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In this paper we present an intermediate program representation, called the program dependence 

graph (PDG), that makes explicit both the data and control dependence5 for each operation in a 
program. Data dependences have been used to represent only the relevant data flow relationships of 
a program. Control dependence5 are introduced to analogously represent only the essential control 
flow relationships of a program. Control dependences are derived from the usual control flow graph. 
Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG 
connect computationally related parts of the program, a single walk of these dependences is sufficient 
to perform many optimizations. The PDG allows transformations such as vectorization, that previ- 
ously required special treatment of control dependence, to be performed in a manner that is uniform 
for both control and data dependences. Program transformations that require interaction of the two 
dependence types can also be easily handled with our representation. As an example, an incremental 
approach to modifying data dependences resulting from branch deletion or loop unrolling is intro- 
duced. The PDG supports incremental optimization, permitting transformations to be triggered by 
one another and applied only to affected dependences. 

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors-compilers, 
optimization 

General Terms: Algorithms, Languages, Performance 

Additional Key Words and Phrases: Data flow, dependence analysis, intermediate program represen- 
tation, internal program form, vectorization, parallelism, node splitting, code motion, loop fusion, 
slicing, debugging, incremental data flow analysis, branch deletion, loop unrolling 

1. INTRODUCTION 

This paper introduces a program representation, called the Program Dependence 
Graph or PDG, that provides a unifying framework in which previous work in 
program optimization may be applied. We present a new incremental data flow 
algorithm that operates directly on the PDG. This algorithm is important not 
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only because of its efficiency, but also because unlike other incremental flow 
algorithms, it permits incremental optimization as the data flow information is 
updated. Work by others in the area of code motion, vectorization, program 
understanding, and software engineering can be unified by being expressed in 
terms of the PDG. 

The PDG makes explicit both the data and control dependences for each 
operation in a program. Data dependence graphs have provided some optimizing 
compilers with an explicit representation of the definition-use relationships 
implicitly present in a source program [31, 361. A control flow graph [l, 31 has 
been the usual representation for the control flow relationships of a program; the 
control conditions on which an operation depends can be derived from such a 
graph. An undesirable property of a control flow graph, however, is a fixed 
sequencing of operations that need not hold. The program dependence graph 
explicitly represents both the essential data relationships, as present in the data 
dependence graph, and the essential control relationships, without the unneces- 
sary sequencing present in the control flow graph.’ These dependence relation- 
ships determine the necessary sequencing between operations, exposing potential 
parallelism. 

Since dependences in the PDG connect computationally relevant parts of the 
program, many code improving transformations require less time to perform than 
with other program representations. A single walk of these dependences is 
sufficient to perform many optimizations. Since both kinds of dependences are 
present in a single form, transformations like vectorization can treat control and 
data dependence uniformly. Program transformations such as code motion, which 
require interaction of the two types of dependences, can also be easily handled 
by our single graph. In addition, the hierarchical nature of the PDG allows large 
sections of the program to be summarized. It is thus the basis for efficient 
algorithms for many reordering transformations [50]. 

Our motivation in developing the PDG has been to develop a program repre- 
sentation useful in an optimizing compiler for a vector or parallel machine. Such 
a compiler must perform both conventional optimizations as well as new trans- 
formations for the detection of parallelism. The PDG is of interest for conven- 
tional machines as well, because of the efficiency with which many powerful 
optimizations may be performed. (The reader is forewarned, though, that the 
methods discussed in this paper cannot be directly incorporated into an existing 
compiler; after interprocedural data flow analysis, a PDG must be built from 
whatever initial intermediate is produced by the existing front-end.) 

The remainder of the paper will address each of these issues in turn: related 
work in dependence-based program representations; construction of the PDG; a 
sampling of applications of the PDG; and a detailed description of a new 
incremental data flow algorithm for use when performing branch deletion, loop 
unpeeling, and loop unrolling. An appendix contains the basic graph theoretic 
terminology used. 

1 Of course, determining the exact control conditions under which an operation is executed (like 

determining the exact definition-use relationships) is an unsolvable problem. However, we can 

conservatively determine all possible control conditions, just as all possible definition-use relation- 
ships can be determined by data flow analysis. 
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2. RELATED WORK 

Much related work has been performed over the past ten years in the area of 
dependence-based program representations. Dennis’ work [18] opened up the 
area of data flow computation [19]. Most representations in that area treat all 
dependences as data dependences, control dependences being converted as 
necessary [17]. (Some representations, however, do treat control dependence 
differently [49].) Unnecessary statement orderings are eliminated in data flow 
machine graphs, exposing low-level parallelism. Yet, due to the distribution 
of control operators throughout the data dependence edges, both data and 
control become too fragmented for the convenient application of conventional 
optimizations. 

The program plans [52] of the Programmer’s Apprentice project [51] represent 
control and data dependences in a modularized form in which loops have been 
converted to recursion. The goals of that project involve program understanding 
to aid modification; the form used does not appear amenable to traditional 
optimizations. 

The data dependence graphs [48] used in the Illinois vectorizer “Parafrase” 
[41] are designed for the hierarchical analysis of dependence relations in pro- 
grams; those graphs are threaded through a syntactic representation of the 
program as a multilist of tokens. This threaded approach complicates optimiza- 
tion; it is motivated by the Parafrase design goal to have each optimization be 
an independent source-to-source pass. Further work developing the ideas of 
dependence depth ,and loop-carried dependence [7, 81 for vectorizing transfor- 
mations [9] has been carried out at Rice University. Many of the results of these 
two groups are incorporated into the PDG. The control dependence representa- 
tion of the PDG is one major advantage over the data dependence graphs, in that 
the need to convert control dependence into guards [8, 411 is eliminated and 
vectorization is in some cases reduced to simple path questions [50]. 

IF1 [46] is a proposed intermediate for applicative languages such as SISAL 
[34]. IF1 is a hierarchical graph form in which data dependences are explicit at 
the lowest levels and are implicit between so-called “compound nodes,” repre- 
senting control structures, and their subgraphs. It is simpler than the PDG 
because it need not deal with side effects and arbitrary control flow; it is not 
readily apparent how IF1 might be extended for use with imperative languages. 
IF1 has been used as the basis for partitioning and scheduling functional programs 
for multiprocessors [44,45]. 

The Data Flow Graph [36,37] represents global data dependence at the operator 
level (called the atomic level in [31]). Transformations that involve both control 
and data dependence cannot be specified in a consistent manner with this form, 
however, since control is represented by a conventional control flow graph. 
The Extended Data Flow Graph [23] represents control dependence consist- 
ently with data dependence, but can only represent “structured” programs.’ 
The Program Dependence Graph, described here, eliminates this restriction on 
control flow. 

* We call a program structured if it is built of blocks, loops, and conditionals, each of which is single 
entry and single exit. 
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3. THE PROGRAM DEPENDENCE GRAPH 

The PDG represents a program as a graph in which the nodes are statements 
and predicate expressions (or operators and operands) and the edges incident to 
a node represent both the data values on which the node’s operations depend 
and the control conditions on which the execution of the operations depends. 
Nodes representing statements and predicates are sufficient for some transfor- 
mations such as vectorization and simplify our illustrations in this paper. For 
almost all other optimizing transformations, nodes represent operators and 
operands. The set of all dependences for a program may be viewed as inducing a 
partial ordering on the statements and predicates in the program that must be 
followed to preserve the semantics of the original program. 

Dependences arise as the result of two separate effects. First, a dependence 
exists between two statements whenever a variable appearing in one statement 
may have an incorrect value if the two statements are reversed. For example, 
given 

A=B*C Sl 
D=A*E+l s2 

S2 depends on Sl, since executing S2 before Sl would result in S2 using an 
incorrect value for A. Dependences of this type are &&a dependences. Second, a 
dependence exists between a statement and the predicate whose value immedi- 
ately controls the execution of the statement. In the sequence 

if (A) then 
B=C*D :; 

endif 

S2 depends on predicate A since the value of A determines whether S2 is 
executed. Dependences of this type are control dependences. 

In presenting the construction of the PDG below, we emphasize the construc- 
tion of the control dependence subgraph. Control flow analysis is used in building 
the control dependence subgraph. We show methods to compute the exact control 
dependences and then present an approximation that preserves more of the 
original control flow structure. The construction of the data dependence subgraph 
is based on previous work [36, 37, 411. Data flow analysis is used to compute the 
sets of definitions that reach each basic block for use in building the data 
dependence subgraph. We also show how aliasing and side effects are accommo- 
dated in the PDG. The remaining subsections discuss the variety of program 
views supported by the PDG and some practical considerations. 

3.1 Control Dependence 

In this section, we define control dependence in terms of a control flow graph 
and dominators [l, 31. The Appendix contains the basic graph theoretic termi- 
nology used. 

Definition 1. A control flow graph is a directed graph G augmented with a 
unique entry node START and a unique exit node STOP such that each node in 
the graph has at most two successors. We assume that nodes with two successors 
have attributes “5”” (true) and “F” (fake) associated with the outgoing edges in 
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the usual way, We further assume that for any node N in G there exists a path 
from START to N and a path from N to STOP. 

Definition 2. A node V is post-dominated by a node W in G if every directed 
path from V to STOP (not including V) contains W. 

Note that this definition of post-dominance does not include the initial node on 
the path. In particular, a node never post-dominates itself. 

Definition 3. Let G be a control flow graph. Let X and Y be nodes in G. Y is 
control dependent on X iff 

(1) there exists a directed path P from X to Y with any 2 in P (excluding X 
and Y) post-dominated by Y and 

(2) X is not post-dominated by Y. 

If Y is control dependent on X then X must have two exits. Following one of the 
exits from X always results in Y being executed, while taking the other exit may 
result in Y not being executed. Condition 1 can be satisfied by a path consisting 
of a single edge. Condition 2 is always satisfied when X and Y are the same node. 
This allows loops to be correctly accommodated by our definition. The transitive 
closure of our definition corresponds to the notion of the range of a branch given 
in [55]. 

When applied to a loop in the control flow graph, our definition of control 
dependence determines a strongly connected region (SCR) of control dependences 
whose nodes consists of predicates that determine an exit from the loop. The 
other nodes in the control flow graph loop not in the SCR of control dependences 
lie on some path of control dependence edges from a node in the SCR. Intuitively, 
these correspond to the body of the loop. For example, see the DO loop and its 
corresponding PDG in Figure 8. In a control flow graph, nested loops appear as 
nested SCRs and the hierarchy must be discovered. With the PDG, nested loops 
appear as distinct SCRs with a control dependence edge between the outer loop 
and each immediate inner loop. Loops at the same level appear as SCRs with a 
common ancestor region. 

We show in Figure 1 a control flow graph and its corresponding control 
dependence subgraph. Region nodes RI through R6 and Entry have been inserted 
to summarize the set of control dependences for each node, as explained in the 
following section. Control dependence edges are represented here and throughout 
this paper as dashed lines. (Note that nodes 1 and 7 are control dependent on 
program entry; they could thus be executed in parallel, if no data dependences 
exist between them. This relationship is not immediately apparent from the 
control flow graph.) 

Control dependences to nodes at the operator level are determined by the 
corresponding control dependences at the statement and predicate level, which 
are simply extended to all contained operators. 

3.1.1 Determining Control Dependence. The first step in determining control 
dependences is the construction of the post-dominator tree for an augmented 

3 The special nodes START and STOP do not appear in the control dependence subgraph, as these 
empty blocks were added to the control flow graph for analysis purposes only. 
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(4 (b) 

Fig. 1. A control flow graph and its control dependence subgraph. 

control flow graph. We augment the control flow graph with a special predicate 
node ENTRY that has one edge labeled “2”’ going to START and another edge 
labeled “F” going to STOP. ENTRY corresponds to whatever external condition 
causes the program to begin execution. Computing post-dominators in the control 
flow graph is equivalent to computing dominators [l] in the reverse control flow 
graph. Dominators in the reverse graph can be computed quickly by using the 
method of [33] to construct the dominator tree. Using this method, the post- 
dominator tree of a graph can be constructed in time O(Na(N)), where N is the 
number of nodes (basic blocks) in the control flow graph.4 Figure 2 shows the 
post-dominator tree for the augmented control flow graph based on Figure 1. 

Given the post-dominator tree, we can determine control dependences by 
examining certain control flow graph edges and annotating nodes on correspond- 
ing tree paths. Let S consist of all edges (A, B) in the control flow graph such 
that B is not an ancestor of A in the post-dominator tree (i.e., B does not post- 
dominate A). Each of these edges has an associated label “2”’ or “F”. In our 
example, S = {(ENTRY, START), (1, 2), (1, 3), (2, 4), (2, 5), (3, 5)). The control 
dependence determination algorithm proceeds by examining each edge (A, B) in 
S. Let L denote the least common ancestor of A and B in the post-dominator 
tree. By construction, we cannot have L equal B. 

CLAIM. Either L is A or L is the parent of A in the post-dominator tree. 

PROOF. Let X denote A’s parent in the post-dominator tree. By construction, 
X is not B. We first show that X post-dominates B. Suppose it doesn’t. Then 
there would be a path from B to STOP that does not pass through X. But then 
adding edge (A, B) to this path yields a path from A to STOP that does not pass 
through X (since, by construction, X is not B). This contradicts the fact that X 
post-dominates A. Since X post-dominates B, it must be an ancestor of B in the 

’ This can also be stated as O(Ea(E)) since E, the number of edges, is at most twice N for a program 
graph. 
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Fig. 2. Post-dominator tree for augmented control flow graph. 
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Fig. 3. Control dependence5 determined for each edge in S. 

post-dominator tree. If X, A’s immediate post-dominator, post-dominates B, then 
the least common ancestor of A and B in the post-dominator tree must be either 
X or A itself. Cl 

We now consider these two cases for L, and show that one method of marking 
the post-dominator tree with the appropriate control dependences accommodates 
both cases. 

Case 1. L = parent of A. All nodes in the post-dominator tree on the path 
from L to B, including B but not L, should be made control dependent on A. 

Case 2. L = A. All nodes in the post-dominator tree on the path from A to B, 
including A and B, should be made control dependent on A. (This case captures 
loop dependence.) 

It should be clear that, given (A, B), the desired effect will be achieved by 
traversing backwards from B in the post-dominator tree until we reach A’s parent 
(if it exists), marking all nodes visited before A’s parent as control dependent on 
A. This single traversal handles both cases above since, for Case 1, A will not be 
on the path to L and will thus not be marked. After all edges in S have been 
examined, all control dependences have been determined. 

The table in Figure 3 shows the control dependences that would be determined 
by examining each of the edges in the set S for the graph in Figure 1. As there 
are no loops in that graph, all dependences are determined according to Case 1 
above. 

The correctness of the construction follows directly from the definition of 
control dependence. Referring back to this definition, for any node M on the 
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path in the post-dominator tree from (but not including) L to B, (1) there is a 
path from A to M in the control flow graph that consists of nodes post-dominated 
by M, and (2) A is not post-dominated by M. Condition (1) is true because the 
edge (A, B) gives us a path to B, and B is post-dominated by M. Condition (2) is 
true because A is either L, in which case it post-dominates M, or A is a child of 
L not on the path from L to B. 

We now analyze the time requirements of this algorithm. The post-dominator 
tree can be constructed in time O(Nol(N)), where N is the number of nodes in 
the control flow graph. An edge (A, B) is determined to be in S in constant time, 
if post-dominator information is retained in bit vectors. Thus, S is determined 
in time O(E) or, equivalently, O(N). For each edge (A, B) in S examined in the 
algorithm, marking the appropriate nodes in the path from L to B with a single 
control dependence can be done in time proportional to the worst-case path 
length, namely the height of the post-dominator tree: O(N). Total marking time 
is thus O(N2). Finally, walking the post-dominator tree and building a control 
dependence subgraph can be done in N steps, where each step adds at most N 
edges. Thus, this phase of construction requires time at most O(N2). 

The next step of the PDG control dependence subgraph construction is the 
addition of region nodes to summarize the set of control conditions for a node 
and group all nodes with the same set of control conditions together. This is 
accomplished so that if one set of control dependences contains another, the 
contained set will be factored into the control dependence representation for the 
containing set. Region nodes are also inserted so that predicate nodes will have 
only two successors, as in the control flow graph, hierarchically organizing the 
control dependences. Region node insertion may be viewed as a limited form of 
common subexpression elimination for control dependences and an extended 
form of basic block construction. Region nodes are created for common control 
dependence subsets that are factored out of the set of control dependences for a 
particular node. In the discussion below, two nodes are said to have the same 
control dependence predecessors if each has control dependence edges from 
exactly the same nodes and the corresponding edges have the same labels on 
them: “T”, “F”, or none. 

First, we consider the set CD of control dependence predecessors of each 
nonregion node that has other than a single unlabeled control dependence 
predecessor. A region node R is created for CD, and each node in the graph whose 
set of control dependence predecessors is CD is made to have only the single 
control dependence predecessor R. Finally, R is given CD as its set of control 
dependence predecessors. To carry out this factoring, if R’s set of control 
dependence predecessors is a subset of the set of control dependence predecessors 
for some other node, that node is made directly control dependent on R in place 
of the nodes in CD. (This approach does not completely factor the dependences, 
since there could well be two nodes for which the intersection of control depend- 
ences is not equal to the dependences of either node. But we are only interested 

6The worst-case tree would arise from a control flow graph of N nodes consisting of a sequence of 
N/2 if-then%. The post-dominator tree would be the degenerate tree with N/2 nodes, hence the O(N) 
height. We would not expect such trees in practice. 
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in determining regions that are subregions of one another to capture nesting 
properties.) 

To implement this first step of region node insertion, we use a hash table that 
maps sets of control dependences to generated region nodes. We hash the set of 
control dependences for a node to determine if a region node for that set already 
exists. By keeping the control dependence lists canonically ordered, set compar- 
ison can be done in O(N) time. Thus, the cost of checking the hash table for an 
equivalent region node is O(N). In practice, we expect the number of control 
dependences to be bounded by a constant, yielding O(1) time for finding an 
equivalent region node. 

An efficient factoring of dependences is based on the observation that, by 
construction, any nodes having a proper containment of their sets of control 
dependences must be adjacent to one another on some path in the post-dominator 
tree. Thus, we implement region node insertion by means of a postorder traversal 

of the post-dominator tree to assure that all children in the post-dominator tree 
are visited before their parent. As each node N is visited, we check the hash table 
for an existing region node with the same set CD of control dependences.6 If 
none exists, we create a new region node R whose predecessors are CD and enter 
R into the hash table. R is made to be the only control dependence predecessor 
of N. Next, we compute the intersection INT of CD with the set of control 
dependences for each immediate child of N in the post-dominator tree in O(N) 
time [O(l) expected in practice]. If the intersection INT equals CD, then the 
corresponding dependences are deleted from the child and replaced with a single 
dependence on R. If every control dependence of the child is in the intersection 
INT, then the corresponding dependences are deleted from R and replaced with 
a single dependence on the child’s control predecessor. (The increase in graph 
size caused by region node insertion does not increase the time required for this 
process, since insertion does not increase the size of our work list, the remaining 
nodes in the post-order traversal of the post-dominator tree.) Since every node 
in the post-dominator tree is examined twice (once as a child and once as a 
parent), this step requires O(N2) time in the worst case with O(N) time expected 
in practice. 

Figure 4(a) shows the partial PDG control dependence subgraph after having visited 
nodes 4,5, and 2 (introducing Rl through R3) and just after R4 has been created for node 
6. The set CD for 6 is (3T, 1T). There is a nonempty intersection with the control 
dependence set for child 5, namely (377. The intersection of CD with the control 
dependence set for child 2 is (lT], corresponding to R3. Thus, the final step of visiting 
node 6 will be to remove the edge (1, R4) labeled “T”, replacing it with the edge (R3, R4) 
having no label. Figure 4(b) shows the graph that results from visiting all nodes. 

The second part of region node insertion requires a pass over the graph to 
make sure that each predicate node has a unique successor for each truth value. 
For any predicate node P in the control dependence subgraph which has multiple 
control dependence successors with the same associated label, L, we create a 

‘In fact, the hash table entry contains a list of the original control dependence5 even though the 
control dependence predecessors of the node pointed to may now include other region nodes due to 

factoring. 
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(a) W 

Fig. 4. Region node insertion. 

region node R. Each node in the graph that had control dependence predecessor 
P with the label L is made to have the single control dependence predecessor R. 
Finally, R is made to be the single control dependence successor of P with the 
same label. Since, in the worst case, each predicate may have O(N) successors, 
the total time for this step is O(N2). As with the previous pass, we expect O(N) 
time in practice. 

In Figure 4, node 3 has “T” edges to both R2 and R4. A new region node R6 has been 
introduced in Figure l(b) to summarize these dependencies. 

Region node insertion, as described, can be done in worst case time O(N2). 
The entire control dependence subgraph construction can thus be accomplished 
in time O(N2). 

3.1.2 An Approximation to Control Dependence. Regenerating the original 
control flow graph from the control dependence subgraph may be of interest with 
a source-to-source translator; it also has implications for straightforwardly gen- 
erating sequential code. Unfortunately, the reconstruction of control flow from 
the exact control dependence subgraph may be difficult. Consider the control 
flow graph in Figure 1 and its corresponding control dependence subgraph. Node 
6 is control dependent only on node 1 and node 3. It is not obvious how to 
generate sequential code that places node 6 appropriately in the control flow 
graph without duplicating nodes or adding Boolean tests. In fact, this case can 
be handled by the methods of [22], which can generate control flow from reducible 
[l] or well-structured control dependence subgraphs without duplicating code or 
adding extra Boolean tests. In this section, we present an approximation to the 
exact control dependence subgraph from which it is easy to generate efficient 
control flow in all cases. This new graph, in addition, provides a much better 
approximation to control dependences than that provided by the control flow 
graph since, in the case of structured programs, it is identical to the exact control 
dependence subgraph. 

The approximation we present will be based on the notion of single entry, 
single exit regions in the control flow graph called hammocks [27]. 
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Definition. Let G be a control flow graph for program P. A hummock H is an 
induced subgraph of G with a distinguished node V in H called the entry node 
and a distinguished node W not in H called the exit node such that 

(1) All edges from (G - H) to H go to V. 
(2) All edges from H to (G - H) go to W. 

The following theorem highlights one of the crucial properties of hammocks 
with respect to control dependence. 

THEOREM. Let G be a control flow graph for program P. Let H be a hammock 
ofG.IfXisinHand Yisin(G- H), then Y is not control dependent on X. 

PROOF. Assume Y is control dependent on X. If Y is the exit node of H, then 
Y post-dominates X (all paths out of H leave through the exit node). This 
contradicts the assumption of control dependence. If Y is not the exit node of H, 
let P be any path from X to Y given by the definition of control dependence. Let 
W be the exit node of H. W is in P since W post-dominates X. By the definition 
of control dependence, Y also post-dominates W. This implies Y post-dominates 
X, which contradicts the assumption of control dependence. 0 

To produce a control dependence representation that allows easy generation 
of sequential code, a modified notion of region node and control dependence edge 
is required. In Section 3.1.1, a region node gathered together all statements 
(operators) that execute under the same conditions. If any one statement in a 
region is executed, so are all other statements. This is similar to the notion of a 
basic block. A region node there, though, did not incorporate any information 
about the control successors of the region. Just as a basic block has a set of 
statements and some number of exit edges, a region node here consists of two 
parts, a set of hammocks and some number of exit edges. The set of hammocks 
is a set of single entry, single exit control structures that can be generated in any 
order consistent with the data dependences between hammocks, as can the set 
of statements in a basic block. The exit edge(s) correspond to an absolute or 
conditional GOT0 generated at the end of the set of hammocks, exactly as in a 
basic block. In what follows, we distinguish between control dependence edges 
whose successors are subhammocks and control dependence edges that are exit 
edges. Exit edges will be indicated by double lines. 

In [27], an algorithm is presented for recognizing the hammocks7 of a graph in 
O(NE) operations, where N is the number of nodes and E the number of edges 
in the graph. Since E is at most 2N for a control flow graph, this bound is O(N2). 
The construction of the approximate control dependence subgraph consists of 
four steps. First, we detect hammocks in the control flow graph and mark the 
entry and exit nodes of each hammock. Second, we insert a region node as the 

’ The definition of hammock given here differs slightly from that of [27]. In particular, our definition 

of hammock includes single exit, single entry loops. In order to have loops included in the definition 

of [27], we transform all loops by inserting a dummy node as the single predecessor of the source of 

the back edge of the loop. All of the original predecessors of the source of the back edge are made 

predecessors of this dummy node (later referred to as a region node). In addition, we also insert a 
dummy node as a successor of each exit from the loop, with all of the original successors made 

successors of the dummy node. This transformation to the control flow graph allows us to use the 

definition of [27] directly. 
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Fig. 5. Type 1 transformation. 
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single successor of STOP. Next, we convert each predicate node in the graph to 
a region node containing the empty set of subhammocks and whose exit edges 
are identical to those of the predicate. Finally, we apply one of the following 
transformations to each of the hammocks to construct the approximate control 
dependence subgraph. These transformations are applied in inverse topological 
order of exit nodes, with hammocks having a common exit node processed in 
inverse topological order of entry nodes. 

Two types of transformations are needed to construct the approximate control 
dependence subgraph from the control flow graph. The first type of transforma- 
tion is applied when the exit node of a hammock has all of its predecessors in 
the hammock. By processing the nodes in inverse topological order, and inserting 
a region node as the successor of STOP, we guarantee that the exit node of a 
hammock of this type will always be a region node. The tranformation consists 
of changing all of the predecessors of the hammock’s entry node V which originate 
outside the hammock to predecessors of the exit node, R, and making the entry 
node a subhammock of the exit node. All edges previously incident on the exit 
node R are then deleted. This transforms all remaining hammocks with exit V 
to hammocks with exit R. We refer to hammocks of this type as type one 
hammocks and transformations of this type as type one transformations (see 
Figure 5). Edges to subhammocks are indicated by single arrows, and exit edges 
by double arrows. 

The second type of transformation is applied to hammocks whose exit nodes 
have some predecessors outside the hammock. In this transformation, a new 
region node R is created and the predecessors of the entry node outside the 
hammock are made predecessors of R instead. Next, the entry node V is made a 
subhammock of R and an exit edge is inserted from R to W. Finally, each edge 
originating in the hammock and incident to the exit node is deleted. We refer to 
hammocks of this type as type two hammocks and transformations of this type 
as type two transformations (see Figure 6). In Figure 7, we show the approximate 
control dependence subgraph for the control flow graph in Figure 1. 

Our reasons for suggesting these hammock-based transformations are as fol- 
lows. For structured control flow graphs, the resulting control dependence graph 
always reflects the exact control dependences. More importantly, the resulting 
control dependence graph allows the quick and easy generation of sequential 
code. To generate code corresponding to a hammock, we simply generate code 
corresponding to its region nodes in a topological order imposed by control 
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Fig. 7. Control dependence subgrapb constructed using 
hammocks. 

Fig. 6. Type 2 transformation. 
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dependences between these nodes. To generate code corresponding to a region 
node, we generate code corresponding to the set of hammocks associated with 
the region node in a topological order imposed by the data dependences between 
hammocks. Using this control dependence graph obtained by transformations to 
hammocks, we thus trade a more accurate set of control dependences (for 
unstructured graphs) for the ability to easily generate sequential code. 

3.2 Data Dependence 

3.2.1 Determining Data Dependence. The construction of the data dependence 
subgraph whose nodes consist of statements and predicates is derived from [36, 
371, which constructs an operator-level subgraph. This subgraph is most easily 
built when there are no side-effects due to pointers, shared variables, or procedure 
calls with other than value parameters. DAGs [l] are constructed for each basic 
block during the initial parse of the source program. Each upwards exposed use 
in a block has a corresponding DAG leaf node as usual; these leaves are called 
merge nodes. Data flow analysis is then performed to compute the set of reaching 
definitions [l, 25, 261 for each basic block, with the additional assumption that 
every variable is initially assigned the value “undefined” at program entry. 
Finally, the individual DAGs are connected to one another using the results 
of the data flow computation: edges are added from definition nodes to the 
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corresponding merge nodes that may be reached. (This makes definition-use 
chaining [l] explicit.) A merge node thus represents the set of reaching definitions 
for some variable. 

In this construction process, I/O operations are treated as operations on an 
implicit file object so that the sequencing of operations is correctly represented. 

Only one node is created for each unique constant to simplify common subexpres- 
sion elimination. Subscripted array references are represented by a select operator 
having two inputs, an array and an offset, and one output, the selected element. 
Subscripted array definitions are represented by an update operator having three 
inputs: an array, an offset, and a replacement value. The output of an update 
operator is a modified array. In addition, the definite iteration statement (DO, 
for) becomes a single operator which has as operands the initial, final, and 
increment values. It has two outputs: one an index value stream and the other a 
predicate value stream. This operator is essential to our reduction in strength 
and induction variable substitution schemes [39]: other induction variables are 
later converted to this form by a separate transformation. 

Other edges are necessary for certain transformations. For example, the incre- 
mental data dependence update algorithm described in Section 5 requires that 
output dependence [29, 311 edges be inserted during graph construction to force 
sequencing of multiple definitions of the same object. Output dependence edges 
are added by treating each definition as a pseudo-use of the defined variable and 
using the same techniques that create data dependence edges. Vectorization 
requires that antidependence [29, 311 and output dependence edges must be 
appropriately inserted between array references. Antidependence edges are in- 
serted to force sequencing between a use and a definition of a variable [28, 301. 

Dependences between array elements are constructed conservatively as 
sketched above. As in most optimizing compilers for sequential machines, a 
definition of an element of an array is considered a definition for the entire array 
for purposes of data flow analysis and data dependence construction. Similarly, 
a reference is assumed to be capable of referencing any element of the subscripted 
array. In order to apply vectorizing transformations, subscript expressions must 
be analyzed to determine (where possible) accurate dependences. This area has 
been given a great deal of attention [7, 11, 13, 28, 32, 561. The following steps 
are taken to determine array dependences. All loop coindices (induction variables) 
are located and normalized to run from 1 to N with an increment of 1; operations 
are “pushed” into the subscript expressions to maintain equivalent values. All 
subscript expressions are restated in terms of a single induction variable per 
loop.’ At this point, the subscript expressions will generally be in the form of a 
linear function of the loop induction variable. Dependence analysis consists of a 
pairwise determination of whether the curves for these subscript functions 
intersect at an integer point within the region defined by the loop induction 
variable range. 

Data dependences can be further classifed as loop-carried and loop-independent 
[7,28,56]. A loop-carried dependence arises because of the iteration of loops; an 
example is a definition from one iteration that is referenced on a subsequent 

‘Algorithms for two of the transformations necessary for analysis have been developed for the PDG 

and are reported elsewhere: induction variable detection [23] and induction variable substitution [39]. 
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iteration. A loop-independent dependence occurs because of execution order, 
regardless of loop iteration. 

3.2.2 Aliasing, Procedure Calls, and Side Effects. Aliasing and side-effects 
present obvious problems in accurately representing dependences in the PDG. 
All of the known solutions for data flow analysis in the presence of aliasing, 
pointers, shared variables and procedures [l] are of use here. Explicit aliasing of 
scalars (e.g., uia a FORTRAN EQUIVALENCE) is easily handled by treating 
the aliased names as synonyms. To detect implicit aliasing induced by procedure 
parameter binding, interprocedural data flow analysis must be performed [4, 12, 
14, 151. This analysis is complicated in FORTRAN, where the passage of array 
elements can create overlapping alias patterns [20]. Interprocedural analysis is 
additionally required to detect procedure side-effects (global modifications). 
Given the information thus obtained, we can represent each procedure call safely: 
each call is an operator with dependences not only on its parameters, but also on 
any other shared variables referenced or defined. 

Interprocedural analysis must be performed before even the basic block DAGs 
are constructed. Thus, in the presence of procedures with side-effects, construc- 
tion of the data dependence subgraph involves translating the source program 
into triples or some other easily scanned intermediate, performing intra- and 
interprbcedural data flow analysis, and then building the subgraph. 

Pointers present the greatest problem. “Well-behaved” pointers, such as those 
in Pascal, can be analyzed using data flow methods [l]. Pointers in a language 
such as C can preclude PDG construction altogether since they can point to 
anything. In the worst case, one would have to conservatively assume that all 
objects are aliased. Fortunately, it is possible to discover what objects are pointed 
to when pointer arithmetic is used in a controlled manner. When constraints 
cannot be computed, interaction with the user might be helfpul in obtaining 
them. 

3.3 Alternative Versions of the PDG 

A variety of views of a program may be constructed with variations of the PDG. 
Nodes can represent statements and predicate expressions, or they can represent 
individual operators and operands. The latter representation is necessary for 
most optimizations. This section briefly describes a functional or value oriented 
view versus an operational or memory mapped view. We also suggest how a 
program may be represented hierarchically. 

A functionally oriented PDG can be constructed that is similar to a data flow 
graph [ 181. The atomic or indivisible nodes of the PDG would be at the operation 
level without reference to names. In this case, we interpret nodes and edges to 
simply represent value flow. Arrays would be handled as an entire unit; that is, 
true dependences between array references would represent the flow of the entire 
array. 

An operationally oriented PDG can be constructed by allowing the assignment 
operator and references to variable names. In this manner, programs in languages 
like FORTRAN can be more easily represented. The operational view can also 
permit memory addressing optimization by allowing a store operator that has the 
following inputs: (1) the memory address to be changed and (2) the replacement 
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value. An update operator can then be converted to a store: The subscript 
expression plus the base address of the array becomes the first operand. (An 
example of the optimization permitted by this representation is reduction in 
strength [6, 391, whereby a loop index is revised to iterate through addresses 
rather than subscript values. In the functionally oriented PDG, reduction in 
strength could only simplify subscript value computations.) 

The PDG can be made hierarchical, that is, its nodes can consist of operations, 
statements, or higher level groupings if desired. (It is, minimally, hierarchical at 
the procedure call interface.) Without a hierarchical structure, if a transformation 
might be predicated on whether some dependence exists within a region, all of 
the nodes within the region must be visited in order to summarize that infor- 
mation. A hierarchical representation would have summary information for each 
region posted to each region node during graph creation. Transformations that 
change individual dependences would then have to also update the summaries 
for the enclosing regions. Such a hierarchical PDG has been used as the basis for 
reordering transformations such as vectorization and loop fusion [50]. Its impor- 
tance lies in its summarization of large sections of the program with respect to 
both control and data dependence. 

3.4 Practical Considerations 

The amount of space required to represent a PDG is the dominating practical 
consideration for this work. We cannot give a useful model for anticipated space 
consumption since the size of the graph is related to the dependence structure, 
rather than any easily measured surface feature of a program. At Michigan Tech, 
Ellcey constructed a FORTRAN-77 front-end that performs interprocedural 
analysis and builds a PDG [20]. Ellcey’s thesis reports the results of translating 
nine programs containing a total of 40 modules and 2,409 executable statements. 
He compares the amount of space required for a PDG to that required by a 
triples representation. The space needed for data flow bit vectors and association 
(mapping) tables is included in the total triples cost since global optimizations 
cannot be performed without these additional structures. The ratio of space 
required for the PDG to space required for triples ranged from 1.13 to 2.18 in the 
40 modules in Ellcey’s study. It should be noted that it is not clear that the 
sample used in this study is representative of most programs, but the variance is 
small. In particular, based on the larger and more realistic programs in the study 
(two eigenvalue problems and a fluid dynamics problem), we hypothesize that 
the PDG requires 50 percent more storage than an equivalent triples represen- 
tation. 

4. SOME APPLICATIONS OF THE PDG 

This section gives a sample of some of the applications of the PDG. The first 
four subsections concern optimization questions: the detection of parallelism, 
node splitting, code motion, and loop fusion. The final subsection gives an 
application of the PDG in an entirely different context: a software development 
environment. 

All transformations on the PDG are stated as graph walks. As an example of 
what is involved in such a walk, consider constant expression folding, which 
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Fig. 8. Representation of array dependences. 

DO 100 I = 1, 100 

A(1 + 1) = B(1) + 10 

IF (A(1)) GOT0 101 

C(1) = D(1) 

100 CONTINUE 

101 CONTINUE 

replaces an operator having constant operands with the result of applying that 
operator to those operands. One step of constant folding may result in propagating 
a constant operand to data dependence successors which will then be eligible for 
constant folding. Thus, given an expression DAG, this optimization should be 
carried out from the leaves to the root operators. We would express this trans- 
formation as a graph walk of the PDG, moving backwards from outputs to inputs, 
constants, or already-visited nodes. As soon as we can proceed no further along 
a path, we begin descending the traversed path, looking for both expression 
folding possibilities and other paths to walk up. Thus, no operator is considered 
for folding until all of its data dependence predecessors (operands) have been 
considered. In time linear with respect to the number of edges in the PDG, we 
will have visited every node and performed every possible step of constant 
expression folding [36]. (This walk is technically a postorder traversal of each 
spanning tree in the forest obtained by performing a depth first search of the 
reverse PDG, starting at outputs.) 

The scalar propagation, common subexpression elimination, and reduction in 
strength transformations developed for the (extended) data flow graph [23, 36, 
37,391 are also applicable to the PDG and provide further examples of transfor- 
mations on this kind of program representation. 

4.1 Detection of Parallelism 

The vectorization algorithms of [41] and [8] operate on the data dependence 
graph, and vectorize any statement not contained in any strongly connected 
region of dependences. “If-conversion” must first be performed to represent the 
control structure of the program as data dependences. This transformation 
fragments the control structure of the program in such a way that it is difficult 
to recover the original control structure if analysis discovers that vectorization 
is not possible. The PDG can be used directly to detect parallelism in the code it 
represents. Consider the program and its corresponding PDG in Figure 8. Any 
node in the program dependence graph that is not contained in a strongly 
connected region consisting of both control and data dependences can be 
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(4 (b) 

Fig. 9. Candidate for node splitting: (a) control flow graph; (b) control dependence subgraph. 

vectorized. The assignment to A(1 + 1) is part of a strongly connected region 
and thus is not vectorizable. The assignment to C(I), however, may be vectorized 
using a WHERE statement [8] following the loop defining A. Thus, the PDG 
can be used directly as a basis for vectorization, without fragmenting the control 
structure of the program to the extent determined by “if-conversion”. If the 
(approximate) control dependence subgraph of Section 3.1.2 is used, the quick 
and easy generation of sequential code is assured if vectorization fails. This latter 
feature is important in source-to-source transformations, as in [41] and [28]. 

4.2 Node Splitting 

Node Splitting refers to the duplication of a node in a graph and the division of 
its edges between the two copies to produce an “equivalent” graph [5]. Node 
splitting has been applied in [31] to break cycles of dependences in the data 
dependence graph and, hence, generate better code for parallel machines. We 
believe node splitting also has an important role in process partitioning for 
multiprocessors in that it can be used to reduce communication and synchroni- 
zation costs: nodes can be duplicated in several processes to lower communication 
and synchronization costs between them. The PDG’s hierarchical nature allows 
node splitting to occur at different levels of the hierarchy. In [21], the PDG is 
used as the basis of several node splitting transformations to eliminate Boolean 
tests and improve code motion. An example of this application is given below. 

An important feature of the PDG that makes its amenable to node splitting is 
the fact that the execution order of the successors of a region node in the control 
dependence subgraph is determined entirely by the data dependences between 
them. In the control flow graph of Figure 9(a), derived from [53], the only 
definitions of predicate X occur on the branches of P. Hence, if we duplicate 
nodes X, D, and E on both branches of P, we can eliminate X and thus produce 
more efficient code. However, to accomplish this we either have to, in addition, 
duplicate the nodes A, B, and C, or determine if X can be “moved up” to A’s 
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Fig. 10. Optimized code after splitting. 

position. In the corresponding control dependence subgraph of the PDG in Figure 
9(b), data dependences among successors of R, already present in the PDG, would 
determine whether X can immediately follow P in execution. Hence no “motion” 
transformation need be performed with the PDG. If permitted by data depend- 
ences, we can immediately split the region determined by node X on both 
branches of P. Scalar propagation could then eliminate X and dead code elimi- 
nation would delete the unnecessary copies of R3, D, R4, and E, obtaining 
Figure 10. The situation illustrated in Figure 9 occurs naturally in the macro- 
expansion of languages, where initial parameter settings control subsequent 
expansion. It also occurs when procedure calls are expanded in-line, a process 
called procedure integration [5]. 

4.3 Code Motion 

The PDG allows powerful transformations, such as invariant code motion, to be 
performed more efficiently than with other program representations, since de- 
pendences in the PDG connect computationally relevant parts of the program. 
An earlier algorithm permits the safe and efficient motion of large sections of a 
program, such as loops and conditional blocks, in “structured” programs [23]. 
That algorithm extends directly to the PDG, permitting such motion in programs 
with arbitrary control flow. Unlike the methods presented in [l], this extension 
makes only safe movements, as computations always remain under the influence 
of the same predicates. In addition, the running time of a program never increases 
since no code is ever executed in the transformed program unless it would have 
been executed in the original. As an example of the effects of our code motion 
algorithm, the PDG for the code fragment in Figure 11(a) would be transformed 
into a PDG representing the code in Figure 11(b) [23]. 

Recent work by Cytron, Lowry, and Zadeck [16] extends our code motion 
algorithm. They present two versions of code motion that incorporate our notion 
of control dependence. Their strict code motion algorithm is like ours in that the 
running time of a program is never increased as a result of motion. It represents 
an improvement over our earlier version in that secondary effects that result 
from previous code motion are detected without repeated iterations. A nonstrict 
version, in addition, permits some motion of code dependent on immovable 
predicates. 

We now sketch how the Cytron-Lowry-Zadeck algorithms can be applied to 
the PDG. A renaming transformation is first performed on a three-address 
intermediate representation; the necessary renaming can also be represented in 
the PDG. Birthpoints [42] for variables are then introduced; these birthpoints 
correspond to merge nodes in the PDG after common subexpression elimination 
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read (a, b, c) 
while a < b do 

d=O 

repeat 

if Q then e = c + 1 

else e = c +d 
d=d+b*c 

until d > c 
a=a *d+b/c 

endwhile 

(a) 

read (a, b, c) 
if a < b then 

tl = not Q 
d=O 
t2=b*c 
if Q then e = c + 1 

repeat 

if tl then e = c + d 
d=d+t2 

until d > c 
t3 = b/c 
repeat 

a=a*d+t3 
until a > = b 

endif 

(b) 

Fig. 11. Example of code motion. 

has been applied to them. The algorithms then operate on an interval-by-interval 
basis, visiting each basic block in an interval in dominated topological order, and 
moving code from inner to outer intervals one level at a time. As described, this 
interval structure is directly represented in a hierarchical manner in the PDG. 
By using the same order within an interval, and summarizing results on an 
interval by interval basis, we can apply their algorithms directly to the PDG, 
obtaining an efficient and powerful code motion strategy. 

The effectiveness of code motion can be increased by performing unswitching 
[5], loop splitting [40], and loop peeling.g These transformations create more 
opportunities for the motion of invariants. The following four transformations 
may be incorporated into the motion strategy, operating on loops in an innermost 
to outermost order. Here an exit predicate is one that controls an exit out of a 
loop and a branch predicate is any other predicate. 

(1) Eliminate (partially) invariant branch predicates by unswitching. 
(2) Peel a loop with an invariant exit predicate, when that removes an exit from 

the loop. 
(3) Split loops with branch predicates dependent only on the index variable, 

thereby removing the branches. 
(4) Delete an invariant assignment from a loop by peeling off one iteration. 

The criterion used to achieve these effects is the absence of data dependence 
predecessors for a node inside the loop region. Transformation 4 above is, in 
addition, signaled by a backwards true dependence from the assignment to a use. 
As an example of 1 above, consider Figure 12(a) where A is an invariant. The 

’ An example of loop unswitching is given in Figure 12. Loop splitting refers to copying the loop and 

splitting the original iterations between the two copies (preserving the iteration order). Loop peeling 

is taking the first iteration out of the loop, and adjusting the loop accordingly. 
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IF (A) THEN 
DO 100 I = 1, 100 

C(1) = 0 

D(1) = 0 

100 CONTINUE 

ELSE 
DO 115 I = 1, 100 

DO 100 I = 1, 100 IF (B(1)) C(1) = 0 

IF (A.OR.B(I))C(I) = 0 D(I) = 0 

D(1) = 0 115 CONTINUE 

100 CONTINUE ENDIF 

(a) (b) 

Fig. 12. Example of loop unswitching. 

“or” operation will have exactly two data predecessors, one of which, A, is outside 
the loop. If the loop is unswitched with A as the outer predicate, Figure 12(b) is 
the result. Transformations of one type, such as unswitching, may uncover 
opportunities for transformations of another type. As a result, all invariant 
operations are moved to the outermost nesting level possible. An additional 
extension to the invariant motion algorithm that involves node splitting is 
outlined in [ 211. 

4.4 Loop Fusion 

The hierarchical PDG is the basis for efficient algorithms for many reordering 
transformations. Loop fusion [5] is a transformation in which the bodies of two 
loops are joined or fused to create a single loop. This transformation is used to 
create sectioned code for vector machines as well as to reduce loop overhead in a 
general optimization setting. In this section, we show that the hierarchical nature 
of the PDG allows the conditions under which fusion can be performed to be 
easily checked. 

Conditions that permit loop fusion have been formulated in [l], [5], and [50], 
among others. The simplest case, as formulated in [5], is as follows: 

(1) the loops are executed under exactly the same control conditions, 
(2) there is no data dependence between the two loops, and 
(3) the loops are executed the same number of times. 

The first condition is easily and safely approximatedlO in the PDG by checking 
that both loops have the same control dependence predecessor. Likewise, the 
second condition involves checking that there is no data dependence edge between 
the nodes representing the two loops in the hierarchical PDG. The third condition 
requires checking that the two loops have exactly the same loop control predi- 
cates. In the case of definite loops, such as DO loops, the number of times the 
loops iterate must be the same. Given that, in practice, there are a bounded 
number of exits from a loop, whether to fuse two loops can be decided by a 

lo The precise problems stated in conditions 1, 2, and 3 are unsolvable. 
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constant-time check of the hierarchical PDG. In [l], condition (2) is generalized 
to (in effect) require that no loop-carried (Section 3.2.1) dependence exists 
between the two loops. This condition is again easily checked in the hierarchical 
PDG. The more general loop fusion algorithm of [50] can be directly applied to 
the hierarchical PDG since it is formulated in terms of data dependence. 

4.5 Slicing 

The PDG is also useful in contexts other than optimization. One such context is 
in performing slicing in a software development environment. Slicing is the 
abstraction of sets of statements that influence the value of a variable at a 
particular program location [54, 551. An experiment by Weiser [55] indicated 
that programmers use slices when debugging and could therefore benefit from 
the development of a tool to provide slicing information automatically. A poten- 
tial software development environment using slicing could allow the user to edit 
a program using slice membership as the basis for inclusion in a window rather 
than syntactic structure alone. A debugger could display the offending slice in a 
window on an error condition or breakpoint rather than the entire syntactic 
context. (We assume a display routine that would provide automatic eliding, as 
is done in LISPEDIT [2, 351. Partial slices, without elision, are displayed for 
COBOL programs by [47].) 

The extraction of slices is based on data dependence; however, control depend- 
ence is considered in the construction of a slice as well. A computation which 
affects the value of a variable at a desired observation point may be under the 
influence of a predicate (i.e., executed only when a predicate has a particular 
truth value). Those statements that make up the control structure using the 
predicate must be included in the slice. This is the key to why the PDG is so 
appropriate for this technique. A slice is directly obtained by a linear time walk 
backwards from some point in the graph, visiting all predecessors. (Nodes must 
be annotated with pointers to the source code in order to permit the display of 
the obtained slice.) These slices [38] are more accurate than those obtained with 
earlier methods [54]. 

5. INCREMENTAL DATA FLOW UPDATE AND INCREMENTAL 
OPTIMIZATION 

The update of data flow information to reflect changes in control flow has been 
a stumbling block for optimizing compilers. The expense of a full data flow 
analysis may be avoided if an incremental method [43,53] can be used to examine 
and update only the affected data dependences. An incremental update in the 
context of a compiler in the process of transforming a given source program is 
much simpler than the problem of keeping data flow information correct after 
each editing step in an interactive program development environment. This is 
because arbitrary changes are permitted in the latter case, but only very specific 
changes are permitted in the former. In this paper, we do not address the more 
difficult problem posed by arbitrary changes. In the approach presented here, 
data dependences are updated as part of certain optimizations. During this 
update, we can apply additional optimizations to the precise program region for 
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which a profit will result. We call this concept incremental optimization to 
contrast it with conventional optimizations that are designed as passes that 
operate on an entire module. Other incremental flow algorithms operate on 
information disjoint from the intermediate program representation and thus 
cannot guide incremental optimization except on larger regions than may be 
necessary. 

This section describes a new incremental data flow analysis algorithm that 
operates directly on the PDG. We will describe its operation in the context of 
two optimizations that alter the control flow of a program: branch deletion and 
loop peeling. Branch deletion kills blocks of code determined to be unreachable 
due to a conditional branch that will always select the same path. The value of 
the branch predicate may be determined immediately, or after applications of 
transformations such as scalar propagation, procedure integration, and constant 
expression folding. Loop peeling moves one or more initial iterations of a loop 
out of the loop into a header region. This frequently decreases the number of 
dependences within the remaining loop. 

5.1 Branch Deletion 

The control dependence update in the PDG is easily performed when a branch 
is deleted. Suppose a predicate node P is found to be always true. If there is a 
P-false region node, it is pruned along with all of its control dependence succes- 
sors. If there is a P-true region node, all successors of the region node are made 
successors of P’s control dependence predecessor and then both P and the region 
node are deleted. 

The data dependence update focuses on definitions formerly transmitted by 
the deleted control flow path. It is trivial to eliminate data dependences due to 
definitions on the killed path: The edges are simply deleted when the killed 
region node is pruned. The nontrivial problem is when the formerly transmitted 
definition is not on the path being deleted, but reaches a use via the path. If the 
deleted path is the only one that allows a definition to reach a use, the corre- 
sponding data dependence must be eliminated. When there are several definition- 
free paths from a definition to a use, deletion of one such path has no effect. 
(Note that it is not possible, by branch deletion, for new definitions to reach 
uses. Thus, the update question is simply “Which def-use chains must be 
deleted?“.) 

Example. Let us first consider an example of the general data flow issue before 
considering the update solution with the PDG. Suppose that we have the fragment 
below: 

B= 
if P then 

A= 
B= 1-i; 

else 
A= Ii; 

endif 
=A Iii 
=B (9) 
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Fig. 13. PDG for branch deletion. 

Now, suppose that it is determined that the predicate expression P is always 
true. Branch deletion will remove the test and the else clause of the if (lines 2 
and 5-7). Consider the effect in terms of the reaching definitions at lines 8 and 
9. The else clause contained a definition of A that should simply be removed 
from the set of reaching definitions for line 8. The else clause also provided a 
definition-free path along which definition B at line 1 reached line 9. With the 
deletion of this path, Bl’l no longer reaches line 9 as it is killed by B4. The data 
flow update should thus show reaching definitions of A3 and B4 for lines 8 and 
9. With this updated information, additional optimizations might now be possible: 
Subsumption or scalar propagation on lines 8 and 9 could offer benefits and it is 
possible that definition Bl can be deleted if line 9 was its only use. 

We now return to the PDG and develop in stages an incremental solution to 
this update problem that examines only the affected data dependences. Consider 
the PDG for the previous example, shown in Figure 13. (The nodes are paren- 
thetically numbered with the corresponding source line number for reference 
purposes only. A solid edge with the letter “0” on it represents an output 
dependence edge; see Section 3.2.1.) Assume that we have just determined that P 
is always true. Everything in the P-false region must be deleted. Here, node (6) 
and all edges incident to it and exiting from it are deleted. The predicate 
computation node is now deleted. Anything that had been in a P-true region is 
now placed in a region dependent only on P’s former control dependence 
predecessor (“entry”) by simply attaching the P-true control dependence edges 
to that predecessor. The control dependence update is now complete, as is part 
of the data dependence update. 

To complete the update of affected data dependences, we examine all of the 
nodes that were in the old P-true region. Let d be such a node. Consider all pairs 
(d, p) where d is output dependent upon predecessor p, and d and p have the 
same node m as a data dependence successor. There are two cases on (d, p) to 
consider. The first case examines the least common ancestor of d and p, denoted 
by LCA(d, p).12 A data flow anomaly exists if LCA(d, p) equals CP(d) since this 

” We denote a definition of a variable V on line i as Vi. 

I2 We use CP(d) to denote the control dependence predecessor of d and LCA(d, p) to denote the least 

common control ancestor of d and p in a depth first spanning tree of the predicate graph. 
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relationship would imply that p could reach m in spite of the fact that any path 
to m must go through d. Consider: 

ifPthenA = 
if QthenA = I;; 

=A (3) 

If Q is found to be true, A2 (d) should then kill Al (p). This suggests the 
following transformation. 

Case 1. If CP(d) = LCA(d, p), d should prevent p from reaching m. Delete the 
edge from p to m. If p has no other data dependence successors, delete it as a 
useless definition. (Continue this dead code pruning transitively.) 

In Figure 13, only node pair (4,1) with successor (9) satisfies the above criteria 
after deletion of P since CP(4) = CP(l) = LCA(4, 1) = “entry”. The edge (1, 9) 
should be deleted. We can now perform incremental optimization based on this 
update. Node 1 should be examined for dead code removal. As node 9 now has 
only one reaching definition, it is reasonable to perform scalar propagation on it, 
as well as other transformations such as common subexpression elimination. 

Now, consider all pairs (d, s) where s is an output dependent successor of d, d 
and s have the same node m as a data dependence successor, and, as above, d is 
in the old P-true region. Here, an anomaly exists if CP(d) = LCA(d, s) and 
(d, m) is loop-independent while (s, m) is loop-carried.13 As an example, consider: 

loop 
ifPthenA= :a; 
=A 
A= Ii,’ 

endloop (5) 

where A2(d) kills A4(s) for the use of A at line 3 if P is found to be true. 

Case 2. If CP(d) = LCA(d, s) and (d, m) is a loop-independent data dependence 
edge while (s, m) is a loop-carried data dependence edge, then d should prevent s 
from reaching m. The transformation on s is the same as that on p above. 

These two restricted cases illustrate the update task, but do not solve the 
general problem. Consider Figure 14, a simple example of the general case. Note 
that if P is found to be always true, definition Al can no longer reach the use 
of A. It is killed on both remaining paths. In cases (1) and (2), a single defini- 
tion killed another. In the general case, several definitions, along several paths, 
may kill a definition. The problem can be solved by transitively abstracting 
the definitions in a region to a predicate or region node. We create a pseudo- 
definition for a variable in a region, and a corresponding dependence edge if 
all paths in the region have a definition of that variable with that dependence.14 
Our previous transformations can then be applied. In Figure 14, definitions A3 
and A4 would be abstracted to a pseudo-definition A2 representing the entire 
conditional region. This abstraction occurs because both paths from (2) to (5) 

I3 See Section 3.2.1 for a definition of loop-independent and loop-carried dependences. 
I’ This differs from the dependences abstracted for the hierarchical representation suggested in 
Section 3.3. There, a dependence exists if any path in the summarized region has such a dependence. 
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Fig. 14. Schema with multiple definition-free paths. 

contain definitions of A. The pseudo-definition A2 would be output dependent 
on Al, just as A3 and A4 are. Case 1 above could then produce the correct 
update given this pseudo-definition. 

Psuedo-definitions are posted to region nodes if some successor has a definition. 
This is because a region represents a basic block in the conventional sense: all 
operators are evaluated if any one is. Predicates are annotated with pseudo- 
definitions when there are definitions with the same output dependence on both 
branches. These pseudo-definitions are posted as long as there is information to 
propagate. Pseudo-definition propagation can continue as far as the outermost 
node that is the least common ancestor of a definition in the altered P-true 
region and another definition p upon which it is output dependent. During this 
propagation, the only definitions that need be examined are those that are also 
output dependent on p. 

The complexity of this incremental update has, of course, a worst-case per- 
formance equivalent to reanalyzing the entire program. We do not expect this 
worst case to occur and refer the reader to [43] for a good discussion of complexity 
analysis for incremental flow methods. Only experimentation will demonstrate 
how this method may perform in practice. We feel that it will be beneficial to 
perform the “Case 1” and “Case 2” transformations first to prune a region before 
the region abstraction walk occurs. No wasted work is performed in these fast 
cases and any pruning can only save time during abstraction. 

5.2 Loop Peeling and Unrolling 

Loop peeling involves duplicating the code in the body of a loop. When one 
iteration is peeled, this code is tailored for the initial loop index values and the 
loop control is revised to make one less iteration. There may be dependences on 
computations external to the loop that should now belong solely to the peeled 
iteration and that should be deleted from the remaining loop. Consider the 
loop in Figure 15(a), which is transformed into a header and a new loop in 
Figure 15(b). A control dependence due to the label L has been removed from 
the loop, permitting better pipelining and simplifying the control dependence 
structure. In addition, the reference to A within the loop is now only dependent 
on the definition of A in the loop. In the original loop, that reference also includes 
external definitions of A since the loop could be entered uia label L. 
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if P then 

A= 

L: B=A . . . 

endif 
while P do while P do 

A= A= 

L: B=A _.. B=A . . . 
endwhi le endwhile 

64 (b) 

Fig. 15. Loop peeling: (a) original loop; (b) one iteration peeled. 

To construct the dependences for the duplicated code, output dependence edges 
must be added from the final definition nodes in the peeled header (the definitions 
“available on exit” from the header) to the initial corresponding nodes in the 
loop (the “exposed uses”). The remaining loop body must have its control 
dependences reduced to be only the loop predicate, all alternate-entry control 
dependences belonging to the header. Then, the data dependences within the 
loop body must be updated. (In the case of a definite loop, e.g., a DO or for, the 
header iteration should be optimized for the initial index values. Other optimi- 
zations possible include invariant code motion. As the header dominates the loop 
body, common subexpression elimination gives us the equivalent of invariant 
code motion on the original loop.) 

The incremental dependence update for the reference to A within the loop 
requires a new condition to recognize the anomaly introduced by peeling away 
an iteration that contains a label. Like Case 1, we consider all pairs (d, p) where 
d is output dependent upon predecessor p and both d and p have the same node 
m as a data dependence successor. (In the example at hand, the definitions of A 
are d and p and the reference to A is m.) 

Case 3. If (d, m) is loop-independent, d should prevent p from reaching m. The 
transformation on p should be as in Case 1. 

A transformation that is closely related to loop peeling is loop unrolling. There, 
the code within the loop may be duplicated one or more times and the number 
of loop iterations decreased proportionately, in order to permit better loop body 
pipelining and decrease the overhead of branch execution and induction variable 
modification. The actions required to update dependences when performing 
unrolling are so similar to those involved in peeling that we do not discuss them 
here. 

6. SUMMARY AND FUTURE WORK 

A new program representation, called the program dependence graph or PDG, 
has been presented and shown to permit efficient and powerful program trans- 
formations. By representing data and control dependences explicitly, the PDG 
provides a unifying framework in which previous work in compiler optimization 
can be viewed since most optimizing transformations are in essence operating on 
a program’s dependence structure. Examples of vectorization, node splitting, code 
motion, and loop fusion were given. An incremental data flow update algorithm 
was presented that permits incremental optimization as the update progresses. 
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The importance of the PDG lies in the fact that potential parallelism in the 
program is exposed since artificial orderings are eliminated in favor of only the 
data and control dependence structure. We expect to use the PDG as the basis 
for process partitioning for multiprocessors. The hierarchical PDG lends itself 
to a top-down partitioning of a program into processes; in addition, the PDG 
provides a promising framework for clustering operations and statements into 
processes in a bottom-up approach. 

APPENDIX. Graph Theoretic Terminology 

A directed graph G = (N, E) is a finite set of nodes N together with a set E of 
ordered pairs of nodes called edges. If (n, m) is an edge, then n is a predecessor 
of m and m is a successor of n. A graph G’ = (N’, E’) is a subgraph of G if 
N’ is contained in N and E’ is contained in E. A path from n to m in G is 
a finite sequence of nodes u. = n, ul, . . . , uk = m such that (IJ;, Ui+l ) is in E for 
Oai<k- 1. The reverse graph of a graph G = (N, E) is a graph (N, E’), 
where E’ consists of edges (n, m) such that (m, n) is in E. A strongly connected 
region of a graph G is a subgraph of G in which there is a path from every node 
to every other node. 
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