THE PROGENY OF AN ENTIRE POPULATION!

By Avrrep J. LoTkA

Metropolitan Life Insurance Company

The literature on renewal theory has grown to considerable dimensions,
until even admittedly incomplete bibliographies list over 100 titles. But a
surprisingly small proportion of these publications exhibits any practical ap-
plications to concrete data, and such applications as have been made (e.g. by
Wicksell, Hadwiger, Rhodes) are for the most part of restricted scope.

Anyone who has been following the development will, I think, feel that this is
unfortunate. It has a double disadvantage. On the one hand the purely
theoretical discussions emphasize difficulties which in practice may be relatively
unimportant, being inherent either in some of the unrealistic ad hoc examples
discussed, or in the expressions used to fit smooth curves to the basic data,
rather than in these data themselves. On the other hand some real difficulties
in application to actual data seem to require further clarification.

Several of the applications that have been made, including some of my own,
are restricted to following up the ‘“progeny’’ of a ‘“‘population element’’ com-
prising only individuals all originating at the same time and therefore all of the
same age (in the case of industrial equipment installation all made at one point
of time). The analysis set forth in the treatment of this special case is competent
also to deal with the practically more important case of the progeny of an initial
population of given age distribution, though no example of this has hitherto
been published.? Such an example will now be given, and at the same time this
will afford an opportunity to clarify some points in the presentation of the more
general case.

Let N, be the total number of females at time ¢, and c.,(a) the number com-
prised within the age limits ¢ and a 4 da. Also, let m.(a) be the age-specific
fertility of females of age a, counting daughters only. If « and w are, respec-
tively the lower and the upper limit of the female reproductive period, and B(f)
the annual births of females, then

) BG) = [ * Nicda)ymi(a) da.

However, it is not in this perfectly general form that the relation is to be ap-
plied. The case to be considered is that in which the “initial” population is
throughout its “future” development, subject to constant age-specific fertility

1 Compare A. J. Lotka, ‘“The progeny of a population element,’”” Am. Jour. Hygiene,

Vol. 8 (1928), p. 875.
2 An example was given by the writer in an oral communication to the Eighth American

Scientific Congress, May 1940, the Proceedings of which have not so far been published.
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and mortality. If we denote the “initial” time by ¢ = w (which we can do since
the zero of time is arbitrary), we can then write

@) B0 = [ * Nocaymy(a) da, (> o

Also, if pi—a(a) is the probability for a female born at time r = ¢ — a of sur-
viving to time ¢, being then a years old, we have

@) B(t — a)pia(a) = Nicia),

and, in particular, since in the case under consideration p.—a(a) is constant for
t — a > w, i.e., for individuals born after { = w

4) B(t — a)p.(a) = N.cia), t>a+ o

Now, we have been at liberty for the “future” values of m.(a) and p.—(a)
to make the arbitrary assumption that they retain their values as of ¢ = w and
t — a > w, respectively. But for the “past’ of the system under consideration
we do not have equal liberty, for any assumption we make must be compatible
with

(a) the initial age distribution
(b) equation (1).

We can, however, within these limitations, assume that (4) still holds for

0 < t < w, thus

(5) B(t — a)p.(a) = N.cia), t>0.
Introducing this in (1) we have

©) B = [ BG— op.(@mla) do, t>0.
But we cannot now, further assume that

(7 my(a) = ma(a), t>0,

for, in general, this would make (6) incompatible with .
We can, however, split the integral in (6) into two parts, thus

® B0 = [ Bt onm@da+ [ Bt opom@ e

with the assumption, only in the range a < {,

9) my(a) = m.(a), a <t
Denoting the first integral in (8) by F(f), and contracting po(a)m,(a) to

¢.(a), we may write (8) in the form

(10) B@t) = F@t) + f ‘ B(t — a)¢.(a) da,
(11) F@) + 8(),
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with

12) {F(t) =0 t>w
F(t) = B() 0<t<a

and

(13) Bo) = [ "Bt — a)pula) da, 1> w0

The assumption (9) has a definite physical meaning. The integral in (6)
has been so split that the first part, F(t), gives the births of daughters from
mothers who themselves were born before ¢ = 0, while the second part, (¢),
gives the births of daughters from mothers born after ¢t = 0. Equation (9)
therefore expresses the assumption that for mothers born at or after ¢t = 0,
the age-specific fertilities for ages a < ¢ have the same values m,(a), independent
of ¢, as prevail for t = w. But at time ¢ there are no mothers of age a > ¢,
who were born after ¢ = 0. Hence the assumption (9) can be quite simply
stated to the effect that the age-specific fertilities m,(a) apply to all mothers
born after time ¢ = 0. This assumption cannot, in general be made for mothers
born before ¢ = 0, because it would not, in general, be compatible with the
given initial age distribution and at the same time with assumption (5). Hence
in the first integral of (8), denoted by F(t) in (10), we must write m.(a), not
mo(a).

Equation (10) is of the form discussed by G. Herglotz,* who writes its solution,
for ¢ > 0, in the form of an exponential series.

(14) B(t) = 2Q; ¢’
where the exponents r; are the roots of the characteristic equation,
(15) ) = [ e™ale) da =1,
while the coefficients Q; are given by
f F(t)e™" dt
(16) Q= -3

f ae " p,.(a) da

There is only one real root of (14), since ¢,(a) = 0, for all values of a. For
complex roots it is convenient to write the corresponding terms of the series (14)
in trigonometric form

a7 Qe = 2Ue* cos vt — 2Ve™ sin ot
(18) 2/ (U2 + VHe* cos (vt + 6),

Il

3 Since puw(a) = 0 fora > w.
4 Math. Annalen, Vol. 65 (1908), pp. 87 et seq.
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where
tan6 = V/U,
U
19 e T 7 rer—
(19) cos 6 N TR
sin 0 = __.L__._ ,
VU + V2
and
. _ RG@+ SH
2 o= L T
( 0) L Gz + Hz b
. _RH — 8G
= R
in which
(22) G = f ae™"* cos va ¢,(a) da,
(23) H= f ae™"* sin va ¢.(a) da,
(24) R = f e ! cos vt F(¢) dt,
0
(25) S = j; e ' sin ot F(2) dl.

For purposes of numerical application to the problem here considered, we must
express the annual births B(¢) for ¢ < w in terms of the given “initial”’ age
distribution at time w.

We have, generally

N;c,(a) — ch‘,,(a + w — t,
Pi—a(@) Po(@ + 0 — 1)

since individuals of age a at time ¢, are @ + w — ¢ years old at tine w.
Introducing the relation (26) in (10) we have

(26) B(t — a) =

27) BO = 7O + [ Vel t 0 =0 p (@) da
and
_ _ [ Necla+ o — 1)
(28) F@ =B — | P CEp— ¢u(a) da,
(29) ) ___Nucw(w— t) _ thcw(a+w_t)¢”(a) da,

Po(w — 1) e Pol@ + w — £)
(11a) = B() — B(®).
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Note that, in computing the integral 8(¢) for any particular value of ¢, the
argument of the function ¢, runs from a« + w — ¢t to w. Thus, for example, if
the zero of time is 1865 and ¢t = w is at 1920, then, in computing F(35), i.e.,
the value of F for 1900, the range of the argument of ¢, in the integral will be
from 10 + 55 — 35 to 55, i.e., from 30 to 55.

Numerical Example. By way of a numerical illustration these principles will
now be applied to a concrete case. We shall start with the age distribution of
the white female population of the United States as constituted in 1920, for
which previous publications furnish some of the required data, including the real
root and the first three pairs of complex roots of the characteristic equation.

From this “initial”’ age distribution in 1920 it is necessary first of all to com-
pute the auxiliary function F(t) for the 55 vears prior to 1920. The first term
B(#) in the right hand member of (28) is very easily computed for successive
values of ¢ from the relation (5a), which simply expresses the fact that persons
a vears old in the year w, i.e., 1920, are the survivors of the B(w — a) persons

‘born in the year w — a.

(5a) N.co(a) = B(w — a)p.(a).

In the diagram Fig. 1, which is drawn in stereographic projection, the age
distribution of the (white female) population of the United States in 1920 is
represented as plotted in a plane reaching forward at right angles to the plane
of the paper. Successive points of B(t) for 0 < ¢ < w, have been computed
“by survivals” according to (5a) and plotted as a curve in the plane of the
paper “at the back” of the diagram. The arrows indicate for a selected point,
namely age 25 in 1920, the path of the computation according to equation (5a.)

The second term B(¢) in the expression (11a) for F(¢) was computed from the
age distribution in 1920, the rates of survival from previous years into 1920,
and the age-specific fertility at each age in the reproductive period, 10 to 55,
on the basis of the relation (28). The results, for this second term in the ex-
pression for F(t) computed for every fifth calendar year back of 1920 to 1875
and interpolated for intervening years,’ were also plotted as a curve in the rear
plane of the diagram. The shaded area in the curve for the age distribution in
1920, and the arrows leading from this shaded area to the curve

(10, 11) B(t) = f B(t — a)e.(a) da

_ ["Neocla+w—1)
(29, 11a) =, @t a=0 v¢.(a) da,

indicate in this case the path of the computation according to_equation (28).

$ Using the Foudray life table for white females in 1919-1920. In the first quinquennial
age group, the following values were used:

p(0.5) = .9460 p(2.5) = 9135
p(1.5) = 9235. p(3.5) = .9080 p(4.5) = .9040
¢ This term vanishes for ¢t < 10, i.c., back of 1875.
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From these two curves, taking differences, the curve of F(f) = B(f) — (b
was plotted, as shown.

With the values of F(f) thus obtained, we may proceed, by formulae (14) to
(25), to compute values of B(f) for all values of ¢ > 0. So far as the period
1865 to 1920, corresponding to 0 < ¢ < w, is concerned, this merely means that
we have an analytical expression to fit what is essentially a fundamental datum
of the problem. For values of ¢ > « the formula gives us a continuation of the
function B(¢) for all future time so long as the given age-specific fertility and
mortality holds.
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Fi1a. 1. Graph illustrating computation of auxiliary function F(t) from ‘‘initial’’ age
distribution.

The final results of this computation are exhibited in Figs. 2, 3 and 4. Of
these, Fig. 2 exhibits the first, second and third oscillatory components for the
period from 1890 forward. It will be seen that the waves are heavily damped,
so that after a relatively short period the aperiodic component dominates the
course of events.

Fig. 3 exhibits, for the years from 1865 to 1920, i.e., for the period 0 < ¢ < w,
the aperiodic component (in a dashed line) and, as indicated by small circles,
the sum of this component plus the three oscillatory components. It will be
seen that from about 1890 forward the points so obtained follow rather closely
the value B(f) derived by survivals from the age distribution in 1920.
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Fic. 2. First three oscillatory components of total annual births
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F1c. 3. Graph of functions B(t), 8(¢), and F(¢) for 0 < t < w, i.e., for 1865 to 1920, to-
gether with aperiodic component; also, summation of aperiodic and first three os-
cillatory components.
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F1G. 4. Sum of aperiodic and three oscillatory terms of series solution compared with
results of ‘‘step by step’’ computation of annual births.

TABLE 1

Constants of the Sertes Solution (14) of Integral Equation (10) to Third Oscillatory
Component Inclusive t = O at 1866

Func- | Aperiodic Com- Oscillatory Components

tion ponent First ] Second Third
u .543 X 10— —.386 X 10! | —8.731 X 1072 | —9.804 X 10~
v 0 21.448 X 102 | 31.542 X 1072 | 48.849 X 10—
G [28.226 25.768 51.225 37.008

H 0 14.938 —18.637 17.266

R [23.262 X 10° |—17.863 X 10° |—37.196 X 10° 11.684 X 10¢
S 0 —31.508 X 10° 16.827 X 10° |—16.543 X 108
U [82.416 X 10* |—10.494 X 10* |—74.679 X 10¢ 88.014 X 10°
|4 0 61.442 X 10® |[—56.787 X 10° 48.808 X 10¢
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Prior to about 1890, four components alone are quite inadequate, and the
corresponding points have been omitted from the diagram. The lack of con-
cordance, with such limited components, is inconsequential in this part of the
‘series, since the purpose of this part of the work was merely to compute the
auxiliary function F(f), and the fit obtained for B(t) in this range, so far as it goes,
is merely a by-product, the main interest being in the course of B(f) for ¢ > w,
i.e., in the years following 1920.

This course is charted in Fig. 4, in which the points obtained by the series
solution (14) of (10) are again shown as small circles, while the fully drawn curve
is derived from my previous publication ‘“The Progressive Adjustment of Age
Distribution to Fecundity.”’” The annual births in that case were obtained
“step by step” by computing age distributions by survivals for successive

TABLE II

United States White Female Population 1920, Observed; Also, the Same Projected
Forward for Later Years®

| g [ [P
1920 49,390 1,082 23.32
1930 51,727 1,162 22.46
1940 56,910 1,252 22.00
1950 61,639 1,307 21.20
1960 65,835 1,379 20.95
1970 69,829 1,465 20.98
1975 71,828 1,504 20.94
1980 73,850 1,543 20.89
1985 75,902 1,584 20.87

quinquennial periods, and applying to the reproductive age groups, in each
case, the values of the reproductivity m,(a).

It will be seen that the points obtained by the solution (14) follow very closely
those computed “step by step,”” although in the computation of the latter an
approximation was made, using pivotal values of p.(a) for the several quin-
quennial age groups. A slight error introduced in this way would tend to be
cumulative, and perhaps accounts for the fact that towards the end of the
period covered (1985), the two sets of values diverge slightly. Even so, in 1985,
the divergence is only about .4 percent.

The series solution has, of course, the advantage that it gives directly the
result for any particular point of time, whereas the ‘“‘step by step’’ method re-

7 Jour. Washington Acad. Sct., Vol. 16 (1926), p. 505.

8 Calculated step by step from survival ratios and age specific fertilities, both held
constant as of 1920 (reproduced for ready reference from Jour. Wash. Acad. Sci., Vol. 16,
p. 505).
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quires the computation of the annual births for all intervening points in order
to obtain the result for the chosen point of time.

Furthermore, the series tells us at once that the course of events is of the nature
of a trend proceeding in geometric progression upon which are superposed a
series of damped oscillations, of which the fundamental has a wave length equal
approximately to the mean length of one generation from mother to daughter,
i.e., about 28 years. '

Alternative procedure. The procedure set forth in the preceding sections in-
volves not only arbitrary assumptions regarding the values of p(a) and m(a)
for “future” time, which are fundamental to the problem under consideration,
but involves further incidental assumptions regarding their values prior to the.
“initial” condition at the instant denoted by ¢ = w. These incidental assump-
tions are in a sense superfluous, since the future history of the system is com-
pletely determined by the initial age distribution and the assumed “future”
values of p(a) and m(a). The additional assumptions were introduced merely
for the purpose of translating the initial age distribution into a series of values of
B(t) for 0 < ¢t < w, i.e., prior to the given initial age distribution.

In actual fact the age distribution at time ¢ = w did not arise in the manner
assumed; actually both p(a) and m(a) undoubtedly varied in the period 1865
to 1920, and migration also affected the situation. The quantity F(t) intro-
duced in equation (10) is, in fact, a purely auxiliary function having no direct
relation to the biological events at time ¢ < w.

An alternative procedure which would avoid these conflicts, and introduce
assumptions only regarding “future” values of p(a) and m(a), would be to
compute B(t) step by step over the period from B(1920) to B(1920 + w) =
B(1975).

Placing the zero of time ¢ = 1920 this would give B(f) for 0 < ¢ < w. For
t > o we should have, simply

B = [ B~ d)pum(a) da t> o,

using, in the evaluation of the integral, the values of B(t — a) obtained by the
step by step process.
We could here also split the integral into two parts

B = [ Bl ~ dounla) da + [ B ~ dhownla) da

= F(t) + ft B(t — a)gun(a) da.

But the function ¢ye0(a) is now the same in the two integrals, and there is no
occasion, in this case, for distinguishing the two parts of the integral.
If this procedure is adopted, its application to the course of B(f) for ¢t > w,
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i.e. beyond 1975, is of minor interest, for by that time it has practically settled
down to the aperiodic (exponential) component, the oscillations being greatly
damped down. The major interest in the result of a computation carried out
by this procedure would be in the fitting of a series of the form (14) to the
function B(t) in the range 1920 to 1975, which, in this setting, figures as a known
“arbitrary’’ function.

Of the two alternative procedures the one carried out in detail in the text
and the numerical example is of greater interest, as exhibiting in greater gene-
rality the application of the Hertz-Herglotz solution.
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