolving
computation, music, video, digital pho-
tography, vision, massive multiplayer
online games, user-generated content,
and much more.

The newer frameworks also recog-
nize the growing use of the scientific
(experimental) method to understand
computations. Heuristic algorithms,
distributed data, fused data, digital fo-
rensics, distributed networks, social
networks, and automated robotic sys-
tems, to name a few, are often too com-
plex for mathematical analysis but yield
to the scientific method. These scien-
tific approaches reveal that discovery is
as important as construction or design.
Discovery and design are closely linked:
the behavior of many large designed
systems (such as the Web) is discovered
by observation; we design simulations
to imitate discovered information pro-
cesses. Moreover, computing has devel-
oped search tools that are helping make
scientific discoveries in many fields.

The newer frameworks also recog-
nize natural information processes in
many fields including sensing and cog-
nition in living beings, thought process-
es, social interactions, economics, DNA
transcription, immune systems, and
quantum systems. Computing concepts
enable new discoveries and understand-
ings of these natural processes.

The central focus of the comput-
ing paradigm can be summarized as

There is an
interesting
distinction between
computational
expressions and the
normal language of
engineering, science,
and mathematics.

Table 1. Sub-paradigms embedded in computing.

Math Science Engineering

Initiation Characterize objects
of study (definition)

Observe a possible
recurrence or pattern of
phenomena (hypothesis)

Create statements
about desired system
actions and responses
(requirements)

Conceptualization Hypothesize possible re-
lationships among objects
(theorem)

Construct a model that
explains the observation
and enables predictions
(model)

Create formal statements
of system functions and
interactions (specifica-
tions)

Realization Deduce which relation-
ships are true (proof)

Perform experiments and
collect data (validate)

Design and implement
prototypes (design)

Evaluation Interpret results Interpret results Test the prototypes

Action Act on results (apply) Act on results (predict) Act on results (build)

Table 2. The computing paradigm.

Computing

Initiation Determine if the system to be built (or observed) can be
represented by information processes, either finite (terminating)
or infinite (continuing interactive).

Conceptualization Design (or discover) a computational model (for example,
an algorithm or a set of computational agents) that generates
the system’s behaviors.

Realization Implement designed processes in a medium capable of executing
its instructions. Design simulations and models of discovered
processes. Observe behaviors of information processes.

Evaluation Test the implementation for logical correctness, consistency
with hypotheses, performance constraints, and meeting original
goals. Evolve the realization as needed.

Action Put the results to action in the world. Monitor for continued
evaluation.

30 communications of the acm | december 2009 | vol. 52 | no. 12

viewpoints

ing, such as the noncomputability of
halting problems. Self-reference is com-
mon in natural information processes;
the cell, for example, contains its own
blueprint.

The interpretation “computational
thinking”12 embeds nicely into this
paradigm. The paradigm describes not
only a way of thinking, but a system of
practice.

Conclusion
The distinctions discussed here offer
a distinctive and coherent higher-level
description of what we do, permitting
us to better understand and improve
our work and better interact with peo-
ple in other fields. The engineering-
science debates present a confusing
picture that adversely affects policies
on innovation, science, and technology,
the flow of funds into various fields for
education and research, the public per-
ception of computing, and the choices
young people make about careers.

We are well aware that the comput-
ing paradigm statement needs to be
discussed widely. We offer this as an
opening statement in a very important
and much needed discussion.	

References
1.	 Arden, B.W. What Can Be Automated: Computer

Science and Engineering Research Study (COSERS).
MIT Press, 1983.

2.	 Denning, P. Computing is a natural science. Commun.
ACM 50, 7 (July 2007), 15–18.

3.	 Denning, P. Who are we? Commun. ACM 44, 2 (Feb.
2001), 15–19.

4.	 Denning, P. et al. Computing as a discipline. Commun.
ACM 32, 1 (Jan. 1989), 9–23.

5.	 Denning, P. and P.S. Rosenbloom. Computing: The
fourth great domain of science. Commun. ACM 52, 9
(Sept. 2009), 27–29.

6.	 Freeman, P. Public talk “IT Trends: Impact,
Expansion, Opportunity,” 4th frame; www.cc.gatech.
edu/staff/f/freeman/Thessaloniki

7.	 Freeman, P. and Aspray, W. The Supply of Information
Technology Workers in the United States. Computing
Research Association, 1999.

8.	 Newell, A., Perlis, A.J., and Simon, H.A. Computer
science, letter in Science 157, 3795 (Sept. 1967),
1373–1374.

9.	 Perlis, A.J. The computer in the university. In
Computers and the World of the Future, M.
Greenberger, Ed. MIT Press, 1962, 180–219.

10.	 Rosenbloom, P.S. A new framework for computer
science and engineering. IEEE Computer (Nov. 2004),
31–36.

11.	 Simon, H. The Sciences of the Artificial. MIT Press
(1st ed. 1969, 3rd ed. 1996).

12.	 Wing, J. Computational thinking. Commun. ACM 49, 3
(Mar. 2006), 33–35.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Information Innovation and
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

Peter A. Freeman (peter.freeman@mindspring.com) is
Emeritus Founding Dean and Professor at Georgia Tech
and Former Assistant Director of NSF for CISE.

Copyright held by author.

information processes—natural or
constructed processes that transform
information. They can be discrete or
continuous.

Computing represents informa-
tion processes as “expressions that do
work.” An expression is a description of
the steps of a process in the form of an
(often large) accumulation of instruc-
tions. Expressions can be artifacts, such
as programs designed and created by
people, or descriptions of natural occur-
rences, such as DNA and DNA transcrip-
tion in biology. Expressions are not only
representational, they are generative:
they create actions when interpreted
(executed) by appropriate machines.

Since expressions are not directly
constrained by natural laws, we have
evolved various methods that enable us
to have confidence that the behaviors
generated do useful work and do not
create unwanted side effects. Some of
these methods rely on formal mathe-
matics to prove that the actions generat-
ed by an expression meet specifications.
Many more rely on experiments to vali-
date hypotheses about the behavior of
actions and discover the limits of their
reliable operation.

Table 2 summarizes the computing
paradigm with this focus. While it con-
tains echoes of engineering, science,
and mathematics, it is distinctively dif-
ferent because of its central focus on
information processes.5 It allows engi-
neering and science to be present to-
gether without having to choose.

There is an interesting distinction
between computational expressions
and the normal language of engineer-
ing, science, and mathematics. Engi-
neers, scientists, and mathematicians
endeavor to position themselves as out-
side observers of the objects or systems
they build or study. Outside observers
are purely representational. Thus, tradi-
tional blueprints, scientific models, and
mathematical models are not execut-
able. (However, when combined with
computational systems, they give auto-
matic fabricators, simulators of mod-
els, and mathematical software librar-
ies.) Computational expressions are not
constrained to be outside the systems
they represent. The possibility of self-
reference makes for very powerful com-
putational schemes based on recursive
designs and executions, and also for
very powerful limitations on comput-

ACM
Journal on

Computing and
Cultural
Heritage

� � � � �

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

� � � � �

www.acm.org/jocch
www.acm.org/subscribe

