
The Program Summary Graph and

Flow-sensitive Interprocedural Data Flow Analysis

David Callahan

Department of Computer Science
P.O. Box 1892
Rice University

Houston, Texas 77251

1 Introduction

This paper discusses a method for interprocedural data

flow analysis which is powerful enough to express flow-

sensitive problems but fast enough to apply to very large

programs. While such information could be applied to-

ward standard program optimizations, the research de-

scribed here is directed toward software tools for parallel

programming, in which it is crucial.

Many of the recent “supercomputers” can be roughly

characterized as shared memory multi-processors. These

include top-of-the-line systems from Cray Research and

IBM, as well as multi-processor computers developed and

successfully marketed by many younger companies. De-

velopment of efficient, correct programs on these machines
presents new challenges to the designers of compilers, de-
buggers, and programming environments.

Powerful analysis mechanisms have been developed for

understanding the structure of programs. One such mech-

anism, data dependence analysis, has been evolving for

many years. The product of data dependence analysis is

a dota dependence gmph, a directed multi-graph that de-

scribes the interactions of program components through

shared memory. Such a graph has been shown useful for a

variety of applications from vectorization and paralleliza-

tion to compiler management of locality.

Another application of the data dependence graph is as

an aid to static debugging of parallel programs. PTOOL
[4] is a software system developed at Rice University to

help programmers understand parallel programs. It is

within this context that we at Rice have learned of the
importance of interprocedural data flow analysis. I will

briefly describe the PTOOL system and explain the kind

of interprocedural information valuable in such an envi-
ronment.

PTOOL is designed to help locate interactions between

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish, requires a fee and/

or spccilic permission.

1 1988 ACM O-8979 l-269- l/88/0006/0047 $1.50

parallel threads of control, because such interactions could

lead to non-deterministic behavior in the parallel pro-

gram. The primary means of expressing parallelism that

PTOOL understands is the parallel DO loop. A parallel

DO loop is essentially the same as a standard Fortran DO

loop except that the separate iterations of the loop may
execute concurrently. PTOOL attempts to prove that a

parallel DO loop is operationally equivalent to executing

the same loop as a standard sequential loop. This equiv-

alence holds if there are no interactions between the sep-

arate loop iterations at the memory level, in particular, if

there is no memory location M such that M is accessed by

more than one iteration and M is modified by at least one

iteration. Such an interaction is called a loop-carried data

dependence [20, 181. One of the contributions of data de-

pendence analysis is the ability to accurately test for and

compactly represent the data dependences of a program

as a graph.

Parallel DO loops also differ from their sequential coun-

terparts in that variables can be declared to be private

to each loop iteration. Variables which are private to

a particular loop represent different memory locations on
each iteration and therefore cannot carry any data depen-

dences. Only variables which hold data that is computed
and used within a single loop iteration can be private to

that loop iteration. Any variable that is not private to a

loop is said to be shared with respect to that loop.

PTOOL attempts to establish which variables are

shared by determining which variables, under sequential
execution, would carry values into the loop, out of the

loop, or across loop iterations. This determination is

straightforward after definition-use [19] chains have been
constructed. Accurate detection of shared variables is
critical for PTOOL for two reasons. First, if many vari-

ables are incorrectly thought to be shared, then many spu-

rious interactions will appear to exist, and controlling false

positives is an important concern for any static debugging

system. Second, most of the errors PTOOL has uncovered
have involved variables which were inadvertently made

private when they needed to be shared.

The efficacy of PTOOL (and any dependence-based
parallelizing compiler) is limited by the accuracy of the
data dependence analysis and the shared variable ansly-

sis. Our experience with PTOOL has identified the lack

47

of information about the effects of external subroutines as
the major source of imprecision. Consider the following

program fragment:

REAL A(1001

COMMON // Y

DO I = l,N
CALL SuB(A,I,X)

. . .

A(I) - A(I) + X + Y
. . .

If PTOOL were completely ignorant about SUB, then it

would have to assume that SUE! could use and modify any

of the parameters, A, I, or X, and any variable global to

the loop, such as Y. Such an assumption can have a catas-

trophic impact on the accuracy of the data dependence

graph.
PTOOL was significantly enhanced by adding machin-

ery to compute interprocedural flow-ineenaitive summary
information. This information describes for each external

entry, the set of formal parameter variables and global

variables that may be used (data read from) and the set

of formal parameter variables and global variables that

may be modified by an invocation of that entry. The

terms ‘flow-insensitive” and ((may” distinguish the infor-

mation from “flow-sensitive” and “must” information. In-

tuitively, “must” facts hold on all execution paths through

a subroutine (e.g., “variable X must be modified”) while
Umay” facts hold on at least one execution path. A prob-

lem is “flow-sensitive” if information about control inter-

nal to subroutines is used to compute the final set of data

flow facts and a flow-insensitive” if this information is ig-
nored. The term “summary” reflects the use of the infor-

mation to summarize the behavior of the external routine.
In the previous example, assume flow-insensitive may

information indicates that only X is modified and that

A,I, and X may be used. We can determine that there

are no interactions between invocations of the subroutine

generated by variables A, I and Y . Similarly, there are no
interactions between the displayed assignment statement

on one iteration and the subroutine invocation on another

which involve I or Y.

Flow-insensitive may summary information can dra-

matically reduce the number of data dependences’ ., but

unfortunately there is still a significant amount of missing

information which is critical to PTOOL. This information

falls into two basic categories: array access information

and accurate must summary information.
One of the most powerful features of PTOOL is its

ability to analyze subscripted variable references and, for

large classes of references, prove that no loop carried de-

pendence exists. Knowing that A is used is insufficient

to prove that there is no interaction with A(I) in the

assignment statement. The subroutine could access just

A(I), in which case no loop-carried dependence would ex-

ist, or it could access A (I+l) , in which caSe a loop-carried

‘At Rice, vve have observed up to 90% reductions in the size of
data dependence graphs for loops with calls to external routines.

dependence would exist. Callahan and Kennedy [8] de-
scribe this problem in more detail and propose a solution
method called regular section onolysis. This problem has

also been examined by Triolet [27] and Burke and Cytron

[61.
The second problem, which this paper addresses, in-

volves determining whether X must be shared. Since we

only know that X may be used and may be modified by

SUB, it is possible that either X is used before it is modi-

fied or that X is not modified along some execution path

so that the old value is used by the occurrence of X in

the assignment statement. In either case, it is possible for

the variable X to transmit a value into the loop or across

loop iterations, forcing PTOOL to assume that X must be

shared.

Our experience with PTOOL has indicated that in-

accurate shared variable analysis significantly reduces

PTOOL’s usefulness and that almost all inaccuracies can
be attributed to lack of flow-sensitive summary informa-

tion. Since most of the parallelization-introduced pro-
gram errors found using PTOOL have involved variables
made private incorrectly, accurate shared variable analy-

sis is critical.

In particular, this paper examines the flow-sensitive

must-modify problem and the flow-sensitive may-use

problem. Flow-sensitive problems are more difficult than

flow-insensitive problems for two reasons. The first is that
exact solutions are intractable in the presence of aliasing

[22] and the second is that the control flow graph of an

entire program is likely to be huge. I avoid the first by for-

mulating the basic problems in a context-independent way

first described by Lomet [21]. This point will be discussed

in greater detail in section 6. The second difficulty is ad-
dressed by introducing a new graph, the program #urn-
mary graph, which exploits the hierarchical nature of a
program to allow flow-sensitive problems to be solved on
a compact structure.

In the following sections, I describe the program sum-
mary graph and its construction. Also, I formulate flow-

sensitive summary problems and show that they can be

solved in time linear in the size of the graph. Next, I

examine a reformulation to exploit properties peculiar to

global variables and then discuss how the global variable

problem interacts with the reference formal parameter

problem. Generalizations of the program summary graph

to handle constant propagation and the relationship of the
program summary graph to previous work are described

in section 9.

2 The Program Summary Graph

The program summary graph is an abstraction of a com-

plete program. It summarizes the interprocedural con-

trol flow in a way that generalizes the more traditional

call graph, but is more compact than the program super-

graph described by Myers [22]. The program summary

graph has four types of nodes: entry nodes, call nodes,

exit nodes, and return nodes. There are entry and exit

48

PROGRAM MAIN
CALL SUBA(A,B)
PRINT +,A
STOP
END

Main

SUBROUTINE SUBA(X,Y)

EXTERNAL WEB
X = 4.0

IF (X.EQ.5.0) K = SUBB(X,Y)
K = Y +K +X
RETURN
END

INTEGER FUNCTION SUBB(U,V)
SUBB = u+v
IF (U.GT.V) u = v
RETURN
END

Sub A

-.
--.

*\

Sub B Sub B

15

Figure 1: Program Summary Example

nodes for every formal parameter of every routine. There responding exit and each call is directly above the corre-
are call and return nodes for every actual parameter of sponding return. Dashed lines represent intrkprocedural
every call site. These nodes represent the four interproce- edges based on local reaching information while the solid
dural events: procedure entry, procedure invocation, pro- lines represent inter-procedural edges. The following ta-

cedure exit, and procedure return. For now, assume that ble describes the relationship between node numbers in
global variables are treated explicitly as formal parame- the figure and the actual and formal parameters in the
ters and actual parameters. program:

There are edges from call nodes to entry nodes that

correspond to the binding of formal parameters to actual

parameters. There are also edges from exit nodes to re-

turn nodes that correspond to this same binding. These

edges depend only on the call structure of the program,

not the internals of the subroutine.

A B x Y

Cdl SUBA 9 1 CaJl SUBB 13 15

Return SUBA 10 12 Return SUBB 14 16

There are also edges from entry and return nodes to

call and exit nodes. These edges summarize the control
flow structure of the subroutine and their construction

begins with solving the standard data flow problem of

reaching definitions: a definition of variable z reaches a
point p in the subroutine if there is an execution path

from the definition to p along which z is not killed. Local
to each routine, we can construct reaching information

treating each actual parameter at a call site to be a use

followed by a definition that kills. Each entry statement

defines all parameters and each WI’URN statement uses all

parameters.

x Y u v

Entry SUBA 5 7 Entry SUBB 1 3

Exit SUBA 6 8 Exit SUBB 2 4

An edge is added to the program summary graph when-

An example is shown in Figure 1. Doubled circles rep

resent entry and exit pairs while single circles represent

call and return pairs. Each entry is directly above the cor-

ever a definition from an entry reaches a call site. The sink
of the edge is the call node associated with the actual pa-

rameter. The source of the edge is the entry node asso-

ciated with the formal parameter. An edge is added to

the program summary graph whenever a definition from
an entry reaches a RETURN statement. The sink of the

edge is the exit node associated with the parameter and

the source is the entry node associated with the param-

eter. An edge is added to the program summary graph

whenever a definition reaches from a call site to either

another call site or to a RETURN statement. The source of

the edge is the return node associated with the param-

eter and the sink is either the call node associated with

49

the actual parameter of the other call site or the exit

node associated with the parameter. The local reaches

information summarizes “definition-free” execution paths

inside each subroutine for a particular variable and it is

clear that all “definition-free” execution paths for each

variable through the entire program are summarized in

the program summary graph.

An important question for later complexity analysis is:

‘how large does the program summary graph get?“. The

interprocedural edges in the program summary graph cor-

responding to the call graph are clearly proportional to
program length and the number of variables. Unfortu-

nately, for programs using unrestricted GOT0 statements,

the number of intra-procedural edges could grow quLdrac-

tically with program length if control flow is sufficiently

complex. With the following definitions:

1 = program length

Cm = maximum number of call sites in any
procedure

up = average number of actual parame-
ters at call sites

ug = total number of global variables

We see that the size of the program summary graph is

O((2 + ct)(t+ + us)), worst case.
I have implemented a prototype within the PFC pro-

gram transformation system [5] which builds a program

summary graph for reference formal parameters. The ta-
ble in Figure 2 shows statistics collected with PFC about
a few numerical Fortran programs. The numeric columns

give size in lines, number of call sites, total number of ref-

erence formal parameters, total number of actual param-
eters, and total size of program summary graph. While I

make no argument that these are necessarily representa-

tive, the data supports the assumption that program sum-
mary graph size grows linearly with program length. The

data also supports the assumption made by Cooper and

Kennedy [12] that the average number of actual parame-
ters is a small constant independent of program length. I

conclude that we can expect the program summary graph

restricted to formal parameters to be proportional to pro-

gram length, O(I), and the total program summary graph
to be proportional to program length times the number

of global variables, O(1 * ug).

3 Flow-sensitive KILL and USE

First I examine KILL and USE. I define these sets as,
respectively, the variables that must be modified and the

variables that may be used befoe being overwritten. In

more traditional data flow terms, these are, respectively,

the set of variables killed by the subroutine invocation and

the set of variables that are live on entry to the subrou-

tine. I will discuss liue on ezit in section 7. I use the

name USE for the flow-sensitive problem even though it

is already used in the literature for the flow-insensitive

problem, because the flow-sensitive solution is the better

Program Size Calls F’s A’s PSG

MFLOPS 526 51 3 35 153

SCALGAM 835 22 76 111 842

BAR0 984 8 15 17 131

EULER 1200 32 17 55 254

SIMPLE 1925 58 34 182 882

VA3D4 3738 69 51 122 224

MDSJE23 4619 42 20 38 250

LSODES 5632 134 344 1132 5217

MCNPC 40959 941 245 3246 13474

Figure 2: Size of Program Summary Graphs

for most applications. This is not the case for modifi-
cations: you cannot ignore variables in MOD, the set of

variables which may be modified, that are not in KILL.

These problems are formulated as simple distributive
data flow problems [17]. For KILL, the lattice of solution
values haa two values: ‘must be modified” (T) and “may

not be modified” (I) with I c T. A variable must be

modified if and only if there is no path from the entry
node for that variable to the exit node for that variable.
This fact is captured as the greatest fixed point of the
data flow equations:

I

false if x is an exit node;

A (r,y)EE Ki”(g) if x is either an en-

try or a return node;

Ki11(x) = Kill(y) V Kill(z) if x is a call node,

v is the corresponding re-

turn node and z is the cor-

responding entry node.

where T is encoded as boolean true and I as boolean

false, the meet operator, A, is “and” and V is ((or”. More

precisely, the set KILL(p) of variables killed by invoca-

tion of p is equal to the set of all u such that Kill(&)

where e$ is the entry node associated with variable u and

procedure p. The above equations are solved using a stan-
dard iterative algorithm shown in Figure 3. This algo-

rithm propagates facts backward through the graph. The

above equations could be reversed to propagate informa-

tion forward.

To continue the example of Figure 1, exit nodes 2,4,6

and 8 are initialized to false, the rest to true. In PFC,

tuorkJist is implemented as a stack. The initial stack is:

8,6,4, and 2. The other nodes found to be ‘not killed” are,

in the order visited: 16,7,14,3,15,1, and 13. This indicates

that only parameter X of subroutine SUBA is killed. Note

that the only values Kill(e) which are relevant are those
where e is an entry node. In particular, the values of

nodes 9,10,11, and 12 in Figure 1 do not have meaningful

information since the entire body of RAIN is not available.

An optimization is possible when MOD is available. If a

parameter is not even modified, there is no need to check

50

/* initialize all nodes to true +/

/* except exit nodes */

work-list + 0

foreach node x do

if is-e&?(z) then

Kill(z) t false

add x to work list

else Kill(z) + true

while not empty(cuork-list) do

take sople z off work-list
if is-ezit?(x) or is-call?(z) then

foreach (y,z) E E do

if Kill(y) then
Kill(y) + false

add y to work list

else if is-entry?(z) then
foreach (y, z) E E do

z is the return node

corresponding to y
if not Kill(z) then

Kill(y) +- false

add y to vork list
else

/* z is a return */

y is the call node corresponding

to 2
if Kill(y) then

z is the entry node such

that (y, z) E E
if not Kill(z) then

Kill(y) + false

Add y to work list

Figure 3: Algorithm to compute KILL

for KILL information. This observation is exploited in

the equations:

’ not(v E MOD(p))

if x is an exit node associ-

ated with variable v in pro-

cedure p;

A (z,~)@ =‘(d
if z is either an entry or a

E%(x) = return node;

aJ(y) v ((v E MOD(p)) A aTi(
if x is a call node, y is the

corresponding return node,

z the corresponding entry

node and v is the variable

associated with z in proce-

L dure p.

.re IS a corresponding change in the initialization

shown in Figure 3. Here, MOD(p) represents the set of

variables which may be modified by an invocation of pro-
cedure p. More precisely, the modified equations directly

compute KILL(p) U MOD(p), where MOD(p) is the set

complement of MOD(p). This set can then be intersected

with MOD(p) to get KILL(p).

This change will not affect the complexity of the algo-

rithm, but I have observed a small (15%) improvement in

the solution time for the reference formal parameters sub-

problem. For the example of Figure 1, the initial stack is:

6 and 2. Nodes visited are: 14,l and 13. This indicates

that, of the formal parameters that are modified, only X

of SUM is killed.

A variable is “used” if there is a path from the entry

node corresponding to that variable to a use of that vari-
able such that the variable is not overwritten along the

path. USE(p) is the set of variables which may be used

before being redefined during invocation of procedure p.

For this problem, we introduce a special node “use” into
the program summary graph to indicate any use in any

local context. To the program summary graph described

above, edges are added from entry and return nodes to
‘use” if the corresponding definition in the local context
reaches some use. The path problem is now described by

the least fixed point of the data flow equations:

f true if x is the special “use”

node;

V tI,yjeE Use(y) if x is either an entry or
a return node;

Use(x) = Use(z) V (not Kill(z) A use(y)) if z is a
call node, y is the corre-

sponding return node and z

is the corresponding entry
, node.

and again, more precisely: USE(p) is the set of variables

v such that Use(eE) where ef is the entry node associated
with variable v and procedure p.

These equations can be solved in time linear in the size

of the program summary graph using the algorithm shown

in Figure 4. For the example of Figure 1, the edges to

‘use” (not shown in figure) would be from: 3,1,16,14,7,

and 10. These edges are the initial work list, again im-

plemented as a stack. The other nodes found to be used

are, in the order visited: 11,13, and 15.

Clearly, execution cost for KILL and USE is propor-

tional to the size of the program summary graph. Figure 5

contains more information derived from the prototype im-

plementation. The second column is the total number of

edges in the program summary graph. The remaining

columns are the times to solution in milliseconds on an

IBM 3081 of the three problems: flow-insensitive MOD

for parameters (FIP), flow-insensitive MOD for globals

(FIG), and flow-sensitive for parameters (FSP). These

times are only the time to solve the data flow problems
and do not include time to set up the various graphs and

other data structures. The first two problems are solved

using the basic iterative algorithm described in Cooper’s
dissertation [lo]. The low absolute solution times also

51

/* initialize all nodes to true */
/* except source of edges to */

/* “u6e” */

work-list + 0

Use(*) + false

foreach edge (2, use) E E do
Ude(x) - true

add x to vork list
while not empty(work-list) do

take some x off work-list

if is-entry?(x) or is-call?(x) then

foreach (y,z) E E do
if not Use(y) then

Use(y) + true

add y to vork list
else

/* 2 is a return */

y is the call node corresponding

to x
if not Use(y) then

t iz the entry node such

that (y,z) E E
if not Kill(r) then

Use(y) + true

Add y to vork list

Figure 4: Algorithm to compute USE

Program Size PSG FIP FIG FSP

MFLOPS 526 153 1 3 5

SCALGAM 835 842 12 14 69

BAR0 984 131 1 6 9

EULER 1200 254 8 53 23

SIMPLE 1925 882 1 30 40

VA3D4 3736 224 2 62 54

MDSJE23 4619 250 1 92 18

LSODES 5632 5217 211 27 445

MCNPC 40959 13474 48 1246 862

Figure 5: Time to solutions

establish that the flow-sensitive problems for parameters

are viable for use in a compiler.

4 Handling global variables in KILL
and USE

This section formulates KILL and USE for programs with

only global variables. In the next section I show how

separate approaches for parameters and globals will be
combined into a general technique. Such a decomposition

of the basic problem allows the special aspects of global
variables to be isolated and exploited. The decomposi-

tion into global variable and reference formal parameter

subproblems was pioneered by Cooper and Kennedy [ll].

Global variables are different from reference formal pa-

rameters in two regards. The first is that the number of
pairs of global variables and entry names or call sites is

likely to be very large, much larger than the total number
of formal parameters and certainly not a constant inde-

pendent of program size, so the global variable component

of the program summary graph could be very large. The
second difference is that, while formal parameters have a

different name than the actual they are bound to, every

global variable is implicitly bound to itself at each call

site.
The size problem can be alleviates by using a bit-vector

implementation for globals. This mitigates the problem

with the number of variables by working with different
variables in parallel and also reduces the size of the pro-

gram summary graph by maintaining information for only
a single pseudevariable which represents all global vari-
ables. Furthermore, the fact that there is no name change
at call sites means that no complicated binding map need

be maintained.

The above data flow equations hold if the variables
represent sets of variables (realized aa bit-vectors) rather

than single variables but we need “mask” vectors to indi-

cate which definitions do not reach due to local kills. For
example, in the following subroutine, along all paths from

the entry of TEW to the call site, variable A is hilled:

SUBROUTINE TEMF’

CDNMON // A,B,C
A= 1

CALL SUB

B-A+C

RETURN

END

The local reachirig information for all global variables can

be summarized by a single edge in the program summary

graph annotated with the information that A does not

reach the call site. The new data flow equations are:

(faiue if x is an exit node;

I
A\c=hEE (Kill(y) V Kill(e))

if x is either an entry or a

return node:

Ki11(x) = (Kill(y) V (Kill(r) A Glob&z))

I
if x is a call node, y is the
corresponding return node

and z is the corresponding

entry node.

where Kill(e) is the vector of global variables such that
there is no path from z to g which is free of definitions

of that variable and Global(z) is the vector of variables

global to entry z. For the previous example, there is an

edge from the entry of TBBP to CALL SUB antI the Kill

vector for that edge represents the set {A}. I‘cjt the edge

52

from the return of CALL SUB to the exit of TEMP, the Kill
vector would represent the set (B}.

The ‘optimization’ which used the flow-insensitive
MOD information can be applied and may be very im-

portant since global variables should display significant

locality. The “optimized” equations are:

f not MOD(e) if z is an exit node as-
sociated with entry e and

I
MOD(e) is the set of global

variables which may be

modified by e;

Ae=(r,ukE (Kill(y) V Kill(e))

Kill(x) = if z is either an entry or a
return node;

Kill(y) V (MOD(e) A Kill(z) A Global(z))

if z is a call node, 1 is the

corresponding return node
and I is the corresponding

node associated with entry
. e.

This bit-vector formulation can be solved with any of
the ‘general data flow techniques. The general iterative

approach [17] gives a time bound of O(1 . a) bit-vector

operations where 1 is the program length factor described

in section 2 and d is the maximum number of back edges

along an acyclic path in a depth first search tree of the

call graph. If the call graph happens to be reducible,
one of the fast solvers can be applied to get O(Z . lnl)

solutions using techniques of Graham and Wegman [14]

or O(I . cy(l,n)) for n nodes in the call graph using the

algorithm of Tarjan [26].

5 Combining Parameters and Globals

The problems for formal parameters and global variables

interact in two ways. One way occurs when a global vari-
able is passed as an actual parameter and bound to a

formal parameter. The second way occurs, in languages

that allow nesting of procedure declarations and lexical

scoping of names, when a formal parameter of procedure

p is accessed as a global variable by a procedure lexically

nested inside of p.
In a language without procedure nesting, such as For-

tran or C, the second interaction does not occur. The two

problems can be integrated by solving for the formal pa-

rameter first, then updating the global problem. The only
update needed occurs when a global variable is bound to a

formal parameter of a procedure to which it is not global.

If the procedure hills the parameter, then we can update

the Kill(e) set for the incoming edges e to that call site

to reflect this fact.
If the variable is global to that procedure, then an alias

exists and we insist that both symbolic names be hilled

independently.’ If the variable is killed as a parameter,

the variable is hilled if and only if it is hilled as a global as

well. In this case, no change need be made. If the variable
is not hilled as a parameter, we must prevent it from being
marked killed. Unfortunately, we have to adjust the data

flow equations to retain this fact: Kill(x) is equal to

Kill(y) V ((Km(t) A GJoLal(z))) A ParmKilled(z))

if x is a call node, y is the corresponding return
node, e is the corresponding entry node, and the vector

ParmKilled(z) is the set of variables which are either not

passed as parameters at call site x or are killed if they are

passed as parameters.
Each problem is approximate in the absence of the solu-

tion of the other. By first solving the parameter problem,

that solution can be used when solving the global variable

problem. The resulting approximation to the global vari-

able problem can in turn be used to improve the formal

parameter problem. These problems can then be iterated

to a solution.

A more straightforward solution is to alter the dietinc-
tion between global variable and parameter. A variable
which is a formal parameter at any level is treated ex-

plicitly, following the machinery of section 3. All other

variables are handled using the machinery of the previous

section. Under these conditions, the second interaction

cannot occur (by definition of “global variable”). The as-

sumption that the average number of formal parameters,

u,, is independent of program size indicates that the pro-

gram summary graph restricted to parameters has O(I)

edges. Now we must assume that a procedure at nesting
depth d has O(d) “parameters”, since all formal parame-

ters of enclosing procedures will be represented explicitly.

So the parameter subproblem will have O(Z . d) expected

execution time, where 1 is program length and d is the av-
erage nesting depth. Again it is plausible to assume that

d is independent of program length, and so we again get

an O(I) expected execution time for the parameter prob-

lem. The execution time for the global problem remains

unchanged.

6 The effects of aliasing on USE and

KILL.

Two variables are said to be aliased if they can both refer

to the same or overlapping storage locations. To see that
KILL and USE (as formulated here) are imprecise in the
presence of aliases, consider the fragment:

‘See next section.

53

CALL SuB(X,X.Y)

SIJBROUTINB SUB (A ,B , C)

IF (A.LT.B) THEN

A=C

A = A+B
ELSE

B-C
B = A+B

ENDIF
RETURN
END

Note that neither A nor B is individually killed and both

appear to be used in SUB, but there is no path along which

variable X is unmodified and so X is killed. There is also

no path along which X is used before being overwritten.

Lomet [21] showed that you can approximate the ex-

act call-path specific information can be approximated by
solving the “no-alias” problem and requiring each sym-

bolic name which is part of the alias-set to be indepen-

dently killed for KILL, or that USE is implied if any sym-
bolic name in the alias-set is used. Thus, there is a clean

up phase, after KILL and USE are computed and alias

information is approximated [S], to get safe information

for use locally in each procedure.

The effects of aliases do not arise in the formulations

of KILL and USE because they are based on symbolic

names rather than storage locations: the context of the

subroutine is ignored for these problems. By ignoring the

context, the complexity is greatly reduced. Our experi-

ence indicates that abasing is very rare in Fortran and so

very little precision should be lost.

7 The effects of aliasing on LIVE

I want to look at a closely related problem: live on exit

(LIVE). A formal parameter f is in LIVE if there is some
path from the exit node associated with f to a use node.

For example, parameter Y of SUB2 appears to be LIVE

since the value of Y may be used as B in SUBl:

SlJBROUTINB SUBl(A,B,C)

CALL SUBZ(A,B)
A=4+C
A=B
RETURN
END
SUBROUTINE SUB2(X,Y)

Further, parameter X appears to be dead (assuming this

is the only call to SUB2) since A is killed immediately after

the call to SUB2 The natural formulation of LIVE over the

program summary graph used for KII,L and USE is not
only imprecise but is actually incorrect in the presence of

r&sing. If an alias exists between A and B in the previous

example, then Y is not live on exit, so LIVE is imprecise.
On the other hand, if an alias exists between A and C, then

X is live on exit since its value will be used on the alias of
C in SDBl, hence LIVE is not even conservative.

The context information that can be ignored for USE

and KILL cannot be ignored for LIVE. The functions that
summarize the LIVE information of subroutines must de-

pend on the context information.

The problem can still be done if the “errors” due to

lack of context information can be corrected. One simple

approach would be to propagate information through the
program summary graph to mark every formal parameter

that may be bound to a parameter that is involved in an

alias. Any such variable is automatically marked LIVE,
and LIVE is corrected for variables not part of an alias set.

This is essentially the same solution we employ for con-

stant propagation [7]: make the context-dependent func-

tions context-independent by detecting dangerous aliases

and then replace the context-dependent functions with

“bottom” wherever appropriate. Again, if abasing is rare,
no significant loss of precision should occur.

8 Side Costs

Flow-insensitive formulations of data flow problems over

the call-graph require very little information about each

routine compared to the information required for con-

struction of the program summary graph. If the initial

information had to be recomputed for every compilation,

the cost might become prohibitive. Of course, this is

not the case. Only recently modified routines need to

be re-analyzed. All of the Rice systems (PFC,PTOOL

and lR.“) include database mechanisms for preserving ini-
tial information across compilations. The most sophisti-
cated is employed in the lRn programming environment
[13]. That system presumes an intelligent editor to pro-
vide initial information for the interprocedural analysis.

The clean separation of intra-procedural information from

inter-procedural information described for the program
summary graph makes it straightforward to have the ed-

itor maintain the more sophisticated information. The

cost of collecting initial information for the program sum-

mary graph for a particular routine is incurred at most

once per editing session of that routine.

A side benefit of not using alias information in the for-

mulation of the summary information is that no depen-

dence is placed between these two problems. In particular,

changes to the alias information do not necessarily require

recomputation of summary information. Since call graphs
will frequently be very tree-like, and summary problems

as formulated are pure “backward” flow problems (with

respect to invocation order), very fast (but not truly incre-
mental) updates are possible by exploiting the structure

of the call graph.
Finally, the local reaches information can be updated

very quickly from the interprocedural information since

there are no structural changes to the local flow graph

[25, 231.

54

9 Related Work

Allen [2] solves the reaching definitions problem for pro-

grams with acyclic call graphs. This is done by visit-
ing each procedure in “reverse invocation order” so that

whenever a subroutine call is encountered, the set of vari-

ables which are upwards exposed to the entry are known
as well aa the must-be-modified sets. These sets are

used to solve the local reaching definitions problem in

the caller. Allen and Schwartz [3] extend Allen’s work

by “overestimating” reaching information and then refin-
ing through iteration. Here, this work has been extended

with complexity analysis and re-engineering to make the
time to solution acceptable for a compiler.

Lomet [21] formulates the must-not-be-modified prob-

lem, PRESERVED, in terms of local reaching definitions
but uses very conservative approximations by making

worst case assumptions. Lomet provides justification for

solving these flow-sensitive problems under “no-alias” as-

sumption by showing that PRESERVED can be adjusted

to be correct but conservative once alias information is

known. Previous work did not discuss the effects of aliaa-

ing. I have adopted the %&ias” approach but improved

on the basic reaching definitions information.

Rosen [24] formulates flow-sensitive versions of MOD,

USE, and PRESERVED over the entire program control

flow graph where the sets are indexed not only by variable

names but also call-path specific aliasing patterns.

Myers [22] formulates the interprocedural must-

summary problem over the program supergraph which ex-

plicitly represents all basic blocks and control flow in the

program. He establishes that must-summary is co-NP in

the presence of aliasing but argues that in practice, alias-

ing will have limited effects and provides a precise algo-
rithm for solving the LIVE, AVAIL and must-summary

problems.

The approach to interprocedural constant propagation

presented by Cooper, Callahan, Kennedy, and Torczon

[7] provides the seeds of the ideas leading to the program

summary graph. Callahan and Kennedy [8] have shown
how to extend the lattice used for constant propagation in

a way which also computes KILL. The general notion of

jump functions, which map values available upon subrou-
tine entry to values available at call sites, and return jump

functions, which map to values at exit points, is a direct

generalization of the program summary graph: each node

represents a jump function to be evaluated and the edges

between nodes define the support of that function. This

general graph defines a set of mutually recursive functions.

By restricting the classes of functions to bit AND or OR,

as in the program summary graph, solutions (functional

fixed points) can ‘be computed very quickly. Here I have
described applications for KILL and USE but we could

also, with slight modifications, compute an approxima-

tion to the set of available constants. By allowing more
complex functions, the behavior and effects of subroutines

can be approximated to any degree, but closed form so-

lutions may not exist.
As part of the PTRAN project [l], flow-sensitive MOD

and USE are computed for non-recursive Fortran pro-
grams using techniques essentially the same as described
by Allen [2). They do not compute KILL information but
do have some alias information.

Hudak [16] gathers compile-time facts about a func-
tional program via techniques called abstract interpreta-

tion and collecting interpretation of expressions. He uses

program text to define functions over data domains which

approximate in some way real data domains. We can con-
trast that with the discussion of the previous paragraph

where the program summary graph is viewed as using ap

proximate functionsas well as approximate data domains.
Cooper and Kennedy [12] fully develop the flow-

insensitive interprocedural summary problem and detail

the interactions between the problems for reference formal

parameters and global variables. Here I have extended

their machinery to the flow-sensitive problems KILL and

USE.

Horowitz, Reps and Binkley [15] define a linkage gram-

mer which is structurally very similar to the program

summary graph. Their goal is determine all input pa-
rameters that might affect the value of an output param-

eter. Rather than using reaches information, they com-

pute intra-procedural edges based on %lice” information:

an edge exists from an entry or return node (using my ter-

minology) to a call or exit node if the source of the edge

affects the value at the sink. Determining if a particular

input parameter affects the value of an output parameter

can now be done by showing a path exists from the input
parameter to the output parameter.

10 Summary

The program summary graph is an effective data structure
for solving the flow-sensitive summary problems KILL

and USE. By summarizing local control flow with reach-

ing information and exploiting bit-vector techniques for

globals, the size of the flow-sensitive problem is managed.

It may be less effective for the context-dependent prob-

lems, such as LIVE, but many of these problems can be

made context independent by pre-computing dangerous

contexts (aliases) and “correcting” the solutions. Finally,

the structures of the lR” programming environment and

the program summary graph substantially mitigate the

side costs of collecting initial information and maintain-

ing correct local information.

References

[l] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Fer-
rante. An overview of the PTRAN analysis system

for multiprocessing. In Proceeding3 of the First Zn-

ternational Conference on Supercomputing, Springer-
Verlag, Athens, Greece, 1987.

[2] F. E. Allen. Interprocedural data flow analysis. In
Proceedings ZFZP Congress 74, North-Holland Pub-

lishing Co., Amsterdam, 1974.

55

[31

[41

t51

t61

[71

PI

PI

PO1

F. E. Allen and J. T. Schwartz. Determining the data

relationships in a collection of procedures. Research

Report RC 4989, IBM T. J. Watson Research Center,

August 1974.

J. R. Allen, D. Baumgartner, K. Kennedy, and A.

Porterfield. PTOOL: a semi-automatic parallel pro-

gramming assistant. In Proceedings of the 1986 In-

ternational Conference on Parallel Processing, IEEE

Computer Society Press, August 1986.

J. R. Allen and K. Kennedy. PFC: a program
to conoert Fortran to parallel form. Technical Re-

port MASC-TR 82-6, Dept. of Mathematical Sci-

ences, Rice University, March 1982.

M. Burke and R. Cytron. Interprocedural depen-

dence analysis and parallelization. In Proceedings

of the SIGPLAN ‘86 Symposium on Compiler Con-

struction, pages 162-175, June 1986.

D. Callahan, K. Cooper, K. Kennedy, and L. Torc-
zon. Interprocedural constant propagation. In Pro-
ceedings of the SIGPLAN ‘86 Symposium on Com-
piler Construction, June 1986.

D. Callahan and K. Kennedy. Analysis of interproce-

dural side effects in a parallel programming environ-

ment. In Proceedings of the First International Con-

ference on Supercomputing, Springer-Verlag, Athens,

Greece, 1987. Available as Rice University, Depart-

ment of Computer Science Technical Report TR87-

56, July 1987.

K. Cooper. Analyzing aliases of reference formal pa-
rameters. In Conference Record of the Twelfth ACM

Symposium on the Principles of Programming Lan-

guages, January 1985.

K. Cooper. Interprocedural Data Flow Analysis in

a Progmmming Environment. PhD thesis, Dept. of

Computer Science, Rice University, April 1983.

[ll] K. Cooper and K. Kennedy. Efficient computation

of flow insensitive interprocedural summary informa-

tion. In Proceedings of the SlGPLAN ‘84 Symposium

on Compiler Construction, SIGPLAN Notices Vol.

19, No. 6, July 1985.

[12] K. Cooper and K. Kennedy. Interprocedural side-

effect analysis in linear time. In Proceedings of the

ACM SIGPLAN 88 Conference on Program Lan-

guage Design and Implementation, Atlanta, GA,

June 1988.

[13] K. Cooper, K. Kennedy, and L. Torczan. The impact

of interprocedural analysis and optimization in the

lR.” programming environment. ACM Transactions

on Programming Languages and Systems, 8(4):419-

523, October 1986.

[I41

iI51

[I’51

[I71

[1f31

PI

WI

Pll

WI

P31

[241

[=I

P61

PI

S. Graham and M. Wegman. A fast and usually lin-

ear algorithm for global data flow analysis. Journal

of the ACM, January 1976.

S. Horowitz, T. Reps, and D. Binkley. Interprocedu-

ral slicing using dependence graphs. In Proceedings

of the ACM SIGPLAN 88 Conference on Program

Language Design and Implementation, Atlanta, GA,
June 1988.

P. Hudak. A semantic model of reference counting
and its abstraction. In Conference Record of the

1986 Symposium on Lisp and Functional Program-

ming, pages 351-363, 1986.

J. B. Kam and J. D. Ullman. Global data flow anal-
ysis and iterative algorithms. Journal of the ACM,

23(1):159-171, January 1976.

K. Kennedy. Automatic translation of Fortran pro-

grams to vector form. Technical Report 476-029-4,

Dept. of Mathematical Sciences, Rice University, Oc-
tober 1980.

K. Kennedy. A survey of data flow analysis tech-

niques. In S. S. Muchnick and M. D. Jones, editors,
Program Flow Analysis: Theory and Applications,

pages l-54, Prentice-H&New Jersey, 1981.

D. J. Kuck. The Structure of Computers and Com-

putation. Volume 1, John Wiley & Sons, New York,
1978.

D. Lomet. Data flow analysis in the presence of pro-

cedure calls. IBM Journal of Research and Develop-

ment, 21(6):559-571, November 1977.

E. Myers. A precise interprocedural data flow algo-

rithm. In Conference Record of the Eigth ACM Sym-
posium on the Principles of Programming Languages,

pages 219-230, January 1981.

L. L. Pollock and M. L. Soffa. An incremental version

of iterative data flow analysis. Rice COMP TR87-58,

Dept. of Computer Science, Rice University, August

1987.

B. K. Rosen. Data flow analysis for procedural lan-

guages. Journal of the ACM, 26(2):322-344, April

1979.

B. G. Ryder and M. D. Carroll. An incremental al-

gorithm for software analysis. In Proceedings of the
ACM SIGSOFT/SIGPLAN Symposium on Practical

Software Development Environments, pages 171-179,

1986.

R. E. Tarjan. Fast algorithms for solving path prob-

lems. Journal of the ACM, 28(3):594-614, July 1981.

R. Triolet, F. Irigion, and P. Feautrier. Direct paral-

lelization of call statements. In Proceedings of the
SIGPLAN ‘86 Symposium on Compiler Construc-

tion, pages 176-185, June 1986.

56

