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Background: Exploring novel biomarkers and developing effective therapeutic strategies can improve the 

prognosis of lung squamous cell carcinoma (LUSC) in the future. The prognostic value of tumor-infiltrating 

immune cells (TICs) in solid tumors has been extensively studied. However, the landscape of TICs involved 

in the prognosis of non-small cell lung cancer (NSCLC), especially in LUSC, remains unclear and should be 

systematically investigated. 

Methods: This retrospective study analyzed the immune-related transcriptional profiles of 490 LUSC 

patients from The Cancer Genome Atlas (TCGA) cohort. Using the CIBERSORT method, TICs were 

evaluated and examined for their association with overall survival (OS) in LUSC.

Results: Out of the 27 TICs, 14 were correlated with prognosis in LUSC. A novel prognostic model 

characterized by fewer memory B cells and more central memory CD8 T cells, regulatory T cells (Tregs), 

and plasmacytoid dendritic cell (pDC) infiltration predicted poor OS in LUSC with high accuracy. The 1-, 3-, 

and 5-year areas under the curve (AUC) were 0.95, 0.98, and 0.96, respectively, in the training cohort. This 

finding was further validated in the validation cohort, where the 1-, 3-, and 5-year AUCs were 0.95, 0.98, 

and 0.95, respectively.

Conclusions: These findings may provide more effective prognostic biomarkers and potential therapeutic 

targets for the immunotherapy of LUSC.
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Introduction

Nowadays, lung cancer has become a global public health 

issue and is the leading cause of cancer-related death 

worldwide (1). Around 95% of lung cancers are divided into 

two main types: small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC) (2). According to clinical, 

histological, genetic, and molecular aspects, NSCLC can be 

further classified into 2 groups, including the most common 
histological subtype lung adenocarcinoma (LUAD), 

followed by lung squamous cell carcinoma (LUSC) (2). 

LUSC currently has both high incidence and mortality 

rates, and systemic cytotoxic chemotherapy has been the 

main treatment strategy for advanced stage LUSC (3). 
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However, the side effects and drug resistance have caused 

the benefits of these treatments to reach a plateau (4). As the 

critical biomarkers and precise targets of the development 

and progression of LUSC remain unclear, molecular-

targeted therapy and immunotherapy are limited (5,6). 

Thus, exploring novel biomarkers and developing effective 

therapeutic strategies can improve the prognosis of LUSC 

in the future.

Previously,  mal ignant cancer phenotypes were 

predominantly defined by the intrinsic activities of cancer 
cells. In fact, it has been reported that components of 

the tumor microenvironment (TME) are closely related 

to prognosis, especially tumor-infiltrating immune cells 

(TICs) (7,8). Growing evidence suggests that increased 

infiltration of B cells, T cells, and dendritic cells (DCs) is 
associated with better prognosis in patients with NSCLC, 

however regulatory T cells (Tregs) and tumor-associated 

macrophages (TAMs) have the opposite effect (9). Recently, 

TICs have been studied in depth and multiple mechanisms 

have been found to contribute to lung cancer escape from 

immunosurveillance (10-13). In addition, immunotherapy, 

such as immune checkpoint blockade therapies, has recently 

emerged as a promising therapy strategy in lung cancer  

(14-16). Nevertheless, the landscape of TICs and the 

immune-related antigens involved in the prognosis of 

NSCLC, especially in LUSC, remain unclear (17-20). 

Therefore, it is necessary to intensively investigate whether 

the immune cell landscape can assist in evaluating the disease 

outcomes of patients with advanced-stage disease and can 

help develop further effective immunomodulatory strategies.

At present, emerging bioinformatics tools hold great 

promise for the characterization of TIC subsets. Compared 

with traditional techniques including immunohistochemistry 

and flow cytometry, bioinformatics techniques can 

draw more convincing and comprehensive conclusions, 

utilizing more available phenotypic markers and stricter  

criteria (21,22).

In this study, based on The Cancer Genome Atlas 

(TCGA) cohort, we mapped the immune cell compositions 

using the CIBERSORT method and quantified the 

immune-related antigens present in LUSC tissues. 

Furthermore, we characterized the prognostic landscape 

of 27 tumor infiltrates and identified 17 relative immune 

checkpoint modulators in LUSC. Importantly, a novel 

prognostic model was structured to predict overall survival 

(OS) in LUSC, which may contribute to exploring effective 

immunotherapies. 

We present the following article in accordance with 

the STARD reporting checklist (available at http://dx.doi.

org/10.21037/atm-21-1852).

Methods

The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013).

Database

Information of LUSC gene expression profiles and relevant 
normal controls were downloaded from the public database 

the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) 

in October 2019. The corresponding clinical datasets such as 

clinicopathological information and survival rates were also 

obtained from the TCGA data portal and integrated into the 

gene expression data. All patients were randomly assigned to 

2 cohorts, including the training cohort, which comprised 

40% of the total patients, and the validation cohort, which 

comprised 60% of the total patients. Then, we used Cell 

type Identification By Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT, a deconvolution algorithm) 

to identify the subpopulations of TICs. In addition, 17 

immune molecules previously recognized as crucial immune 

checkpoint modulators, including CD27, CD40, CD58, 

CD70, CD86, CD274, CD276, CTLA4, HAVCR2, ICOS, 

IDO1, LAG3, PDCD1, PDCD1LG2, TIGIT, TNFRSF14, 

and VTCN1, were analyzed for their correlation with tumor 

infiltrates and prognostic value in LUSC.

Evaluation of TICs

We evaluated the fractions of these 27 TIC subpopulations 

with standard gene expression data. Furthermore, the 

“CIBERSORT.R” package was utilized to generate a 

proportion matrix of TICs in LUSC, with the default 

signature matrix at 100 permutations (23). Only samples 

with a CIBERSORT P value <0.05 were enrolled for 

subsequent study.

Algorithm and training

As an ensemble learning method which combines multiple 

decision trees, a random forest classifier was used to train 
the data. Multiple decision trees are trained simultaneously 

when we utilize a random forest model, and the majority 

output across all trees determines the outcome of a random 

forest model. The maximum depth of each tree is 4 nodes. 

http://dx.doi.org/10.21037/atm-21-1852
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In our study, the random forest model was trained until each 

tree reached the maximum depth under the constraints of 

the supplied parameters. Only the training set was utilized 

to train the model, and the generalizability of the model was 

tested with the validation set. The random forest model was 

trained on an IntelVR CoreTM i5 Central Processing Unit 

and implemented with the scikit-learn framework (24).

Statistical analyses

Heatmaps and clustering were generated with ClustVis, a 

web tool for visualizing the clustering of multivariate data. 

The principal component analysis (PCA) plot for the TICs 

in our study was generated with the plotPCA command 

from the DEseq2 package. The differences in TICs between 

tumor and normal tissue were compared with the t-test, 

and the associations between TIC levels and overall survival 

(OS) in LUSC patients were illustrated using Kaplan-Meier 

plots. Receiver operating characteristic (ROC) curves were 

utilized to evaluate the prognostic accuracy of the model. 

Hazard ratios with 95% confidence interval (CI) and log-

rank P values were calculated. A P value of <0.05 was 

considered as the cut-off value.

Results

TIC distribution characteristics in LUSC

The data of 490 LUSC cases and 49 normal controls were 

available from the TCGA database in October 2019. Then, 

we utilized the CIBERSORT method to classify and count 

the 27 immune cell subtypes, including T cells [type 17 T 

helper cell, central memory CD4 T cell, type 1 T helper 

cell, effector memory CD8 T cell, Tregs, T follicular helper 

(Tfh) cell, central memory CD8 T cell, gamma delta T 

cell, activated CD4 T cell, activated CD8 T cell, effector 

memory CD4 T cell, and type 2 T helper cell], B cells 

(activated B cell, immature B cell, and memory B cell), 

natural killer (NK) cells (NK T cell, CD56dim NK cell, and 

CD56bright NK cell), and myeloid subsets [immature DC, 

neutrophil, activated DC, myeloid-derived suppressor cell 

(MDSC), macrophage, plasmacytoid dendritic cell (pDC), 

monocyte, eosinophil, and mast cell].

Firstly, the infiltration proportions of different TIC 

subtypes showed moderate to close correlations (Figure 1). 

Subsequently, PCA was utilized to detect the infiltration 

patterns of both the LUSC group and the normal control 

group. Surprisingly, there was a significant difference 

between the tumor and normal control groups, which might 

be an intrinsic feature of LUSC (Figure 2A). In addition, we 

also compared the immune cell infiltrate profiles of LUSC 
patients with normal controls. As shown in Figure 2B, the 

proportions of activated CD4 T cells, memory B cells, 

CD56dim NK cells, and CD56bright NK cells in tumor 

tissue were higher than those in the normal control group. 

In contrast, the remaining cell types were lower in the 

LUSC patient group. These results indicated that the TME 

in LUSC was completely different from that in normal 

tissue, and TICs played an important role in tumor genesis 

and development.

Immune checkpoint modulators had no prognostic value in 

LUSC

As previously described, immune checkpoint modulators 

play important roles in all kinds of physiological and 

pathological processes (25). There were 17 crucial immune 

molecules, namely CD27, CD40, CD58, CD70, CD86, 

CD274 (PDL1), CD276, CTLA4, HAVCR2 (TIM3), 

ICOS, IDO1, LAG3, PDCD1, PDCD1LG2, TIGIT, 

TNFRSF14, and VTCN1, included in our analysis. As 

shown in Figure 3A, the expression of immune checkpoint 

modulators correlated closely with the infiltration of TICs 
in LUSC. Meanwhile, the prognostic value of immune 

checkpoint modulators was also explored, however, none 

of them were correlated with the prognosis of LUSC  

(Figure 3B,C,D,E,F,G and Figure S1).

The prognostic value of TICs in LUSC patients

To examine the predictive value of TICs for OS, Kaplan-

Meier survival analyses were performed according to 

different TIC distribution patterns. The results showed 

that 14 of the 27 TICs were associated with the outcome in 

LUSC. Only 2 infiltrates (memory B cells and CD56bright 
NK cells) were related to improved prognosis, while 

12 other infiltrates, including central memory CD4 

T cells, central memory CD8 T cells, Tregs, gamma 

delta T cells, CD56dim NK cells, macrophages, pDCs, 

MDSCs, neutrophils, type 1 T helper cells, mast cells, 

and eosinophils, were related to poor survival in LUSC  

(Figure 4 and Figure S2).

High efficiency immune prognostic model in LUSC

Based on the above results, a novel predictive model with 

the ability to calculate the prognostic risk score for LUSC 

https://cdn.amegroups.cn/static/public/ATM-21-1852-Supplementary.pdf
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was established after applying the random forest model to 

the training set. LUSC patients were divided into low-risk 

and high-risk groups according to the prognostic risk score 

analyzed with “Cutoff Finder”, an online tool to identify 

the best cut-off (26) (Figure 5A). The risk curve and survival 

status showed that patients considered as high risk tended 

to have a worse prognosis than patients with low risk  

(Figure 5B). Central memory CD8+ T cells, pDCs, and 

Tregs were found to be enriched in the high-risk group, 

while memory B cells were predominantly enriched 

in the low-risk group (Figure 5C). It was clear that the 

new immune-related predictive model was significantly 

associated with OS in LUSC patients (P<0.0001)  

(Figure 5D). The 1-, 3-, and 5-year areas under the curve 

(AUC) of the survival ROC curves reached 0.95, 0.98, and 

0.96 respectively, supporting the accuracy and effectiveness 

of the new predictive model (Figure 5E).

To further verify the predictive ability of the new 

immune-related model, a similar analysis was performed 

in the validation dataset. Consistent with the training 

Figure 1 Correlations of tumor-infiltrating immune cell (TIC) subsets in lung squamous cell carcinoma. The proportions of different TIC 
subpopulations were moderately to closely correlated.
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set, patients considered as high risk tended to have worse 

outcomes than patients with low risk (Figure 6A,B,C). The 

immune-related predictive model was also significantly 

correlated with OS in the validation cohort (P<0.0001) 

(Figure 6D). The 1-, 3-, and 5-year AUCs of the survival 

ROC curves reached 0.95, 0.98, and 0.95 respectively 

(Figure 6E), indicating satisfactory predictive stratification 

by the final immune-related predictive model.

Discussion

In this study, we systematically elaborated on TIC 

composition, immune checkpoint modulator distribution, 

and their prognostic value in LUSC. More importantly, 

based on TICs, we structured a novel immune-related 

prognostic model for LUSC which indicated that patients 

with fewer memory B cells and more central memory CD8 

T cells, Tregs, and pDC infiltration had poor prognosis. 

This predictive model can identify LUSC patients with 

worse prognoses more accurately and effectively.

It was shown that Tfh cells were positively associated 

with better prognosis in a similar study (27), while an 

increased number of neutrophils indicated a poor outcome 

in LUSC. Consistent with the above study, we demonstrated 

Figure 2 Distribution differences of tumor-infiltrating immune cells (TICs) between normal and lung squamous cell carcinoma (LUSC) 
patients. (A) The infiltration patterns of the LUSC and normal groups were characterized by a principal component analysis (PCA) model. (B) 
Comparison of TIC subsets between tumor and normal tissue.

0.6

0.3

0.0

–0.3

–0.6

P
C

2
 (
1

2
.3

%
)

PC1 (65.42%)

–0.5 0.0 0.5

F
ra

c
ti
o

n

Normal

Normal
P<0.001 P<0.001

P<0.001 P<0.001

P<0.001
P<0.001

P<0.001

P<0.001
P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001
P<0.001

P<0.001

P<0.001P=0.001

P=0.022

Tumor

Tumor

A

B

1.0

0.8

0.6

0.4

0.2

0.0



Guo et al. The prognosis of lung squamous cell carcinoma

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):799 | http://dx.doi.org/10.21037/atm-21-1852

Page 6 of 11

Figure 3 Prognostic analysis of immune checkpoint modulators in lung squamous cell carcinoma (LUSC). (A) Correlations between 

immunomodulators and the tumor-infiltrating immune cell (TIC) distribution patterns; (B,C,D,E,F,G) Kaplan-Meier curves of different 
immune modulators in LUSC. *P<0.5, **P<0.01.
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Figure 4 Kaplan-Meier curves of tumor-infiltrating immune cell (TIC) distribution patterns in lung squamous cell carcinoma (LUSC).  
(A-L) Kaplan-Meier curves of overall survival split within LUSC. Hazard ratios with 95% CI and log rank P values were calculated. P<0.05 

was considered significant.
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Figure 5 Risk score analysis of the immune-related predictive model in lung squamous cell carcinoma (LUSC) in the training cohort. 

(A) Low- and high-risk groups of LUSC patients based on the predictive model. (B) Survival status and duration of LUSC patients. (C) 

Proportional heatmap of the 4 tumor-infiltrating immune cells (TICs) in LUSC. The transition from blue to red indicates the trend from 
a low proportion to a high proportion. (D) The immune-related predictive model significantly predicts overall survival (OS) in LUSC. (E) 
Receiver operating characteristic (ROC) curve analysis of survival prediction by the predictive model. 
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Figure 6 Risk score analysis of the immune-related predictive model in lung squamous cell carcinoma (LUSC) in the validation cohort. 

(A) Low- and high-risk groups of LUSC patients based on the predictive model. (B) Survival status and duration of LUSC patients. (C) 

Proportional heatmap of the 4 tumor-infiltrating immune cells (TICs) in LUSC. The transition from blue to red indicates the trend from 
a low proportion to a high proportion. (D) The immune-related predictive model significantly predicts overall survival (OS) in LUSC. (E) 
Receiver operating characteristic (ROC) curve analysis of survival prediction by the predictive model.
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a negative correlation between neutrophil count and patient 

survival. It is well established that inflammation is one of the 
hallmarks of tumors (28). The activity of other immune cells 

could be inhibited by neutrophils, leading to tumorigenesis 

and immune escape. While the prognostic value of Tfh cells 

in LUSC remains controversial, our results suggested that 

Tfh cells were inversely correlated with patient survival. A 

previous study (29) demonstrated that a high number of Tfh 

cells could induce immunosuppression and lead to tumor 

development in NSCLC, indicating the tumor-promoting 

role of Tfh cells in lung cancer. More importantly, the AUC 

of the immune-related prognostic model reached above 0.95 

in both the training and validation cohorts, indicating that 

our novel model has more stability and efficiency.
A meta-analysis (30) showed that FoxP3+ Tregs had 

dual prognostic value depending on the tumor types. It 

was also demonstrated that Tregs and pDCs predicted 

worse prognosis in the TME of gastric cancer (GC) as the 

main immunosuppressive cells (31). As the key component 

of humoral immunity, B cells play an important role in 

the prognostic impact in human solid tumors. A previous 

study (32) proved that CD27-isotype-switched memory B  

cells served as independent favorable predictors of prognosis 

in human hepatocellular carcinoma (HCC). Consistent 

with the previous studies above, we also indicated that 

Tregs, pDCs, and memory B cells had the same prognostic 

value in LUSC. Usually, central memory CD8+ T cells are 

considered as anti-tumor factors (33). Although this was a 

negative prognostic marker for LUSC in this study, it is not 

contradictory. We speculated that the higher the degree of 

malignancy of the tumor, the more the infiltration of central 
memory CD8+ T cells with anti-tumor function, but the 

increase in the degree of immune cell infiltration is not as 
rapid as the rate of tumor progression. Thus, a high level 

of immune cell infiltration does not necessarily represent a 
good prognosis.

In conclusion, we provided a comprehensive analysis of 

the effects of TICs and immune checkpoint modulators on 

the prognosis of LUSC, and established a novel immune-

related prognostic model based on the TICs which could 

effectively identify the LUSC patients with poor prognosis. 

These findings provide effective strategies for improving 

immunotherapy and guiding personalized therapy in LUSC.

Acknowledgments

Funding: This study was supported by the National Natural 

Science Foundation of China (No. 81800491).

Footnote

Reporting Checklist: The authors have completed the STARD 

reporting checklist. Available at http://dx.doi.org/10.21037/

atm-21-1852

Conflicts of Interest: All authors have completed the ICMJE 

uniform disclosure form (available at http://dx.doi.

org/10.21037/atm-21-1852). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 

aspects of the work in ensuring that questions related 

to the accuracy or integrity of any part of the work are 

appropriately investigated and resolved. The study was 

conducted in accordance with the Declaration of Helsinki (as 

revised in 2013). 

Open Access Statement: This is an Open Access article 

distributed in accordance with the Creative Commons 

Attribution-NonCommercial-NoDerivs 4.0 International 

License (CC BY-NC-ND 4.0), which permits the non-

commercial replication and distribution of the article with 

the strict proviso that no changes or edits are made and the 

original work is properly cited (including links to both the 

formal publication through the relevant DOI and the license). 

See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Alberg AJ, Brock MV, Ford JG, et al. Epidemiology 

of lung cancer: Diagnosis and management of lung 

cancer, 3rd ed: American College of Chest Physicians 

evidence-based clinical practice guidelines. Chest 

2013;143:e1S-e29S.

2. Nasim F, Sabath BF, Eapen GA. Lung Cancer. Med Clin 

North Am 2019;103:463-73.

3. Lemjabbar-Alaoui H, Hassan OU, Yang YW, et al. Lung 

cancer: Biology and treatment options. Biochim Biophys 

Acta 2015;1856:189-210.

4. Jordan EJ, Kim HR, Arcila ME, et al. Prospective 

Comprehensive Molecular Characterization of Lung 

Adenocarcinomas for Efficient Patient Matching to 
Approved and Emerging Therapies. Cancer Discov 

2017;7:596-609.

5. Kelly RL, Le D, Zhao J, et al. Reduction of Nonspecificity 
Motifs in Synthetic Antibody Libraries. J Mol Biol 

2018;430:119-30.

6. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus 

http://dx.doi.org/10.21037/atm-21-1852
http://dx.doi.org/10.21037/atm-21-1852
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 9, No 9 May 2021 Page 11 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):799 | http://dx.doi.org/10.21037/atm-21-1852

Docetaxel in Advanced Squamous-Cell Non-Small-Cell 

Lung Cancer. N Engl J Med 2015;373:123-35.

7. Diakos CI, Charles KA, McMillan DC, et al. Cancer-

related inflammation and treatment effectiveness. Lancet 
Oncol 2014;15:e493-503.

8. Candido J, Hagemann T. Cancer-related inflammation. J 
Clin Immunol 2013;33 Suppl 1:S79-84.

9. Dieu-Nosjean MC, Antoine M, Danel C, et al. Long-

term survival for patients with non-small-cell lung cancer 

with intratumoral lymphoid structures. J Clin Oncol 

2008;26:4410-7.

10. Chockley PJ, Chen J, Chen G, et al. Epithelial-

mesenchymal transition leads to NK cell-mediated 

metastasis-specific immunosurveillance in lung cancer. J 
Clin Invest 2018;128:1384-96.

11. Mami-Chouaib F, Blanc C, Corgnac S, et al. Resident 

memory T cells, critical components in tumor immunology. 

J Immunother Cancer 2018;6:87.

12. Saigi M, Alburquerque-Bejar JJ, Mc Leer-Florin A, et 

al. MET-Oncogenic and JAK2-Inactivating Alterations 

Are Independent Factors That Affect Regulation of 

PD-L1 Expression in Lung Cancer. Clin Cancer Res 

2018;24:4579-87.

13. Cassetta L, Pollard JW. Cancer immunosurveillance: role 

of patrolling monocytes. Cell Res 2016;26:3-4.

14. Steven A, Fisher SA, Robinson BW. Immunotherapy for 

lung cancer. Respirology 2016;21:821-33.

15. Reck M, Heigener D, Reinmuth N. Immunotherapy for 

small-cell lung cancer: emerging evidence. Future Oncol 

2016;12:931-43.

16. Villanueva N, Bazhenova L. New strategies in 

immunotherapy for lung cancer: beyond PD-1/PD-L1. 

Ther Adv Respir Dis 2018;12:1753466618794133.

17. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive 

immune cells in the tumor microenvironment. Nat 

Immunol 2013;14:1014-22.

18. Yang Y. Cancer immunotherapy: harnessing the immune 

system to battle cancer. J Clin Invest 2015;125:3335-7.

19. Xu F, Zhang H, Chen J, et al. Immune signature of T 

follicular helper cells predicts clinical prognostic and 

therapeutic impact in lung squamous cell carcinoma. Int 

Immunopharmacol 2020;81:105932.

20. Seo JS, Lee JW, Kim A, et al. Whole Exome 

and Transcriptome Analyses Integrated with 

Microenvironmental Immune Signatures of Lung Squamous 

Cell Carcinoma. Cancer Immunol Res 2018;6:848-59.

21. Angarica VE, Del Sol A. Bioinformatics Tools for 

Genome-Wide Epigenetic Research. Adv Exp Med Biol 

2017;978:489-512.

22. Mulder NJ, Adebiyi E, Adebiyi M, et al. Development 

of Bioinformatics Infrastructure for Genomics Research. 

Glob Heart 2017;12:91-8.

23. Chen B, Khodadoust MS, Liu CL, et al. Profiling Tumor 
Infiltrating Immune Cells with CIBERSORT. Methods 
Mol Biol 2018;1711:243-59.

24. Hu WS, Hsieh MH, Lin CL. A novel atrial fibrillation 
prediction model for Chinese subjects: a nationwide cohort 

investigation of 682 237 study participants with random 

forest model. Europace 2019;21:1307-12.

25. Lim S, Phillips JB, Madeira da Silva L, et al. Interplay 

between Immune Checkpoint Proteins and Cellular 

Metabolism. Cancer Res 2017;77:1245-9.

26. Budczies J, Klauschen F, Sinn BV, et al. Cutoff Finder: 

a comprehensive and straightforward Web application 

enabling rapid biomarker cutoff optimization. PLoS One 

2012;7:e51862.

27. Liu X, Wu S, Yang Y, et al. The prognostic landscape of 

tumor-infiltrating immune cell and immunomodulators in 
lung cancer. Biomed Pharmacother 2017;95:55-61.

28. Hanahan D, Weinberg RA. Hallmarks of cancer: the next 

generation. Cell 2011;144:646-74.

29. Qiu L, Yu Q, Zhou Y, et al. Functionally impaired 

follicular helper T cells induce regulatory B cells 

and CD14(+) human leukocyte antigen-DR(-) cell 

differentiation in non-small cell lung cancer. Cancer Sci 

2018;109:3751-61.

30. Shang B, Liu Y, Jiang SJ, et al. Prognostic value of tumor-

infiltrating FoxP3+ regulatory T cells in cancers: a 
systematic review and meta-analysis. Sci Rep 2015;5:15179.

31. Liu X, Yu H, Yan C, et al. Plasmacytoid Dendritic Cells 

and ICOS(+) Regulatory T Cells Predict Poor Prognosis in 

Gastric Cancer: A Pilot Study. J Cancer 2019;10:6711-5.

32. Zhang Z, Ma L, Goswami S, et al. Landscape of 

infiltrating B cells and their clinical significance in 
human hepatocellular carcinoma. Oncoimmunology 

2019;8:e1571388.

33. de Mey S, Jiang H, Wang H, et al: Potential of memory 

T cells in bridging preoperative chemoradiation and 

immunotherapy in rectal cancer. Radiother Oncol 

2018;127:361-9.

Cite this article as: Guo L, Yi J, Liu M, Li J. The prognostic 

landscape of tumor-infiltrating immune cells in lung squamous 
cell carcinoma. Ann Transl Med 2021;9(9):799. doi: 10.21037/

atm-21-1852



© Annals of Translational Medicine. All rights reserved. http://dx.doi.org/10.21037/atm-21-1852

Supplementary

Figure S1 (A-K) Kaplan-Meier curve of different immune modulators in LUSC. Hazard ratio with 95% CI and log rank P value were 

calculated. P<0.05 was considered significant.
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Figure S2 (A-O) Kaplan-Meier curve of TIC distribution patterns in LUSC. Hazard ratio with 95% CI and log rank P value were 

calculated. P<0.05 was considered significant.
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