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C
oMPutinG riGhtFully CoMeS up 
in many discussions of uni-
versity organization and cur-
ricula, high school courses, 
job qualifi cations, research 

funding, innovation, public policy, and 
the future of education. In repeated at-
tempts to characterize our fi eld in these 
discussions, our leaders continue to en-
counter sometimes contentious debate 
over whether computing is a fi eld of en-
gineering or science. Because it leaves 
others with a sense that we lack a clear 
focus, that debate negatively infl uences 
policies involving computing.

There seems to be agreement that 
computing exemplifi es engineering and 
science, and that neither engineering 
nor science characterizes computing. 
What then does characterize comput-
ing? In this column, we will discuss 
computing’s unique paradigm and of-
fer it as a way to leave the debilitating 
debate behind.

The word “paradigm” for our pur-
poses means a belief system and its as-
sociated practices, defi ning how a fi eld 
sees the world and approaches the solu-
tions of problems. This is the sense that 
Thomas Kuhn used in his famous book, 
The Structure of Scientifi c Revolutions. 
Paradigms can contain sub-paradigms: 
thus, engineering divides into electri-
cal, mechanical, chemical, civil; science 
divides into physical, life, and social sci-
ences, which further divide into sepa-
rate fi elds of science.

Roots of the Debate
Whether computing is engineering or 
science is a debate as old as the fi eld 

itself. Some founders thought the new 
fi eld a branch of science, others en-
gineering. Because of the sheer chal-
lenge of building reliable computers, 
networks, and complex software, the 
engineering view dominated for four 
decades.  In the mid-1980s, the science 
view began to assert itself again with 
the computational science movement, 
which claimed computation as a new 
sub-paradigm of science, and stimu-
lated more experimental research in 
computing.

Along the way, there were three waves 
of attempts to provide a unifi ed view. 
The fi rst wave was by Alan Perlis,9 Allen 
Newell,8 and Herb Simon,11 who argued 
that computing was unique among all 
sciences and engineering in its study of 
information processes. Simon went so 
far as to call computing a science of the 
artifi cial.

The second wave started in the late 
1960s. It focused on programming, 
seen as the art of designing information 
processes. Edsger Dijkstra and Donald 
Knuth took strong stands favoring pro-

gramming as the unifying theme. In 
recent times, this view has foundered 
because the fi eld has expanded and the 
public understanding of programmer 
has become so narrow (a coder).

The third wave was the NSF-spon-
sored Computer Science and Engineer-
ing Research Study (COSERS), led by 
Bruce Arden in the mid-1970s. It defi ned 
computing as automation of informa-
tion processes in engineering, science, 
and business. It produced a wonderful 
report that explained many exotic as-
pects of computing to the layperson.1

However, it did not succeed in reconcil-
ing the engineering and science views 
of computing.

Peaceful Coexistence
In the mid-1980s, the ACM Education 
Board was concerned about the lack of 
a common defi nition of the fi eld. The 
Board charged a task force to investigate; 
its response was a report Computing as 
a Discipline.4 The central argument of 
the report was that the computing fi eld 
was a unique combination of the tradi-
tional paradigms of math, science, and 
engineering (see Table 1). Although all 
three had made substantial contribu-
tions to the fi eld, no single one told the 
whole story. Programming—a practice 
that crossed all three paradigms—was 
essential but did not fully portray the 
depth and richness of the fi eld.

The report in effect argued for the 
peaceful coexistence of the engineer-
ing, science, and math paradigms. It 
found a strong core of knowledge that 
supports all three paradigms. It called 
on everyone to accept the three and not 

the Profession of it
Computing’s Paradigm
Trying to categorize computing as engineering, science, or math is fruitless; 
we have our own paradigm.
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try to make one of them more important 
than the others.

Around 1997, many of us began to 
think the popular label IT (information 
technology) would reconcile these three 
parts under a single umbrella unique 
to computing.3,7 Time has proved us 
wrong. IT now connotes technologi-
cal infrastructure and its financial and 
commercial applications, but not the 
core technical aspects of computing.

A Computing Paradigm
There is something unsatisfying about 
thinking of computing as a “blend of 
three sub-paradigms.” What new para-
digm does the blend produce?

Recent thinking about this question 
has produced new insights that, taken 
together, reveal a computing paradigm. 
A hallmark of this thinking has been 
to shift attention from computing ma-
chines to information processes, in-
cluding natural information processes 

such as DNA transcription.2,6 The great 
principles framework interprets com-
puting through the seven dimensions 
of computation, communication, co-
ordination, recollection, automation, 
evaluation, and design (see http://
greatprinciples.org). The relationships 
framework interprets computing as a 
dynamic field of many “implementa-
tion” and “influencing” interactions.10 
There is now a strong argument that 
computing is a fourth great domain of 
science alongside the physical, life, and 
social sciences.5

These newer frameworks all rec-
ognize that the computing field has 
expanded dramatically in the past 
decade. Computing is no longer just 
about algorithms, data structures, nu-
merical methods, programming lan-
guages, operating systems, networks, 
databases, graphics, artificial intelli-
gence, and software engineering, as it 
was prior to 1989. It now also includes 

exciting new subjects including Inter-
net, Web science, mobile computing, 
cyberspace protection, user interface 
design, and information visualization. 
The resulting commercial applications 
have spawned new research challenges 
in social networking, endlessly evolving 
computation, music, video, digital pho-
tography, vision, massive multiplayer 
online games, user-generated content, 
and much more.

The newer frameworks also recog-
nize the growing use of the scientific 
(experimental) method to understand 
computations. Heuristic algorithms, 
distributed data, fused data, digital fo-
rensics, distributed networks, social 
networks, and automated robotic sys-
tems, to name a few, are often too com-
plex for mathematical analysis but yield 
to the scientific method. These scien-
tific approaches reveal that discovery is 
as important as construction or design. 
Discovery and design are closely linked: 
the behavior of many large designed 
systems (such as the Web) is discovered 
by observation; we design simulations 
to imitate discovered information pro-
cesses. Moreover, computing has devel-
oped search tools that are helping make 
scientific discoveries in many fields.

The newer frameworks also recog-
nize natural information processes in 
many fields including sensing and cog-
nition in living beings, thought process-
es, social interactions, economics, DNA 
transcription, immune systems, and 
quantum systems. Computing concepts 
enable new discoveries and understand-
ings of these natural processes.

The central focus of the comput-
ing paradigm can be summarized as 

There is an 
interesting 
distinction between 
computational 
expressions and the 
normal language of 
engineering, science, 
and mathematics.

Table 1. Sub-paradigms embedded in computing.

Math Science Engineering

Initiation Characterize objects  
of study (definition)

Observe a possible 
recurrence or pattern of 
phenomena (hypothesis)

Create statements  
about desired system 
actions and responses 
(requirements)

Conceptualization Hypothesize possible re-
lationships among objects 
(theorem)

Construct a model that 
explains the observation 
and enables predictions 
(model)

Create formal statements 
of system functions and 
interactions (specifica-
tions)

Realization Deduce which relation-
ships are true (proof)

Perform experiments and 
collect data (validate)

Design and implement 
prototypes (design)

Evaluation Interpret results Interpret results Test the prototypes

Action Act on results (apply) Act on results (predict) Act on results (build)

Table 2. The computing paradigm.

Computing

Initiation Determine if the system to be built (or observed) can be 
represented by information processes, either finite (terminating)  
or infinite (continuing interactive). 

Conceptualization Design (or discover) a computational model (for example,  
an algorithm or a set of computational agents) that generates  
the system’s behaviors.

Realization Implement designed processes in a medium capable of executing 
its instructions.  Design simulations and models of discovered 
processes.  Observe behaviors of information processes.

Evaluation Test the implementation for logical correctness, consistency  
with hypotheses, performance constraints, and meeting original 
goals.  Evolve the realization as needed.

Action Put the results to action in the world.  Monitor for continued 
evaluation.
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ing, such as the noncomputability of 
halting problems. Self-reference is com-
mon in natural information processes; 
the cell, for example, contains its own 
blueprint.

The interpretation “computational 
thinking”12 embeds nicely into this 
paradigm. The paradigm describes not 
only a way of thinking, but a system of 
practice.

Conclusion
The distinctions discussed here offer 
a distinctive and coherent higher-level 
description of what we do, permitting 
us to better understand and improve 
our work and better interact with peo-
ple in other fields. The engineering-
science debates present a confusing 
picture that adversely affects policies 
on innovation, science, and technology, 
the flow of funds into various fields for 
education and research, the public per-
ception of computing, and the choices 
young people make about careers.

We are well aware that the comput-
ing paradigm statement needs to be 
discussed widely. We offer this as an 
opening statement in a very important 
and much needed discussion.	
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information processes—natural or 
constructed processes that transform 
information. They can be discrete or 
continuous.

Computing represents informa-
tion processes as “expressions that do 
work.” An expression is a description of 
the steps of a process in the form of an 
(often large) accumulation of instruc-
tions. Expressions can be artifacts, such 
as programs designed and created by 
people, or descriptions of natural occur-
rences, such as DNA and DNA transcrip-
tion in biology. Expressions are not only 
representational, they are generative: 
they create actions when interpreted 
(executed) by appropriate machines.

Since expressions are not directly 
constrained by natural laws, we have 
evolved various methods that enable us 
to have confidence that the behaviors 
generated do useful work and do not 
create unwanted side effects. Some of 
these methods rely on formal mathe-
matics to prove that the actions generat-
ed by an expression meet specifications. 
Many more rely on experiments to vali-
date hypotheses about the behavior of 
actions and discover the limits of their 
reliable operation.

Table 2 summarizes the computing 
paradigm with this focus. While it con-
tains echoes of engineering, science, 
and mathematics, it is distinctively dif-
ferent because of its central focus on 
information processes.5 It allows engi-
neering and science to be present to-
gether without having to choose.

There is an interesting distinction 
between computational expressions 
and the normal language of engineer-
ing, science, and mathematics. Engi-
neers, scientists, and mathematicians 
endeavor to position themselves as out-
side observers of the objects or systems 
they build or study. Outside observers 
are purely representational. Thus, tradi-
tional blueprints, scientific models, and 
mathematical models are not execut-
able. (However, when combined with 
computational systems, they give auto-
matic fabricators, simulators of mod-
els, and mathematical software librar-
ies.) Computational expressions are not 
constrained to be outside the systems 
they represent. The possibility of self-
reference makes for very powerful com-
putational schemes based on recursive 
designs and executions, and also for 
very powerful limitations on comput-
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