
transactions of the
american mathematical society
Volume 346, Number 1, November 1994

THE PROFILE NEAR BLOWUP TIME
FOR SOLUTION OF THE HEAT EQUATION

WITH A NONLINEAR BOUNDARY CONDITION

BEI HU AND HONG-MING YIN

Abstract. This paper studies the blowup profile near the blowup time for the
heat equation ut = Am with the nonlinear boundary condition un = up on
dil x [0, T). Under certain assumptions, the exact rate of the blowup is es-
tablished. It is also proved that the blowup will not occur in the interior of the
domain. The asymptotic behavior near the blowup point is also studied.

1. Introduction

In this paper we consider the profile near the blowup time for the solution
of the following problem:

(1.1) |^ =Au   forxGfl, *>0,

(1.2) ^- = W   forxedfl,  *>0,dn
(1.3) u{x,0) = u0(x)   forxeQ

where Q is a bounded domain in R" with boundary <9Q, n is the exterior
normal vector on dQ, p > 1 and «ofr) > 0.

It has been known for a long time (cf. [18], [19], [24]) that the problem
does not have a global solution in time, for certain Uo(x), and in [9] for all
Mofr) ^ 0. Moreover, if up is replaced by a general nonlinear function f{u),
a necessary and sufficient condition was found in [24] for the problem to have
a finite time blowup. However, there are many important and interesting ques-
tions which have been open for some years. For examples, how does the solution
approach the blowup time? Where is the hot spot located (blowup set)? In one
space dimension as well as a radial symmetric domain in R" , the questions were
answered recently in [10], under certain monotonicity assumptions on the initial
value. An improvement was given in [5] where the monotonicity condition was
removed. For several space dimensions, the problem is much more challenging
and there is no result except some partial answer obtained in a recent paper
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118 BEI HU AND H. M. YIN

[27]. To see the difficulties of the problem, let us recall some techniques used
to analyze the profile of the solution near the blowup time for the following
equation:

ut - Au = up {p > 1).
For this equation, the above-mentioned questions were studied by a number of
authors (cf. [2], [4], [11], [13]-[15], [20], [21], [25], [26], etc.). In [11] various
results regarding to the blowup rate and blowup set were obtained. In deriving
the blowup rate, the monotonicity of solution with respect to * was imposed.
Later, by introducing self-similarity variables, the authors of [14] eliminated
the monotonicity condition and obtained the rate estimates if p e (1, j*z§).
Moreover, the asymptotic behavior near the blowup time was obtained in [13]
and [15]. But in their proofs, the convexity of the domain is essential in order
to derive the desired energy estimates. However, the convexity of the domain
does not provide any help in our case since our nonlinearity is located on the
boundary. By imposing the monotonicity of u{x, t) with respect to *, one
can show the energy E{s) is nevertheless uniformly bounded (see ( 5.9) for
the definition of E{s)). Another difficulty we encounter is the lack of results
for the corresponding steady state problem. It is well known that in order to
study the asymptotic behavior for the solution of an evolution equation, one
needs a lot of results for the steady state equation. But to our knowledge, there
are not many results available for an elliptic equation with nonlinear boundary
condition in an unbounded domain. To see such an example, let us consider
the following elliptic problem:

Aw = 0,    inQ,        -^- = wp,    ondft,
on

where Q = {x = fri, x2, ..., x„) e Rn : xx > 0} and p > 1. Obviously,
there is a trivial solution w = 0. Does the problem have a positive solution?
The answer depends on the dimension n and p. In order to show that zero
is the only solution, one must study the singularity of the solution at infinity
because of the unboundedness of the domain. Indeed, when n = 1 a direct
calculation concludes that zero is the only solution. When n = 2, one can use
the maximum principle to show that there is no positive solution (see Lemma
6.1 in Section 6). However, when « > 2 and p = ^ there is indeed a positive
solution

/   ^ CW{X)  =  ;-;-T ,v  ;     |x-x0|"-2

where x0 = (-1, 0, ... , 0) and c is chosen properly.
By employing Kelvin's transform as in [3] and [7], we are able to show that

the above elliptic problem does not have any positive solution if p e [1, jjEi) •
This uniqueness result enables us to use the "localized" maximum principle,
and deduce the blowup rate estimate:

maxM(x,*)<C(r-*)- »/PG»-»M,

where T is the blowup time.
The second main result in this paper is concerned with blowup set. The

examples in [23] indicate that the blowup may occur in the interior of the
domain if the temperature on the boundary blows up at an exponential rate.
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PROFILE NEAR BLOWUP TIME FOR HEAT EQUATION 119

This is not too surprising if one examines the representation of the solution
and compares the boundary value with the heat kernel. Hence, in order to
answer the question, we first need to show that the growth rate near the blowup
time is not too fast. More precisely, we show that the rate does not exceed

1
{T-t)i

for some large q. Then by constructing a suitable auxiliary function, we prove
that the blowup only occurs on the boundary (it may occur only at a point or at
every point depending on the initial data and the shape of the domain). This
implies that the diffusion term is the dominating term in the interior of the
domain if the heat supply is given by a power of the temperature.

The paper is written in the following manner. In Section 2, for completeness
we give a new proof for the blowup property. Section 3 deals with the blowup
rate of the solution. In Section 4, the blowup set is studied. The asymptotic
behavior near the blowup time is considered in Section 5. The final section pro-
vides some uniqueness results for elliptic problems with a nonlinear boundary
condition, which are of independent interest.

2. Blowup at finite time

Throughout this paper, we shall use C and c to denote various generic con-
stants if there is no confusion. A solution of ( 1.1) - (1.3) is always understood
in the classical sense.

We assume that Q is a bounded smooth domain in R" . Although the fol-
lowing result is known (see [9], for example), we present a simple argument
below. The argument will also be used in Section 4.

Theorem 2.1. For any nonzero, nonnegative initial data Mnfr) > the solution of
the system (1.1) - (1.3) blows up in a finite time.
Proof. Local existence is clear. By the maximum principle, inf^o. «(x, e) > 0
(for small e > 0). Replacing * = 0 by * = e if necessary, we may assume
without loss of generality that inf^n Mnfr) = c > 0. Take v{x) such that

inf Av > 0,
xea

^ = vp   forxedQ,dn
c- < v{x) < c   for x € Q,.2

The existence of such a v{x) can be obtained, for example, by the variational
method. Then the comparison principle implies that m(x, *) > (p{x, *), where
<p{x, t) is the solution of (1.1) - (1.2) with initial condition <p{x, 0) = v{x).
Clearly, <pt{x, t) > 0, by maximum principle. As a consequence, y>{x, t) >
<P(x, 0) > c/2. Let y/{x, *) = tpt{x, *) - Sy>p{x, t). Then a direct calculation
shows that

^-Ay/>0   forx€Q,  *>0,
at

-^-=pupyi   forxedQ, *>0,
onLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 BEI HU AND H. M. YIN

and y/{x, 0) > 0 if 8 is small enough. It follows that y/{x,t) > 0, which
implies that <pt > S<pp. Thus <p{x, *) blows up in a finite time, and wfr, *)
must blow up at a finite time.   □

3. Blowup rate

Suppose that T is the blowup time. We first derive the blowup rate from
above.

Theorem 3.1. Let Q be a bounded domain in R" such that <9Q e C2+a for
some 0 < a < 1. Suppose that 1 < p < oo for n = 2 and 1 < p < %E% for
n > 3. We assume that the initial value uo e C2(Q) satisfies

(3.1) m0>0,    Au0 > 0   for x en,

(3.2) •    ^ = m{!   forxedQ.

77zen

(3.3) razxu(x,t)<{T_C/[2{p_i)].

Remark 3.1. The restriction on p comes from a nonexistence result for elliptic
equations in Section 6.

Proof Considering the equations for the functions u and ut and using the
maximum principle, we immediately obtain

w(x,*)>0,     m,(x,*)>0.

Thus the function M(*) = max,^ u{x, t) is monotone nondecreasing and
M(*) —> oo as * —► T - 0. The maximum principle implies that M(*) =
max^ap. M(x, t).

We shall use the scaling argument analogous as in [8]. Take T/2 < t* < T,
and let M* = M{t*). Take any point x* e d£l such that M{f) = u{x*, **)
(there may be more than one choice of such x* for each **) and introduce the
rescaled function

(3.4) <pA{y,s) = jj-u{ARy + x*,X2s + t*)   foryeHI,  -^<s<0,

where Q^ = {y; XRy + x* e Q} and R is a rotation operator such that
(—1, 0, 0, ... ,'0) is the exterior normal vector of d£lx at 0. We choose A
such that

k{M*ip-^ = i.
Then tpk solves

(3.5) aT = A^  {0Ty£ai> 'W-3-0'

(3.6) ^7T = <    foryean,,  -^<5<0,

(3.7) «M(0,0) = 1,
(3.8) o<<px{y,s)<i,   {n)s(y,s)>o.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PROFILE NEAR BLOWUP TIME FOR HEAT EQUATION 121

By assumption, the boundary dtl^ n {\y\ < K} is uniformly in the class of
C2+a and approaches the hyperplane {yx =0} as k —> 0+ . Recalling ( 3.8 ),
and using Schauder's estimates, we obtain

(3-9) \Wi.\\c^",^M2)(aAn{\y\<K}x[-K^,0]) - ^K ,

where the constant Ck is independent of k.
Next we claim that there exist c > 0, S > 0 (independent of the choices of

x* and the rotation R) such that

(3.10) ?p(0,0)>c   for T-S<t* < T.

It is clear that {y>x)s(0, 0) > 0 by Hopfs lemma. Therefore if (3.10) is not
true, then there exists a sequence ** -> T - 0 such that

to,),(o,o)-o,
where kj — l/[A/(**)](p_1). Using (3.9) and compactness, the family {<pxj} has
a subsequence which converges to a function tp{y, s). Taking this subsequence,
still denoted by the subscript kj, we have

\\9Xj ~ <P\\c2+i>■i+u>m(axn{\y\<K}x[-K2,o]) ~* °>

for 0 < P < a and for any K > 0. It follows that tp satisfies

(3.11) -^-= Aytp    for0<yi<oo,  -oo<5<0,

(3.12) wL = 9p   foryi =0,  -oo<5<0,
on

(3.13) ?»(0,0) = 1,    <ps(0,0) = 0
(3.14) 0<<p(y,s)<i,   <ps(y,s)>0.

The regularity theory of parabolic PDEs implies that tp is in C°° for the y
and 5 directions up to the boundary yx = 0. Differentiating (3.12) in 5 we
obtain

(3.15) ^p-=p(pp-x(ps    fory! =0,  -oo<5<0,
on

which implies that dy>s{0, 0)/dn = 0. Notice that ^(0, 0) = 0 is the mini-
mum of the function q>s. It follows that <ps{y, s) = 0 for 5 < 0, yx > 0 by
Hopfs lemma. Thus we obtain a function tp{y) = <p{s, y) which satisfies the
equations

(3.16) Ayy> = 0   for0<yi<oo,

(3.17) |! = <    fory1=0,
(3.18) <P(0) = 1,    0<<p(y)<l.
This is a contradiction to the nonexistence result which will be proved in Section
6. Thus (3.10) is established. We can rewrite (3.10) as

(3.19) ^(x*;/*)>c(A/*)2p-i    for T-S<t*< T.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



122 BEI HU AND H. M. YIN

For each /z > 0,

(3.20)
M{t* + h) - M{t*) _ M{t* + h) - u{x*, **)     m(x*, ** + h) - m(x* , **)

h h h
Letting h —> 0+ (noticing that M{t) is Lipschitz continuous), we obtain

(3.21) M'{t*) > u,{x*, **) > cM2p-x{t*).

Integrating the above equation, we conclude ( 3.3).   □

We can also get the lower bound of the blowup rate. The proof from Theorem
3.1 can be used here if we assume ut > 0 (it will be true for any 1 < p < oo).
However, the assumption ut > 0 will no longer be needed if we use the integral
equation.

Theorem 3.2. Suppose that £2 is a bounded domain in R" such that <9Q e Cx+a
for some 0 < a < 1, and uo(x) > 0. Then

(3.22) ma_xM(x, *) > {T _ tyl[2{p_x)V

Proof. We use the integral equation for u{x, t). Let Y{x, *) be the fundamen-
tal solution for the heat equation, namely,

r(x'0=(4^Wexp["^T.-
Then for 0 < z < t < T and x 6 Q, we have Green's identity:

u{x, *) = / T(x - y, * - z)u{y, z) dy
Ja

(3.23) + /  /   up{y,x)Y{x-y,t-z)dSydx
Jz Jon
f'  f dY-       /    M(y, t)-— (x-y, t-x)dSydx.

Jz Jdil °ny

Letting x —> dQ, and using the jump relation for the third term on the right-
hand side of ( 3.23) (cf. [12]), we obtain

(3.24)
^m(x , *) = / T(x - y, * - z)u{y, z) dy
1 Ja

+ [[   up{y,T)Y{x-y,t-x)dSydx
Jz JdO.

-/   /   u{y,x)-—{x-y,t-x)dSydx   forxedfi,
Jz Jaa 9ny

0 < z < *.

We now set
M{t) = max u{x, t),    Mb{t) - max u{x, t).

xea x^aaLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PROFILE NEAR BLOWUP TIME FOR HEAT EQUATION 123

Since dQ e Cx+a , Y satisfies (cf. [12])

9T, x   ^      C 1 . __-—(x-y,*-f) < -.-r—.-, ,,  ,—   forx,y£dQ.dnyK      y ' ~ {t- x)f \x -y\n+x-2f-a y

We fix p such that 1 - a/2 < p < 1. Then ( 3.24) implies that

< M{z) + C (max Mb{x)\  2y/t=z + C (max Mb{x)\ (*- z)x~p
\z<x<t J \z<t<t J

< M{z) + C (max Mb{x)]  2y/T^z + C (max Mb{x)) {T-z)x-f.
\z<t<t } \z<i<t )

For any z <r\<t,

lrMb{n) < M{z) + C ( max Mb{x))  2y/T^l + C ( max Mb{x)\ {T - z)x~p

< M{z) + C (max Mb{x))  2y/T^z + C (max Mb{x)] {T- z)1'",
\Z<T<( J \Z<T<t J

which implies that

\ max Mb{x) <M{z) + C (max Af6(r) ]  2y/T^z(3.25) 2l** ~ ^** J

+ C (max Mb{x)) {T - z)x-".
\z<r<t )

By assumption, T is the blowup time; therefore

hz(t) = max Mb{x) -»oo   as * —» T - 0.
Z<T<t

Since /zz(z) = Mb{z) < M{z), we can choose * < T such that maxz<T<, Mb{x)
- AM{z), and the inequality ( 3.25 ) becomes

M{z) < 22p+xCy/T^zMp{z) + 4C{T - z)x~^M{z).

The above inequality implies that

M{z) < 22p+2Cy/T^~zMp{z),

provided T - z is small enough. The theorem follows.   □

The integral equation (3.24) will also give us the estimate for the upper
bound for the integral \\u{-, t)\\jj>^9ci). There is no restriction on p.

Theorem 3.3. Suppose that Q is a bounded domain in R" such that dQe Cx+a
for some 0 < a < 1, Mnfr) > 0, and Aw0(x) > 0. Then

(3.26) (^„^,0«y/'<__C__.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



124 BEI HU AND H. M. YIN

Proof Let A{t) = ||m(-, OHl^o.) • Under our assumptions, ut > 0. It follows
that A'{t) > 0. Holder's inequality implies that

A{t) >c I    u{x, t)dS.
Jda

Integrating ( 3.24) over <9£2, we obtain

cf   u{x,t)dS>c [' 4^dx-C [' j^^dx
Jda ~   Jz y/T^ Jz \t-T\»

2c/'^=frft-CM",|r-z|'"'-

Taking z so that C*\T- z|1_<" = 1/2, we obtain

(3.27) A{t)>co£:^=Ldx = CoI(t).

Clearly,
= _A^t)_ > <*/'(/)

y/T~~i - y/T^~t
It follows that

/      §>2cpy^t.
Ji(t)    1P

Assuming that I{T) = oo  (otherwise there is nothing to prove), the above
inequality implies that

/(,) <2-i/(p-i)c-"/(p-i)(/,_ i)-i/(j>-i)(7'_/)-i/[2(p-i)]

= c*(r — /)-i/[2(p-i)i_

On the other hand, for J=2t - T (we assume that * is close to T here),

/(*)>   f'^Ldx>Ap(t) ['     -^±==2{y/2-l)y/T=lAp(t).
J~l    y/T - X J2t-T y/T -X

Combining this inequality with ( 3.28 ), we obtain

A(t) < (C*)1/p[2(v/2 - \)]~xlp{T - ?)-1/[2("-1)]
< (C*),/p[2(v/2 - l)]-l/p2x'Wp-x'>]{T-7)-x'Mp-xn.

The theorem follows.   D

Remark 3.2. The above argument can be applied to the following integral equa-
tion:

Jo   Vt-x
where f{s) = sp{p > 1) and A0 > 0.
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PROFILE NEAR BLOWUP TIME FOR HEAT EQUATION 125

Without any condition, one can prove that A{t) will blow up in a finite time.
Moreover, there exist two constants Ci and C2 such that

Cx{T-t)W^> <A{t) <C2{T-t)^) ,

where T is the blowup time.

4. Blowup set

We shall prove in this section that the blowup will occur only at the boundary
of the domain.

Theorem 4.1. Suppose that the function u{x, t)  is continuous on the domain
Q x [0, T) and satisfies

u, = Au   for (x, *) G Q x [0, T),
Cu < .     for (x, *) G d£l x [0, T),    for some q > 0.

Then for any Q' cc Q,

sup{M(x, *);  (x, *) e £1' x [0, T)} < oo.
Proof. By approximating the domain from inside if necessary, we may assume
without loss of generality that dQ, is smooth, say C2.

Let d{x) = distfr, dQ) and
v{x) = d2{x)   forxeN£{dQ),

where Ne{dQ) = {{x G Q, d{x) < e}. Since dQ is C2, the function v{x) is
in C2{Ne{dQ)) if e is small enough. Clearly,

At;_(g + i)|vt>r*= QndQ
V

Since v e C2{Ne{d£l)),

(a + DWvl2 _

if en is small enough.   We next extend v{x) to a function on Q such that
t; G C2(Q) and v > c0 > 0 on Q\/V£o(.3Q). Then

Av_(A±W<>_c,    onU
V

for some C* > 0. Set

w{x>t)=[v{x) + C*{T-t)]<f

Then

- -»-- ̂ihm^ fr+- - £zW§) >°-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



126 BEI HU AND H. M. YIN

Take Cx to be large enough so that w{x, 0) > wfr, 0) and Cx > (C*)q . Then
the maximum principle implies that w{x, t) > wfr, *), and

sup{M(x, *);  (x, *) G Q' x [0, T)} < Cx sup I —^-; x G Q' \ < oo.   □

Corollary 4.2. Assume that Mnfr) > 0 and Awn(x) > 0  {which implies that
M; > 0). Then no blowup will occur in the interior of the domain Q.
Proof. As in the proof of Theorem 2.1, we can easily establish ut > Sup for
* > e for small 8 and e . It then follows that

(4.1) ma_XM(x,0 <__!__.

Although (4.1) does not give us the best rate at the boundary, it is enough for
us to apply Theorem 4.1.   □

5. Asymptotic behavior near the blowup point

We first establish some preliminary estimates.  We will assume throughout
this section that

(5.i) JS„iXtt)<-£-ft   ^ = 2(f=Ty

This condition will be satisfied if the assumptions of Theorem 3.1 are in force.
As in Giga and Kohn [14], we introduce the scaled solution:

w{y,s) = {T-tYu{x,t),
x - a = yy/T - t,     T - t = e~s,

where a is a fixed point on dQ. If u solves ( 1.1), then w solves

(5.2) — w - Aw + -y • Vw + pw = 0
ds 2

in the domain
W=\jQ{s),

s>s0

where
Q{s) = {{y,s); ^y + aGQ},    5n = -ln7\

From the proof of Theorem 3.1 (cf.  ( 3.9)) we have the following estimates:

^u{x,t)\<Cmaxup{x,t)<J^rp,

dx%c~kUiX' °| ^ Cml"2"1(X' ° " {T-t)W
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PROFILE NEAR BLOWUP TIME FOR HEAT EQUATION 127

As a consequence,

(5.3) 0<w{y,s)<C   for {y,s)eW,

(5.4) ^(y.^) <C   for (y,s)eW,oyj

(5.5) -^L-W{y,s) <C   for (y, s) eW.

We need the following formulae:

Lemma 5.1. If f{s, y) : W h-+ R is a smooth function, then

(5.6) j-f    f(s,y)dy= f    fs{s,y)dy + ±[      f{s, y){y -n)dS,
as Ja(S) Ja{s) L Jaa(s)

ff     f{s,y)dS=f     fs(s,y)dS
,        as Jams) jdn(s)

+ \ f     [(n-l)f{s,y) + Vf{s,y)-y]dS,

where n is the exterior normal vector of dQ{s) and dS is the surface area
element.
Proof. The proof of (5.6) can be found in Liu [20], and ( 5.7) can be proved
in a similar manner.   □

Let us rewrite equation (5.2) in divergence form:

(5.8) pws- V-{pVw) + Ppw = 0,

where p = e~\y\ I*. Now we introduce the "energy" functional as in Giga and
Kohn [14]:

(5.9) E{s) = \ f    (p\Vw\2 + ppw2)dy-l— f      pwp+xdS.
1 Ja(s) v / p + l Jga(S)

First of all, multiplying ( 5.8) with ws and integrating over Q{s), we have the
following identity:

/     p\ws\2dy + /     [pVwVWs + Ppwws]dy = /      pwpwsds.
Ja(s) Ja{s) Jaa(s)

Using formulae ( 5.6) - ( 5.7) and the above identity, we now obtain

(5.10)

E'(s)= (pVwVws +Ppwws)dy +- (p\Vw\2 + Ppw2){y-n)dS
Ja(s) 4 Joa(s) v '

-f     pwpwsdS- ..  \..f     \{n-l)pwp+x +V{pwp+x)-y]dS
Jaa(s) 2{p + l)jda{s)i J

= -/     p\ws\2dy + J{s),
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



128 BEI HU AND H. M. YIN

where

J(s) = \f      (p\Vw\2 + Ppw2){yn)dS

-tTTTTuI     \(n-x)pwp+x+V{pwp+x).y]dS.
20 + 1) Jaa(S)1 J

The estimate on J{s) is crucial for taking the limit as i-»oo.

Lemma 5.2. There exists a constant C* such that

(5.11) J{s) < C*e~sl\

Proof. Without loss of generality, we may assume that a = 0 e dQ and
(-1, 0, ... , 0) is the exterior unit normal vector of fl at 0. Then dQ near
0 is represented by the formula

(5.12) xi = g{x2, x3, ... , x„)   for x? + • • • + x2 < <52,

where g e C2+a and g{0) = 0, Vg(0) = 0. We can represent dQ{s) by

(5.13)
yx = esl2g{y'e-sl2) = G(y')   for \y'\ < Ses'2,    y' = (y2, y3, ... , Vn).

Clearly,

G(0) = 0,     VC7(0) = 0,     \Gyjyk\ < Ce-'l1   (2<k,j<n),

n= (        ~1        .    .   VG     J ,    dS=Jl + \VG\2dy',

= -G + y2Gy2 + ■ ■ ■ + y„Gyn
Vl + |VC7|2

From now on, the generic constants C will depend only on the given data
like dQ, Mnfr), and p .

We split the integrals in 7(5) on dQ{s) into dQ{s) n {|y'| < r5eJ/8} and
3Q(s) n {|/| > Ses/*} . Recalling (5.3)-(5.5),

the integrals in J{s) on dQ{s) n {|y'| > Se5^}

<C [ e~W2/*dS
JdQ(s)ri{\y'\>6e'l*}

(5.14) /     , x.
<Cexv(-^d2es!*y\dQ{s)\

<Cexp(-^V/«+(^).

Now we write

the integrals in J{s) on dQ{s) n {|/| < <tes/8} = Ix{s) + I2{s),
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where Ix {s) is estimated as follows:

17,(5)1=4   / (p\Vw\2 + Ppw2){y.n)dS
4   Jda(s)n{\y'\<Se*/*} V '

<C f p\(yn)\dS
Jda{s)n{\y'\<des's}

,,,,, <C I p{\G-VG-y'\)dy'
(5.15) J{\y'\<Se*/*}

<C f p\y'\2max\Gyjyk\dy'
J{\y>\<Sesl*}

<Ce-sl2{esl*)2 I pdy'
J{\y'\<de'l*}

<Ce~sl\

To estimate I2{s), we let q>{y, s) — pwp+x and compute

(5.16)
20-l)|/2(^)|

=   f \{n-l)pwp+x+V{pwp+l)-y]dS
•/9£l(.s)n{|y'|<<5^/8} L J

=   / [(« - \)q> + {<pyi G + <py2y2 + ■■■ + <pynyn)] JI + |VG|2 dy'

=      / («-   i)<P+^((Py<Gyk+(pyk)yk
J{\y'\<6e'l*} [ k=2

+<Pn\G-Y,ykGyA   yJl + \VG\2dy'

<Kx{s) + K2{s),

where

*2(s) = / <pyi \G - £>G>J   Jl + \VG\2dy'J{\y\<s*i*}      V      k=i        J

(       , <C f e-^*\y'\2max\Gyjyk\dy'

<Ce-sl2{es'%)2 j     e-\y'^l%dy'

<Ce~sl\
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Finally, let us estimate Kx{s) using integration by parts on the {n - 1) dimen-
sional disk:
(5.18)

*i(*)=   / (n-\)<P + Y,(<pnGyk+(pyk)yk   Jl + \VG\2dy'

=   / \(n-\)<p
7{|j;'|<<5^/8}  [^

+ Jlyk7^k(9[G(y2,...,yn),y2,...,yn])\ x]\ + \VG\2dy'

=   I <pJ:yk^ryJ\ + \VG\2dy'
J{\y-\=6e°/*}  £r2   \y\y

-[ <PEyk^7-(y/x + ^G\2)dy'
J{\y>\<Se*l*}    £~f2      dyk   Vv /

< Cesl% j pdy' + Ce~s'2 [ p\y'\ dy'
J{\y'\=Ses/»} J{\y'\<Se*l»}

< Ce*/* exp (-\s2es>4 + ^^) + Ce~s'2.

Combining the estimates from ( 5.14) -(5.18), we conclude the lemma.   □

Remark 5.1. The estimates are uniformly valid for a e dQ.
From Lemma 5.2 and (5.10),

^- (/}(*) + 4CV~S/4) < 0.

It follows that the function E{s) + 4C*e~s?4 is monotone decreasing. Clearly
E{s) is bounded from below. Therefore the limit limi_00(/i'(5) + 4C*e~s/4)
exists. So the limit

(5.19) lim E{s) = E{oo) exists.
s—*oo

Integrating (5.10), we also conclude

Lemma 5.3.

(5.20) /     /    p\ws\2dyds< C < oo.

Notice that (5.19) claims that the "energy E{s)" has a limit. The energy
E{s) is the difference of two terms. In fact, the limits of both terms exist. Let

Ex[w]{s)= f    (p\Vw\2 + Ppw2)dy,
Ja(s) v '

E2[w]{s) = [      pwp+xdS.
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Theorem 5.4.

lim Ex[w]{s) = 2<kP+Pe{oo) ,     lim E2[w]{s) = 2(P+1l)£(oo).
s—>oo p — 1 s—>oo p — 1

Prao/ By (5.19)

(5.21) lim (\ex{s) - -^-7E2{s)\ = E(oo)

By ( 5.3) - ( 5.5), we can take a subsequence Sj —> oo such that w{y, s + Sj)
converges weakly to a function Woo{y, s). Lemma 5.3 implies that Woo is
independent of s . Hence

(5.22) -V{pVWoo) +Ppwoo = 0   foryi>0,  -oo < yk < oo (2 < k < n),

(5.23) ^ = <     ony,=0.

It follows that £i[io](s + Sj) —> c( and /}2[w](5 + Sj) —> c2 as Sj -* oo , where
Ci = Tii^oo] and c2 = E2[Woo]. Multiplying (5.22) by w^ and integrating,
we obtain

c2 - cx = 0.
Combining it with ( 5.21) we find that

Cl=C2=2-^E{oo).

Since cx and c2 are uniquely determined by E(oo), the limits

lim £'i[u;](5 4-5,)   and lim E2[w]{s + Sj)
Sj—*(X> Sj—tOO

are actually independent of the choices of the subsequence Sj. The theorem is
proved.   □

As in the proof of Giga and Kohn [14], w{y, s) will have to converge to Woo
uniformly on any bounded subset as s —► oo , if the solution w^ in ( 5.22 ) -
( 5.23) is independent of the choices of the subsequence Sj. This is the case

if the positive solution to the system is unique.

Theorem 5.5. Let the assumption (5.1) be in force. If a bounded positive solu-
tion with bounded gradient to the system

(5.24) -Ay/+-y-Vy/+ py/= 0   foryx>0,  -oo < yk < oo (2 < k < n),

(5.25) --^- = y/p   foryx=0,  -oo < yk < oo (2 < k < n),

is unique, then for the solution u 0/(1.1) and a € dQ {assuming without loss
of generality that the exterior normal at the point a is {-1, 0, ... , 0)),

(5.26) lim_ {T-t)fiu{a + yy/T^l,t)

exists and equals either 0 or y/. The limit in { 5.26) is taken uniformly on
each bounded set \y\ < C.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The one-dimensional positive solution (i.e., the solution which is a function
of yx only) of ( 5.24) - ( 5.25 ) is unique [10]. Therefore we have the following
corollary, which is a slight generalization (the assumptions on the sign of third
and fourth order derivatives of the initial data are no longer required here) of
the main result proved in [10]. The corollary does not assume (5.1).

Corollary 5.6. Suppose that Q = BR{0) is a ball and that the initial data is
radially symmetric with uq > 0, Mo ̂ 0 and Aw0 > 0. Then for the solution u
o/(l.l) and a = {-R,0, ... ,0)edQ,

(5.27) lim (T - t)pu{a + yVT^t, t)

exists and equals y/, where y/ is the one-dimensional positive solution. The
limit in { 5.27) is taken uniformly on each bounded set \y\ < C.
Proof. We need assumption (5.1) in order to use Theorem 5.5. Clearly, (5.1)
is valid if Theorem 3.1 is valid. We first claim that Theorem 3.1 is valid in
this radially symmetric case without the restriction on p. The restriction on
p comes from the nonexistence result for the system (3.16)—(3.18). In the
radially symmetric case, it is easy to see that the function y> in (3.16)—(3.18)
is a function of the yi variable only, and hence we obtain a contradiction
immediately. This proves the claim.

Now it suffices to prove that the solution w^ is independent of the choices
of the subsequence Sj. Since Woo is independent of the variables {y2, ... , y„)
on yx = 0, the maximum principle implies that (w00)yk = 0 for k = 2, ... , n .
Therefore w^ is uniquely determined as a one-dimensional solution of yi.

Since the solution is now radially symmetric, the maximum of the solution
u{r, *) is attained at the boundary dQ. Therefore Theorem 3.2 yields that the
limit in (5.27) is nonzero.   □

Remark 5.2. If the positive solutions of ( 5.24) - ( 5.25) are "discrete" (which
will guarantee that w^ is independent of the choices of 5;), then the limit in
(5.26) will converge to one of the nonnegative solutions. By "discrete" we

mean that \\y/x - y/2\\ > <?n > 0 for any two distinct solutions y/x and y/2,
where Cn is independent of the solutions. The norm || • || could be any norms
like H^ll = \\py/\\L2, llvll = \\PV\\v + IOV^Hz.2, or ||^|| = \\y/\\L~ .

6. Nonexistence result for the elliptic equations

In this section we prove the nonexistence result used in Section 3. We first
consider the case n — 2; the proof is very simple.

Lemma 6.1. Suppose that n = 2 and

(6.1) Aytp — 0   for 0 <yx < oo,-oo < y2 < oo,

(6.2) -f^->°   Myi=0,oyx
(6.3) o<?(y)<i.
Then

(6.4) (p{y) = constant.
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Proof. Take y0 G [0, oo) x (-00, 00). For any 0 < e < 1, 0 < £ < 1, we
construct the auxiliary function

y/{y) = elog^y~Jol2^ + Cs ,

where Q = max\y_y0\=s[<p{yo) - <p(y)]. Note that y/ = Cs on {\y - y0\ = S} ,
yf(y) > 1 > <P{yo) - <P(y) on \y -y0| = exfe. A direct calculation also shows
that -y/yi{Q, y2) > 0. Thus by the maximum principle,

<P(yo) - <P(y) < W(y)   in the region {y, > 0, 5 < \y - y0\ < ex/e}.

Letting e —> 0+ and then 8 -* 0+, we conclude (p(yo) - <p(y) < 0 for any y
and yo.   D

Lemma 6.2. Suppose that n > 3, p < ^ , and

(6.5) Ay<p = 0   for 0 < yx < 00, -00 < yk < 00 {2 < k < n),

(6.6) ~^- = 9p   foryx=0,
oyx

(6.7) ^(y) > 0.
Then

(6.8) p(y) = 0.
Proof. Assume on the contrary that y> ̂ 0. Then we claim that

(6.9) (P(y)> 77^   fory,>0, l<M<oo,

for some c > 0. In fact, if we take c = min|y|=i tp{y), then by the maximum
principle, c > 0. The function w(|y|) = c/\y\n~2 satisfies

Ato = 0   for 0 < yi < 00, 1 < |y| < 00 ,
dw dtp-^— = 0<-—-    fory,=0,
dyx dyx

w(y) < <p(y)    on \y\ = 1.

Therefore by the maximum principle,

w{\y\) - w{R) < <p{y)   for 0 < yx < 00, \<\y\<R.

Letting R —> 00, we obtain ( 6.9).
In order to study the behavior of q>{y) near 00, we introduce the Kelvin

inversion:
(^(z) = |yrV(y),     z = ̂ .

The function y/{z) may have a singularity at 0. It satisfies the equations:

(6.10) A^ = 0   for 0 < zx < 00, -00 < zk < 00 (2 < k < n),

(6.11) --^- = \z\-ay/p   for zx =0,  |z|>0,    where a = n - p{n - 2).
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Recalling (6.9), we have

(6.12) y/{z)>c>0   forO<z, < 1, 0< \z\ < 1.

For any e > 0, we take a smooth cut-off function Cfr) such that

C(z) = 0   for \z\ < e and \z\ > 4e,
C(z) = 1    for 2e < |z| < 3e,

0<Cfr)<l,     \VC(z)\<j.
Multiplying equation (6.10)  with C,2y/~x  and integrating over Q = {zx >
0, 0 < \z\ < 1} , we obtain

f C2\l^dz+  [ ?\Z\-°yP-ldS
Ja      \W\2 7{Zl=o}

= 2 / ^VCVy/dz < i / C2^#^z + 2 / \VQ2dz.Ja¥ 2Ja      \w\2 Ja
Hence

/        £2\z\-ay/p-xdS<2 j \V{\2dz,
J{zt=o} J a

which implies that
en-l£-a<Cen _L

_       e2
Noticing that a > 1, we obtain a contradiction if e is small enough.   □

Remark 6.1. The restriction on p  in Lemma 6.2 may not be optimal.   We
conjecture that the uniqueness holds for 1 < p < -^ if « > 2.
Note. The uniqueness for 1 < p < -^^   (n > 2) is indeed valid. The detail of
the proof is given by the first author in a paper which appeared in Differential
and Integral Equations 7 (1994), pp. 301-313.
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