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ABSTRACT Human pose estimation localizes body keypoints to accurately recognizing the postures of

individuals given an image. This step is a crucial prerequisite to multiple tasks of computer vision which

include human action recognition, human tracking, human-computer interaction, gaming, sign languages,

and video surveillance. Therefore, we present this survey article to fill the knowledge gap and shed light on

the researches of 2D human pose estimation. A brief introduction is followed by classifying it as a single

or multi-person pose estimation based on the number of people needed to be tracked. Then gradually the

approaches used in human pose estimation are described before listing some applications and also flaws

facing in pose estimation. Following that, a center of attention is given on briefly discussing researches

with a significant effect on human pose estimation and examine the novelty, motivation, architecture,

the procedures (working principles) of each model together with its practical application and drawbacks,

datasets implemented, as well as the evaluation metrics used to evaluate the model. This review is presented

as a baseline for newcomers and guides researchers to discover new models by observing the procedure and

architecture flaws of existing researches.

INDEX TERMS Human pose estimation, pose estimation and action recognition, pose estimation survey,

single and multi-person pose estimation.

I. INTRODUCTION

Human pose estimation is one of the challenging fields of

study in computer vision which aims in determining the

position or spatial location of body keypoints (parts/joints)

of a person from a given image or video [1], [2], as shown

in Fig.1. Thus, pose estimation obtains the pose of an artic-

ulated human body, which consists of joints and rigid parts

using image-based observations [3].

Human pose estimation refers to the process of inferring

poses in an image and these estimations are performed in

either 3D or 2D [4]. To solve this problem, several approaches

in the literature have been proposed. Early works introduced

the classical approaches to articulated human pose estima-

tion called the pictorial structures [5]–[8]. In these models,

the spatial correlations of the body parts are demonstrated

as a tree-structured graphical model and they are very suc-

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuping He .

FIGURE 1. The estimated pose of each individual in a given image.

cessful when the limbs are visible however faced prob-

lems when the tree-structured fails capturing the correlation

133330 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0001-9777-6961
https://orcid.org/0000-0001-5463-4365
https://orcid.org/0000-0002-8580-5451
https://orcid.org/0000-0003-1869-2116


T. L. Munea et al.: Progress of Human Pose Estimation: A Survey and Taxonomy

between variables. Hand-crafted features such as edges, con-

tours, the histogram of oriented gradients (HOG) features,

and color histograms have also been used in early works for

human pose estimation [9]–[13]. These models have shown

bad generalization performance which faced problems in

detecting the accurate location of the body parts.

Contributions: Solving the problems and challenges

related to human pose estimation has been advanced and

progressed remarkably with the help of deep learning and

publicly available datasets. This survey provides a summary

of these works comprehending up to date information and

points the future research directions. Like some remarkable

surveys [14]–[18], this paper also provides a general concept

of human pose estimation. It can be used as a guideline for

people who are new to this concept and helps them to define

noble models by combining the network structures of the

existing models. Additionally, it helps researchers to compare

their work with significant models based on deep learning.

Besides, here are some specific main contributions of this

review:

• Provides a summary of preferred backbone architectures

and loss functions used in addition to the overview of

evaluation metrics implied and datasets employed.

• Provides an overview of recent models on 2D human

pose estimation

• Limitations of each model’s work and open issues are

presented

A. RELATED WORKS

Other survey papers related to pose estimation have been

released in the past years. For example, two survey papers

[14], [15] published in 2016 have extensively surveyed mod-

els on human pose estimation which did not implement deep

learning-based approaches. Then [16] presented a survey of

deep learning, pose estimation, and application of deep learn-

ing for computer vision. A review on hand pose estimation is

presented by [19] whereas [20] provided a survey on head

pose estimation.

One of the recent surveys on 2D human pose estimation

based on deep learning is [17]. This review started by cate-

gorizing pose estimation as a single person and multi-person

pipeline and in each category created sub-categories. Another

survey on deep-learning-based pose estimation has just come

out [18] on both 2D and 3D pose estimation. 2D human

pose estimation is categorized as [17] while 3D human pose

estimation is categorized as model-free and model-based and

the approaches are discussed based on these categories in both

cases.

This survey paper presents different deep learning-based

2D human pose estimation models. The backbone archi-

tecture used, loss functions, the datasets used, as well as

evaluation metrics implied are discussed and evaluated. The

main objective of this paper is to provide a detailed analy-

sis of mostly known effective models used, provide readers

with various opportunities in mixing architecture of different

models so that to come up with better human pose estimation

models using better evaluation metrics or efficient backbone

architecture.

B. BASIC STEPS IN POSE ESTIMATION

Themain process of human pose estimation is boiled into two

basic steps: i) localizing human body joints/keypoints and;

ii) grouping those joints into valid human pose configuration

[7], [8]. In the first step, the main focus is on finding the

location of each keypoints of human beings as displayed

in Fig.2. E.g. Head, shoulder, arm, hand, knee, ankle.

FIGURE 2. Keypoints localized by different dataset: (a) COCO keypoints,
and (b) MPII keypoints.

Collecting and identifying these joints can be done through

any of the different popular dataset formats; such that the

way keypoints are stored in the selected dataset. As shown

in Fig.2, different platforms can result in different dataset out-

put formats for the same image of body joints. For instance,

COCO [21], dataset provide 17 body joints whereas MPII

[22] provides 14 body joints. Table 1 displays the outputs

dataset for the two platforms.

The second step is grouping those joints into valid

human pose configuration which determines the pair-

wise terms between body parts as seen in Fig.3. Differ-

ent techniques have been applied in joining the keypoint

candidates [23], [24].

The rest of this paper is organized as follows. Section II

describes the category of pose estimation based on the num-

ber of people needed to track, approaches used in pose esti-

mation, application of pose estimation, and flaws/challenges

in pose estimation. Section III started by the introduction

of backbone architectures used, the loss functions, dataset

implied, and finally common evaluation metrics used to eval-

uate models. In section IV, a detailed discussion of each

model’s network procedures is discussed. Section V summa-

rizes themodels in short as a table and opens discussion based

on presented in this article and finally section VI concludes

the paper’s works.

II. POSE ESTIMATION PRELIMINARY

This section discusses the general classification of pose esti-

mation based on the number of people to track, introduce
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TABLE 1. Different keypoints for MPII & COCO dataset.

FIGURE 3. Configuration of valid human pose estimation.

the most popular approaches, application of pose estimation,

and finally, the challenges that still require new as well as

innovative approaches.

A. SINGLE/MULTI-PERSON POSE ESTIMATION

Based on the number of individuals being estimated given an

image, pose estimation is classified as single-person and/or

multi-person pose estimation. Single-person pose estimation

is much easier compared to multi-person, to estimate pose

for a single person from a given image which may contain

(usually does) more than a single person. On the other hand,

multi-person pose estimation determines the pose of all indi-

viduals available in the image [25]. Fig.4 shows the approach

of a single person and multi-person pose estimation applied

in the given images.

The technology of human pose estimation recently shown

exciting progress on standard benchmarks both for a single

person [26]–[30] andmulti-person pose estimation [31]–[35].

FIGURE 4. Classification of pose estimation: (a) Single person vs
(b) multi-person pose estimation.

The use and introduction of deep learning-based architec-

tures [36]–[39] and the availability of large-scale datasets

such as MPII human pose dataset [22], COCO [21], and LSP

[40] both single and multi-person pose estimation problems

have lately been getting attention more and more.

B. APPROACHES IN POSE ESTIMATION

Two common approaches are employed in estimating the

poses of individuals in a given image. 1) Top-down

approaches, the processing is done from low to high reso-

lutions, follow the detection of the individual instances in

the image first using a bounding box object detector and

then focus on determining their poses next [26], [27], [29],

as shown in Fig.5.

FIGURE 5. Pose estimation of multi-person in top-down approaches.

These approaches always suffer from early commitment,

which means if the detection of individuals fails, there is no

possibility of recovering. Also, it is vulnerable when multiple

individuals are nearby. Furthermore, the computational cost

depends on the number of people in the image, the more the

people the more the computational cost. Hence, the run-time

of these approaches is directly proportional to the number
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of people: means for every detection, a single-person pose

estimator is run.

FIGURE 6. Some samples of multi-person pose estimation in bottom-up
approaches.

2) The bottom-up approaches [31]–[34] processing is done

from high to low resolutions. It starts by localizing identity-

free semantic entities and then grouping them into person

instance. Bottom-up approaches overcame early commitment

and showed detached run-time complexity from the number

of people in the image as shown in Fig.6. In addition to that,

some researches using bottom-up approaches use the global

contextual cues from other body parts and other people.

However, bottom-up approaches face challenges in grouping

body parts when there is a large overlap between people.

C. APPLICATIONS OF POSE ESTIMATION

Earlier human pose estimation application areas such as

action recognition, human tracking, animation, and gaming

[41], [42] are mentioned. Video surveillance, assisted living,

and advanced driver assistance systems (ADAS) [43], [44] are

also included. Furthermore, it may also provide game analysis

in sports by describing the players’ movement [45]. Pose esti-

mation is also applicable in Sign languages to help disabled

people. Some of the most common current applications of

pose estimation are depicted in Fig.7.

D. CHALLENGES FACING

Principally every state-of-the-art (SOTA) pose estimation

model includes a component that detects body joints or esti-

mates their position andmaking pairwise terms between body

part hypotheses which assist categorizing the pairwise terms

into valid human pose configurations. In doing so, some chal-

lenges are faced. Such as position and scale of each person in

the image; barely visible joints; interactions between people,

which brings complex spatial interference due to clothing,

lighting changes, contact, occlusion of individual parts by

clothes, backgrounds, and limb articulations which makes

the association of parts difficult. As the cost of 3D depth-

sensing camera decreases and the machine learning algo-

rithms to process the datasets of such technologies improve,

we believe that it would bring new approaches to solve current

challenges.

FIGURE 7. Applications of pose estimation: (a) action recognition,
(b) gaming, (c) human tracking, (d) sports game analysis, and (e) sign
languages.

III. MAIN COMPONENTS OF POSE ESTIMATION

Before diving into the details of each research model, better

to explore first the main components of the pose estimation

research’s fundamentals such as backbone architecture, pose

loss functions inhabited, the dataset used, and also evaluation

metrics applied.

A. BACKBONE ARCHITECTURE

DeepPose [46] is the first significant research article that

applied deep learning to human pose estimation. The authors

have implemented the network architecture of AlexNet [37]

as backbone architecture which consists of five convolution

layers, two fully connected layers, and a softmax classifier.

After the introduction of AlexNet, other machine learning

algorithms such as R-CNN [47], Fast R-CNN [48], FPN [49],

Faster R-CNN [50] and Mask R-CNN [39] have been used

as backbone architecture for other human pose estimation

researches [51], [32] and [52]. The second most popular

backbone architecture is VGG [36] which has been used in

[29], [34]. Although AlexNet and VGG have been in use for a

while, most of the recent researches in human pose estimation

[26], [27], [31], [32], [35], [53], have been using ResNet [38]

as a backbone architecture.

B. LOSS FUNCTIONS

As one part of machine learning, human pose estimation

models learn by loss functions. Loss functions evaluate how

well a specific algorithm models the given dataset. It reduces

the error in the prediction process [54], [55]. Largely three

kinds of loss functions applied in human pose estimation

models, namely,MeanAbsolute Error (MAE),Mean Squared

Error (MSE), and Cross-Entropy loss.

MAE or L1 loss function is calculated as the average of

sums of all absolute differences between true and predicted

values. L1 loss function does not consider the direction,

but only measures the magnitude of the error. The L1 loss

function is not sensitive to outliers thus it is robust. But it is
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very hard to regress precisely which brings complexity for

machine learning [56].

L1 = 1/n
∑n

i=1
|yi − f (xi)| (1)

MSE also called L2 loss or Quadratic loss function is cal-

culated as the average of the squared differences between

true and predicted values. Like L1 loss, the L2 loss function

measures the magnitude of error without considering the

direction. L2 loss function provides an easier way to calculate

gradients due to its mathematical properties. But, the L2 loss

function is very sensitive to outliers, unlike L1 because of its

usage of squaring when predicted values and true values are

very far away occasionally [56].

L2 = 1/n
∑n

i=1
(yi − f (xi))

2 (2)

In Cross-Entropy loss (Negative Log-Likelihood or Log loss),

each predicted probability is compared to the actual class

output value (0 or 1) and a score is calculated that penalizes

the probability based on the distance from the expected value

[54]. The penalty is logarithmic, offering a small score for

small differences (0.1 or 0.2) and an enormous score for a

large difference (0.9 or 1.0) [54]. This means an algorithm

with smaller Cross-Entropy loss is preferable, and if it has

0.0 Log loss, then it predicts perfect probability.

Logloss = −(yilog(f (xi)) + (1 − yi)log(1 − f (xi))) (3)

C. DATASET

Researchers in human pose estimation have been mainly

using the following four datasets which are freely available to

the public: FLIC, LSP, MPII Human Pose, and COCO. Less

known datasets such as Pascal VOC [57], SURREAL [58] for

single-person in both 2D and 3D pose estimation, HumanEva,

Human3.6 dataset, CrowdPose [59], and JTA [60] have also

been used in human pose estimation.

Frames Labeled In Cinema (FLIC) [61] dataset consists of

a total of 5,003 images of which 80% (around 4,000 images)

are used as training and 20% (around 1016 images) are used

as testing dataset. FLIC dataset is acquired from popular 30

movies in Hollywood by running a person detector SOTA

model on every tenth frame of 30 movies. These images

contain individuals in different kinds of poses with different

kinds of clothing. From the dataset, each individual is labeled

with 10 body joints. In most cases, the FLIC dataset has been

used for a single person and multi-person pose estimation

models.

Leeds Sports Pose dataset (LSP) [40] and LSP Ext (LSP

extension or sometimes expressed as LSPe) contain a com-

bination of 11,000 training and 1,000 testing images from

Flickr. These images are mostly from sports activities which

make it very challenging in their appearance terms. In addi-

tion to that, most individuals in the image have scaled to

roughly 150 pixels in length. In the LSP dataset, each indi-

vidual’s full body is labeled with a total of 14 joints which

shows an increased number of joints compared to FLIC.

To be specific, the LSP dataset has a total of 2,000 annotated

images whereas LSP Ext has a total of 10,000 images. In most

cases, both datasets have been used for single person pose

estimation models.

Max Planck Institute for Informatics (MPII) Human Pose

dataset [22] contains around 25,000 images from which com-

posed of more than 40,000 individuals with annotated body

joints. These images are collected on the purpose to show

human activities every day. InMPII human pose dataset, each

individual’s body is labeled with 15 body joints as mentioned

in the introduction section. As FLIC dataset, MPII Human

pose dataset has also been used for a single person and multi-

person pose estimation models.

Finally, the MS-COCO dataset has got huge attention for

multi-person pose estimation models. MS-COCO or usually

called COCO (Common Objects in Context) is a product

of Microsoft (MS) [21]. COCO dataset is a collection of

a very large dataset with annotation types of object detec-

tion, keypoint detection, stuff segmentation, panoptic seg-

mentation, and image captioning. A JSON file is used to

store annotations. COCO dataset brought to the table a very

interesting mix of data, with various human poses used in

different body scales, also containing occlusion patterns, with

unconstrained environments. COCO dataset contains a total

of 200,000 images and these contain 250,000 people with

keypoints from which each individual’s instance is labeled

with 17 joints. COCO dataset has been producing dataset

starting from 2014 with a large amount.

D. COMMON EVALUATION METRICS

Similar to any other research, human pose estimation also

uses evaluation metrics to compare and contrast one model

from the other. Some researchers claim the superiority of

their model based on a metric they developed, which could

lead to false performance improvement. This section glances

some of the commonly used evaluationmetrics in human pose

estimation research, such that a consistent result is presented

in the field and also researchers new to the field can easily

adapt to these metrics.

1) Percentage of Correct Parts (PCP): this metric measures

the detection rate of limbs. A limb (body part) is considered

detected if the distance between the two predicted joint loca-

tions and the true limb joint locations is less than half of the

limb length [46]. PCP commonly referred also as PCP@0.5.

Recently, PCP has not been preferred as an evaluation metric

even though it was initially regarded as the go-to metric. This

is because PCP penalizes shorter limbs. The higher the PCP

the better the model.

2) Percentage of Detected Joints (PDJ): this metric is

proposed to address the limitations observed in PCP. This

evaluation metric defines a joint correctly detected if the

distance between the predicted joint location and the true

joint location is within a certain fraction of the torso diameter

(the distance between the right hip and left shoulder). For

instance, for PDJ@0.2, it means the distance between the pre-
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FIGURE 8. DeepPose’s DNN-based pose regressor and refiner.

dicted joint location and the true joint location should be less

than 0.2 ∗ torso diameter. By changing this fraction, detec-

tion rates are obtained for different degrees of localization

precision.

3) Percentage of Correct Key-points (PCK): this also mea-

sures the distance between the predicted joint location and the

true joint location. The PCK evaluation metric measures the

body joints’ localization accuracy. The criteria of PCK and

PDJ are very similar except to the fact that the torso diameter

is replaced with the maximum side length (or threshold) of

the external rectangle of ground truth body joints [62]. Thus,

detecting a joint is considered correct if the distance between

the predicted joint and the true joint is within a certain fraction

of the specified threshold. Again, the higher the PCK the

better the model.

4) PCKh is a modified version of PCK. PCKh’s matching

threshold is 50% of the head segment length (a portion of

the head length is used as a reference at 50%). PCKh is

also defined as the head-normalized probability of the correct

keypoint metric [63]. In PCKh, joint detection is considered

correct if the predicted joint location is with a certain thresh-

old from the true joint location. But the threshold should be

adaptively selected based on the individual’s size. It should

fall within αl pixels of the ground-truth position, where α

is a constant and l is the head size that corresponds to 60%

of the diagonal length of the ground-truth head bounding box.

The PCKh@0.5 (α = 0.5) score is reported [63]. To make

the metric articulation independent, one probably better

chooses to use the head size.

5) Area Under the Curve (AUC) measures the different

range PCK thresholds (E.g., when α varies from 0 to 0.5)

entirely. It informs how themodel is capable of distinguishing

each body’s joints. The higher the AUC, the better the model.

6) Object Keypoint Similarity (OKS) gives a measure of

how a predicted keypoint is close to ground truth. OKS is

much similar to IoU (Intersection over Union) in keypoint

detection performance. So, when a model gets higher OKS,

it means the overlap between the predicted keypoint and the

truth is higher.

Besides the above evaluation metrics, Average Preci-

sion (AP) and mean Average Precision (mAP) are also used

[64], [65]. In addition to deep learning being advanced

and having very large datasets, non-linear jumping systems

discussed in [66]–[68] can also help to improve the efficiency

of different algorithms in deep learning models.

IV. MAJOR RESEARCHES IN HUMAN POSE ESTIMATION

We will now dive into some unique and most effective pose

estimation models’ network flow. While discussing each

approachwewill explain, how their architecture is organized?

How CNN architecture got deeper [69]? Is it a single/multi-

person model? what kind of loss functions the models are

using? dataset implied and how evaluated the work?

A. DeepPose

DeepPose [46], a single person pose estimation model

published in 2014, formulated body joints as a problem of

a CNN-based regression (which is a class of DNN-based

regression). The authors have used AlexNet [37] as a back-

bone architecture, to analyze the effects of jointly training a

multi-staged architecture with repeated intermediate supervi-

sion. DeepPose refines the coarse pose to get better estimation

using a cascade of regressors which output coordinates (x, y)

of each joint.When joints are predicted inDeepPose cascaded

regressors, images are cropped around that joint to feed for

the next stage. This allows the subsequent regressors to learn

features for finer scales because a higher resolution images

guide them to better precision.

DeepPose has a total of 3-stages cascade of regressors to

estimate the pose of an individual in a given image. The

Overall network structure of DeepPose is shown in Fig.8,

in which the blue color shows the convolutional layers while

the green shows the fully connected layers. The left schematic

view shows the initial stage which contains the DNN-based

regressor for the coarse pose. When joints are predicted at

this stage, the image is cropped around the coordinates of the

detected joint then passed to the next stage called the DNN-

based refiner (on the right side of Fig.8) as an input.

The performance of this model is evaluated on two datasets

(FLIC and LSP) using evaluation metrics of PCK and PCP.

This model outperformed the previous SOTA works in most

cases.

Even though producing the first CNN based human pose

estimation model is very significant, the work has some

limitations. The main problem was regressing to a location is

very difficult. This increased the complexity of the learning
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FIGURE 9. ConvNet pose overall network structure.

which weakened generalization. Thus, DeepPose performed

very poorly in some regions. However, it has been very

helpful for recent SOTA researches to change the challenge

to the problem of estimating heatmaps for available joints or

keypoints.

B. ConvNet POSE: EFFICIENT OBJECT LOCALIZATION

USING CONVOLUTIONAL NETWORKS

In this paper [70], ConvNet architecture, multi-resolution

CNN architecture is proposed to generate discrete heatmaps

instead of continuous regression that predicts the probabil-

ity of the location of individual joints in monocular RGB

images. In ConvNet pose, different scale features are captured

simultaneously using multiple resolution CNN architectures

in parallel.

This model implements a sliding window detector that

produces a coarse heatmap output and this coarse heatmap is

refined by ‘pose refinement’ ConvNet to get better localiza-

tion which improves in recovering the spatial accuracy lost

due to pooling in the initial model. This means the model

contains a module (a convolutional network) for coarse local-

ization, a module for sampling and cropping the features of

ConvNet for each joint at a specified location (x, y), and also

a module for fine-tuning as shown in Fig.9 which displays the

model’s overall network structure.

This model has shown the use of a ConvNet and a

graphical model jointly. The spatial relationship between

the joints is typically learned by the graphical model [71].

The performance of the model is evaluated using PCK and

PCKh@0.5 on FLIC [61] and MPII [22] dataset respectively

in which outperformed the previous SOTA models.

This model implemented the joint use of a convolutional

network and graphical model. Also, it revealed heatmaps

are preferable than direct joint regression. Human poses are

structured because of physical connections (like knees are

rigidly related to hips and ankles), body part proportions, joint

limits (like knees do not bend forward), left-right symmetries,

interpenetration constraints, and others. Thus, modeling this

structure realizes that detecting visible keypoints is easier

and this directs on estimating the occluded keypoints which

are very hard to detect. However, this model lacks structure

modeling.

C. CPM: CONVOLUTIONAL POSE MACHINES

CPM [29] consists of a sequence of convolutional net-

works that produce a 2D belief map for the location of

each keypoint. The sequential prediction framework provided

by CPM helps them to learn rich implicit spatial infor-

mation and feature representation of images at the same

time. CPM is completely differentiable and the multi-stage

architecture can be trained end-to-end. Thus, the image fea-

tures and belief maps produced by the previous stage are

given as input for the next stage (except the first stage)

in CPM. One of the basic motivations for CPM is learn-

ing long-range spatial relationships and this is done using

large receptive fields. Also, CPM used intermediate super-

vision after each stage to avoid the problem of vanishing

gradients.

The overall network structure and receptive field of CPM

are shown in Fig.10. CPM network is divided into multiple

stages (the stage is used as hyper-parameter, usually =3) and

at each stage, the confidence (belief) map of each keypoint is

computed. Fig.10, (a) and (b) show the structures in the pose

machine, (c) and (d) show the corresponding convolutional

networks respectively, while (e) shows the receptive fields at

different stages.

At the first stage a basic convolutional network, a classic

VGG structure represented by X predicts the belief maps of

each keypoint from the original input image. This leads to the

condition that if the individual in the image has p joint points,

then the belief map has p layers with each layer representing

the joint point heatmap. Each layer’s loss is added up as a total

loss to achieve intermediate supervision which helped them

in vanishing gradients.

For subsequent stages, stage ≥ 2, the structure is the same

except the input to the network are two data: a belief map

output from the previous stage and the result of the original

image passed through X’. In addition to that, CPM showed

that increasing the receptive field increases the accuracy of

the prediction of keypoints. Furthermore, CPM implemented
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FIGURE 10. Network architecture and receptive field of CPM.

intermediate supervision after each stage to solve the vanish-

ing gradients.

CPM implemented their model on three known datasets:

MPII, LSP, and FLIC using evaluation metrics of PCK@0.1,

PCK@0.2, and PCKh@0.5. It is noteworthy to mention that

CPM achieved a PCKh@0.5 score of 10.76% higher than the

previous SOTA on the most challenging part, the ankle.

CPM is the integration of the convolutional network to

pose machines to learn image features and image-dependant

spatial models to estimate human poses. Nevertheless, this

work implemented a top-down approach on single person

pose estimation, which leads to known errors and complexi-

ties of the top-down approach discussed earlier.

D. STACKED HOURGLASS NETWORKS FOR

HUMAN POSE ESTIMATION

Stacked hourglass network [27], exactly lookalike of an hour-

glass stacked which are composed as steps of pooling and

upsampling layers, is on the basic motivation of capturing

information at every scale. In human pose estimation: an

individual’s orientation, limb arrangements, the relationship

between adjacent joints, and other many cues that are best

identified at different scales in a given image.

Thus, the stacked hourglass network is performing a

repeated use of bottom-up (from high resolution to low reso-

lution using pooling), top-down (from low resolution to high

resolution using upsampling), and intermediate supervision

to improve the network performance. The overall network

structure of stacked hourglass modules is given in Fig.12. The

hourglass stacked helps them to capture information on every

scale means both global and local information is captured.

It means skip connections are used to preserve spatial infor-

mation in every resolution and pass it for upsampling.

FIGURE 11. A single hourglass module in which a box represents a
residual module.

Fig.11 displays a single hourglass module in which a single

box represents a residual module. The primary module in an

hourglass structure, residual or recurrent learning, is used for

the bypass addition structure. This residual learning, com-

posed of three convolutional layers with different scales in

which batch normalization and ReLu inserted between them,

extracts higher-level features while maintaining the primary

level of information. The second path skips the path and

contains only one kernel, A convolution layer with a scale

of 1. Thus, only the data depth is changed not the data size.

For each hourglass module, a fourth-order residual mod-

ule is used. The 4th-order Hourglass sub-network extracts

features from the original scale to the 1/16 scale. It does

not change the data size, only the data depth. The hourglass

module is used to capture local information contained in

pictures at different scales. At different scales, it may con-

tain a lot of useful information, such as the position of the

human body, the movements of the limbs, the relationship

between adjacent joint points, and so on. First, the Conv

layer and Max Pooling layer are used to scale features to

a small resolution. At each Max Pooling (down-sampling),

the network forks (branches) and convolves the features with
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FIGURE 12. The overall structure of stacked hourglass modules.

the original pre-pooled resolution; After getting the lowest

resolution features, the network starts up-sampling, and grad-

ually combines feature information of different scales. The

lower resolution here uses the nearest neighbor upsampling

method, and two different feature sets are added element

by element (which performs two different feature sets Add

elements).

In stacked hourglass down-sampling uses max pooling,

and up-sampling uses nearest-neighbor interpolation. The

original image is down-sampled and input into the Hourglass

sub-net. The output of Hourglass goes through two linear

modules to get the final response graph. During this period,

the Residual module and the convolutional layer are used

to gradually extract features. The secondary used network

centered around two Hourglass and repeats the second (lat-

ter) half of the primary network. The input of the second

Hourglass contains three channels (paths): the input data of

the first Hourglass, the output data of the first Hourglass, and

the first-level prediction result. These three channels of data

are fused by concat and add, and their scales are different,

which reflects the currently popular idea of skip-level (jump)

structure.

In the Stacked hourglass network both high-resolution

to low-resolution processing and low-resolution to high-

resolution processing are symmetrical. The stacked hourglass

was tested on MPII and FLIC dataset benchmarks using

PCK@0.2 and PCKh@0.5 evaluation metrics in which sur-

passed all previous SOTA performance. In addition, this work

has improved accuracy from 4-5%. on the joints difficult to

detect (knees and ankles).

E. DeeperCut: A DEEPER, STRONGER, AND FASTER

MULTI-PERSON POSE ESTIMATION MODEL

DeeperCut [33] is a more similar and an upgrade version

of the approach presented in DeepCut [52]. DeeperCut has

implied a strong body part detectors to generate effec-

tive bottom-up proposals for body joints and adapted

the extremely deep Residual Network (ResNet [38]) for

human body detection whereas DeepCut adapted Fast

R-CNN [48] for the task. The proposed keypoints are

assembled into a variable number of consistent body part

configurations using image-conditioned pairwise terms.

Unlike DeepCut, DeeperCut used an incremental optimiza-

tion strategy that explores the search space more efficiently

which leads to both better performance and speed-up factors.

Adapting ResNet allowed this work to tackle the problem

of vanishing gradients because ResNet tackles the problem

bypassing the state though identity layers andmodeling resid-

ual functions.

Similar to DeepCut, DeeperCut jointly estimates the poses

of every individual appeared in an image by minimizing a

joint objective based on Integer Linear Programming (ILP).

The authors started by making a set of body joint candidates

(D) generated by body part detectors and a set of body joint

classes(C) such as head, shoulder, and knee in which each

candidate’s joint has a unary score for every joint class.

Adapting ResNet to the fully convolutional model for the slid-

ing window-based body part detection usually brings a stride

of 32px which is too coarse for effective joint localization.

The authors showed by reducing the stride from 32px to 8px.

Besides, to tackling the problem of vanishing gradients in

adapting ResNet, DeeeperCut also achieves a large receptive

field size which allows them to incorporate context when

predicting locations of individual body joints.

After detecting the keypoints, DeeperCut implemented

image-conditioned pairwise terms on proposed keypoints.

First, an individual in the image is randomly selected and

then the location is fixed for each keypoint at its ground truth

location using the learned regression. Second, an individual

pairwise score-maps will be done and this gets the shape of a

conewhich extends to the direction of the correct location, but

these are visually fuzzy. Finally, by applying an incremental

optimization strategy that uses a branch-and-cut algorithm to

incrementally solve several pairwise instances to have a valid

human pose configuration.

DeeperCut employed the model on LSP, MPII, and COCO

dataset using an evaluation metric of AP and mAP which

outperformed most of the previous SOTA models except

CPM [29] which got similar performance in some cases.

Evaluation is done on both single and multi-person pose

estimation.

DeeperCut has introduced novel image-conditioned pair-

wise terms but still needs several minutes per given image

(around 4 min/image). However, the pairwise representations
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FIGURE 13. Implementation of IEF.

are very hard to regress precisely. Additionally, it imple-

mented the model with a batch size of 1 which increases the

instability of the model.

F. IEF: HUMAN POSE ESTIMATION WITH ITERATIVE

ERROR FEEDBACK

IEF human pose estimation [72] basically motivated on the

concept of prediction, identify what is wrong on this pre-

diction, and correct them iteratively, which is done by a

top-down feedback mechanism. IEF employed a framework

that extends the hierarchical feature extractor (ConvNet) to

include both input and output spaces. In IEF, Error predictions

are fed to the initial solution repeatedly and progressively by a

self-correcting model as a replacement of directly identifying

the keypoints in one go. This framework is called Iterative

Error Feedback (IEF) and Fig.13 shows the implementation

of IEF for human pose estimation.

On the left side of Fig.13, there is an input composed of the

image I and the initially guessed keypoints y0 (representation

of the previous output yt−1). Assume three keypoints to the

head (red), the right wrist (green), and the left wrist (blue).

Then, define input Xt = I ⊕ g (yt−1), where I represents the

image and yt−1 is the previous output. The function f (Xt),

modeled as a ConvNet, produces the correction εt as output

and this output is added to the current output yt to produce

yt+1 which means the correction is considered. The function

g (yt+1) converts every keypoint position into one Gaussian

heatmap channel so that it can be part of the input with the

image for the next iteration. This procedure is done repeatedly

and progressively T times until getting a refined yt+1 which

is very close to the ground truth.

IEF human pose estimation evaluated their performance

on two datasets (LSP and MPII) using a single evaluation

metric PCKh@0.5. IEF introduced novelty and good work.

The functions used, both f and g, are learnable and also, f is

a ConvNet. This means f has the ability to learn features over

the joint input-output space.

G. REALTIME MULTI-PERSON2D POSE ESTIMATION

USING PART AFFINITY FIELDS

Realtime multi-person 2D pose estimation [34] proposed a

novelty approach to connect human body parts using Part

Affinity Fields (PAF), a non-parametric method, to achieve

bottom-up multi-person pose estimation model. The main

motivation of this research is identifying the difficulties faced

on detecting individual body joints involving multi-person

such as the number of people in the image (infinity), the inter-

action between these people, irregular scale for each individ-

ual, increasing complexity, and others.

The overall pipeline and architecture of this model are

shown in Fig.14. For a given input image (Fig.14. a), the

location of each joint is determined by part confidence maps

(Fig.14. b), and the location and orientation of the body parts

are determined by PAF (Fig.14. c) a 2D vector that represents

the degree of association between the body parts. These body

part candidates are associatedwith the parsing step to perform

a set of bipartite matching as shown in Fig.14 (d) and finally,

assembled full-body pose because of parsing results in (e).

The two-branchmulti-stage CNN network shown in Fig.14

receives an input of a feature map F of an image initialized

by the first 10 layers of VGG architecture. The feed-forward

model simultaneously predicts confidence maps S (shown in

beige) for predicting the location of joints with J confidence

maps for each joint (S = S1, S2, . . . ,SJ) and affinity fields

L or a set of 2D vector fields (shown in blue) for encoding

parts/limbs association which has C vectors corresponding to

each limb (L = L1, L2, . . . ,LC).

Thus, at the end of the first stage, the network outputs a

set of detection confidence maps and part affinity fields. For

the consecutive stages, the inputs will be the combination of

the two previous stage outputs and the feature map F. Both the

confidence maps and the part affinity fields are passed by the

greedy inference to have the 2D keypoints for every individ-

ual in the image, called Bipartite matching. Furthermore, this

work implemented intermediate supervision after each stage
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FIGURE 14. Overall pipeline (a - e) and architecture of the two-branch multi-stage CNN.

FIGURE 15. The network structure of Cascaded Pyramid Network.

to solve the vanishing gradient’s problems by restoring the

gradients periodically.

This work is evaluated on COCO and MPII dataset using

AP, mAP, and PCKh@0.5 evaluation metrics to achieve the

best results compared to the existing SOTA models in terms

of performance and efficiency.

H. CPN: CASCADED PYRAMID NETWORK FOR

MULTI-PERSON POSE ESTIMATION

Cascaded Pyramid Network (CPN) for multi-person pose

estimation model [32] is motivated with the concept of facing

the challenging problems which are called ‘‘hard keypoints’’.

These include occlusion of keypoints (Occluded by clothes or

another person), invisible keypoints, complex backgrounds,

etc. The authors proposed a top-down model for multi-

person pose estimation with CPN network structure as shown

in Fig.15. This CPN network structure is composed of two

stages: GlobalNet and RefineNet. Relatively easy keypoints

are estimated by the GlobalNet while the hard keypoints

estimation is done by RefineNet using online hard keypoint

mining loss.

CPN network structure uses a CNNmodel to identify some

human keypoints called Visible easy keypoints, which are

relatively easy to detect; for instance Nose, Left elbow, and
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right hand in the image below. Visible easy keypoints have

somewhat a fixed shape and this helps in obtaining texture

information which makes it easy to get contextual informa-

tion around the location of the joints. Then there are visible

hard keypoints that are obscured by clothes such as the left

knee, right knee, and left hip. Additionally, some joints are

hidden and hard to distinguish, not only obscured by clothes,

such as the right shoulder in the image shown below. For

such hard keypoints, which have no contextual information,

increasing the local receptive field is required such that the

context information can be further refined. Based on this

concept CPN roughly categorized the human body joints into

simple parts and difficult parts.

GlobalNet, composed of a forward CNN, is a simple

regression model that focuses on easy to detect human key-

points usually eyes, arms, and other easy to detect parts.

The purpose of RefineNet is to detect difficult-to-recognize

human keypoints, called hard keypoints. RefineNet integrates

multiple receptive fields information with the feature maps of

the pyramid model generated by GlobalNet. Then finally all

feature maps with the same size are concatenated such that

a correction for ambiguous keypoints is obtained. RefineNet

applies two things to mine the difficult keypoints 1) concat

when using features of multiple layers and 2) online hard

keypoints mining technology for the second-level network.

In general, RefineNet combines low-level features and high-

level features through convolution operations.

By the use of RefineNet plus online hard keypoints mining,

the model outperformed the previous SOTA models when

implementing the model on the COCO dataset using AP and

OKS evaluation metrics. CPN exhibits similar properties as

stacked hourglass being symmetrical in both processing of

high-to-low resolution and low-to-high resolution. It is easy

to observe processing from high-resolution to low-resolution

as part of a classification network and that it is heavy.

Nevertheless, other-way processing (low-resolution to high

Resolution) is relatively light.

I. SIMPLE BASELINES FOR HUMAN POSE ESTIMATION

AND TRACKING

The main motivation behind simple baselines for human

pose estimation and tracking [31] is that most of the recent

models on human pose estimation are very complex and

look different in structure but achieving very close results.

simple baselines proposed a relatively simplified and intuitive

model that consists of a few deconvolutional layers at the end

of ResNet to estimate the keypoints heatmap. While most

human pose estimation models like stacked hourglass [27]

and CPN [32] use the structure composed of upsampling

and convolution to increase the low-resolution feature map,

simple baselines inserts several layers of deconvolution in

ResNet which is a very simple way to expand the feature

map to the size of the original image to generate the keypoints

heatmap as shown in Fig.16.

In this article, both pose estimation and pose tracking

are discussed, but our discussion focused on the former.

FIGURE 16. Simple Baselines network structure.

As mentioned earlier this model’s network structure is

straightforward: add several layers of deconvolution after

ResNet to generate a heatmap for the individual keypoints.

The takeaway from this work is that the more the decon-

volution layers, the greater the resolution of the generated

heatmap.

Simple baselines achieved better performance compared

to the previous works with the COCO dataset using AP

evaluation metrics simply and easily. Similar to CPN, high-

resolution to low-resolution processing is viewed as part

of a classification network (such as ResNet and VGGNet),

and this is heavy while processing low-resolution to high-

resolution is comparatively light.

J. HRNet: DEEP HIGH-RESOLUTION REPRESENTATION

LEARNING FOR HUMAN POSE ESTIMATION

The usual trend applied in human pose estimation is down-

sampling high-resolution feature maps to low-resolution and

then trying to recover a high-resolution value from low-

resolution feature maps. Based on this motivation, this

research proposed an intuitive and different model called

High-Resolution Net (HRNet) to maintain a high-resolution

representation throughout the process [35]. In Stacked hour-

glass [27] both high-to-low resolution and low-to-high

resolution processes are symmetrical. Processing from high-

resolution to low-resolution in both CPN [32] and simple

baselines [31] considered as part of a classification network

by the backbone architecture which is heavy, but the reverse

process is relatively light.

There is a high-resolution sub-network at the first stage of

this network architecture, as shown in Fig.17. Then gradually

a high-to-low resolution sub-networks are added one by one

to acquire the output of multiple stages. Finally, the output of

multiple resolution sub-networks in parallel are connected.

It performs repeated multi-scale fusions such that each

high-resolution to low-resolution feature map representation

can receive information from other parallel representation

branches, again and again, to obtain a more informative high-

resolution representation. In the end, the keypoints heatmap

of the network output and the spatial resolution are more

accurate. Because of repeated multi-scale fusions, HRNet

does not need to use intermediate heatmap supervision, unlike

the previous works.
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FIGURE 17. The network architecture of HRNet.

FIGURE 18. CFA network architecture with several stages.

HRNet consists of parallel high-to-low resolution sub-

networks with repeated information exchange across multi-

resolution sub-networks (multi-scale fusion). The horizontal

and vertical directions correspond to the depth of the network

and the scale of the feature maps, respectively. There are

three scale branches in total. The resolution of the feature

map will not change during the forward propagation of each

scale branch. Even though there will be information exchange

between each scale branch, the three branches are different.

For instance, in the forward process, branch 1 (the top branch

in the figure) will downsample its feature map and then

transfer it to branch 2. Branch 2 will also send the enlarged

feature to branch 1 through upsampling. Two operations can

be performed in the same stage.

HRNet is evaluated on COCO and MPII dataset using

AP, mAP, PCKh@0.5 evaluation metrics to achieve better

performance. HRNet introduced the connection of the outputs

of high-to-low resolution sub-networks in parallel rather than

the usual serial connection. This means it does not require to

restore the resolution because high-resolution representations

are maintained always.

K. CFA: CASCADE FEATURE AGGREGATION FOR HUMAN

POSE ESTIMATION

CFA proposed a cascaded multiple hourglass and aggregates

low, medium, and high-level features to better capture local

detailed information and global semantic information [26].

The motivation behind CFA network architecture is combin-

ing the concept implied in the network architecture of Stacked

hourglass [27], CPN [32], and HRNet [35].

The overall network structure of CFA is displayed

in Fig.18. CFA consists of multiple hourglass networks that
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FIGURE 19. Different stages of feature aggregation in CFA.

are summed up by elements. Feature aggregation shows that

the hourglass network at each stage will predict the feature

map, and the output of the previous layer is used as an input

to the next stage at the same time.

In each stage of CFA, ResNet based hourglass network is

applied, which is an encoder-decoder model designed based

on the hourglass. The basic structure used for the encoder part

is ResNet and the connection employed from the encoder to
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the decoder is highway connection. There are three different

feature aggregations in all stages of the CFA model: Low-

level feature aggregation, middle-level feature aggregation,

and high-level feature aggregation.

Fig.19 briefly describes the feature aggregation between

different stages of CFA. Detailed local information is accom-

modated in low-level features which help them in localizing

the exact location of human joints. On the other side, to refine

the localization in case of complex backgrounds and partial

occlusions, there are high-level features that contain semantic

information. Finally, all these different feature aggregations

are forwarded as input for the next stage which brings pre-

diction more stable.

CFA evaluated their model on the LIP and MPII datasets

using only PCKh@0.5 evaluation metrics. This paper is cur-

rently at the top of the 2019 CVPR article based on the MPII

dataset PCKh@0.5 evaluation index in the field of single

person pose estimation.

L. OccNet: HUMAN POSE ESTIMATION FOR REAL-WORLD

CROWDED SCENARIOS

This model proposed in the motivation of estimating the

pose of individuals in real-world crowded areas [73]. The

challenges of estimating poses in such densely populated

areas include people close to each other, mutual occlusions,

and partial visibility. The method is a two-stage, top-down

approach that localizes the individual first and then per-

forms a single-person pose estimation for every detected

person. This model proposed two occlusion detection net-

works Occlusion Net (OccNet) and Occlusion Net Cross

Branch (OccNetCB) as shown in Fig.20, the backbone net-

work is ResNet shown in beige.

In OccNet, to learn a joint representation in the previous

layers the network splits after two transposed convolutions.

OccNet produces two sets of heatmaps for the location of

keypoints per pose: a heatmap for visible keypoints and

a heatmap for occluded keypoints. The other architecture,

OccNetCB, splits after only one transposed convolution.

In OccNetCB, both branches have the opportunity to get

information extracted by one another because in OccNetCB

the output from both layers is shared.

The model has been evaluated on two datasets annotated

on the crowded real-world situation: CrowdPose and JTA

datasets using OKS and AP evaluation metrics.

M. DarkPose: DISTRIBUTION-AWARE COORDINATE

REPRESENTATION FOR HUMAN POSE ESTIMATION

The main motivation behind the Distribution-Aware Coordi-

nate Representation of Keypoint (DarkPose) is that the coor-

dinate representation of the heatmap [30]. The assumption is

that heatmap is never systematically investigated. Based on

this concept, the authors have shown design limitations on the

existing standard coordinate decoding method, and propose a

principled distribution-aware decodingmethod. In addition to

that, an accurate heatmap distribution for the unbiased model

training instead of the usual coordinate encoding process

FIGURE 20. The network structure of Occlusion Net (OccNet) and
OccNetCB (Cross branch).

is generated (i.e. transforming ground-truth coordinates to

heatmaps).

Standard label representation in existing methods is

coordinate heatmap as a 2-dimensional Gaussian distribution

centered at the labeled coordinate of each keypoint of an indi-

vidual. According to this work, the major obstacle in heatmap

label representation and that is quadratic function’s computa-

tional cost of the input image resolution which restrains CNN

based models from processing the typically high-resolution

raw imagery data. Hence, there is a need to down-sample

all the person bounding box images into a small resolution

then fed them to human pose estimation model to predict the

location of each keypoint in the original image coordinate

space which needs to transform to the original coordinate

space, and this brings the problem of sub-pixel localization.

Coordinate decoding from heatmap to coordinate is the last

prediction of the location with the maximal activation. The

network structure of DarkPose is shown in Fig.21.

Coordinate representation, the problem of coordinate

encoding and decoding, focused on predicting joint coordi-

nates in a given image. Coordinate decoding is a process of

translating a predicted heatmap of each individual’s joint into

a coordinate in the original image space. Unlike the stan-

dard method of considering the second maximum activation

to upsample the heatmaps to the original image resolution,

DarkPose introduced the heatmap distributional statistics

for disclosing the underlying maximum more accurately as

shown in Fig.21 and this is employed using Taylor-expansion

way. The heatmaps, predicted by a human pose estimation

model, usually present multiple peaks around the maximum

activation which causes negative effects on the performance
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FIGURE 21. Overview of the network structure of DarkPose.

TABLE 2. Summary of models.

of the decoding method. To overcome this issue, DarkPose

inserted modulating the heatmap distribution before resolu-

tion recovery. In coordinate decoding method, three steps

employed: heatmap distribution modulation, distribution-

aware joint localization by Taylor-expansion as sub-pixel

accuracy, and resolution recovery to the original coordinate

space. A limitation similar to Coordinate decoding is also

observed in coordinate encoding in reducing the resolution.

Some of the existing methods start by downsampling given

the original image to the model input size. Therefore, in this

case, transforming the ground-truth joint coordinates accord-

ingly was necessary before generating heatmaps and this

is done by using unbiased sub-pixel centered coordinate

encoding.

DarkPose has come up with the concept of problems

facing in coordinate representation and the model was eval-

uated on COCO and MPII using evaluation metrics of PCK

and OKS.
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V. SUMMARY AND DISCUSSION

This paper reviewed the progress made in pose estimations

for human beings with selected and most notable researches

made to our knowledge. This discussion started from Deep-

Pose [46], the first well known and has been as reference for

most researches in pose estimation progress. Then models

have been selected based on their novelty, innovation, the

influence made by the model, and other criteria. Table 2

summarizes the models with some criteria.

Human pose estimation deals with the process of inferring

poses in an image [4]. To accomplish this objective different

kind of techniques have been employed in each model. The

techniques can be evaluated with criteria such as the back-

bone architecture, approaches followed, tracking single or

multi-person, the dataset used, loss functions, and evaluation

metrics employed.

As shown in Table 2, ResNet [38] nowadays is a default

pick as backbone architecture in most models because of its

property of solving the problem of vanishing gradients in

addition to its great accuracy.

In tracking the number of people in a given image, models

are classified as single or multi-person pose estimation. Sub-

stantial researches have been carried out in a single person

pose estimation with very good results. Even though multi-

person pose estimation getting attention, the challenges are

still there. These challenges come from the position of each

person in the image, visibility of the joints, scale difference,

interaction between people, occlusion of joints by clothes,

and others.

As shown in Table 2, researchers are preferring Top-down

approach instead of bottom-up in most cases. There are also

models using both approaches simultaneously.

In datasets selection, COCO and MPII are default picks

in recent cases. Especially, COCO is a famous dataset by its

property of having very wide human poses and an enormous

number of images. LSP and FLIC datasets are also used next

to COCO and MPII.

Even though the L1 loss is not sensitive to outliers, the L2
loss function is applied in most models to evaluate their learn-

ing process. Finally, PCKh@0.5 is the number one evaluation

metrics in human pose estimation before mAP and AP.

This article reviewed models focused on determining the

full body’s pose of individuals. Fascinating researches are

also available in discovering only some parts of a human

being. For instance: hand pose, head pose, upper body pose,

and so on. Additionally, estimating the pose of only children

is also presented in [74] research.

VI. CONCLUSION

This paper presented a review of the most outstanding

and influential models in human pose estimation progress.

As introduced early a 2D human pose estimation has been

a fundamental yet challenging problem in computer vision.

The main objective of human pose estimation is to localize

human anatomical keypoints (e.g., head, shoulder, elbow,

wrist, etc.) or joints. This article started by introducing human

pose estimation, then classified pose estimation based on

tracing the number of people as a single or multi-person. Fur-

thermore, approaches used in pose estimation are explored

before discussing its applications and flaws. Finally, some

significant papers on pose estimation in both cases of single

or multi-person are briefly discussed.

Thus, this article provides a guideline for new readers about

human pose estimation. Furthermore, this paper can be a base

for research to innovate new models by combining the tech-

niques used in different papers mentioned above. This can be

done by changing the backbone architecture or combining the

two or three models to create new, or adding new architecture

on one of the mentioned papers.

There are very large datasets publicly available on the net.

Using these datasets, we have seen substantial progress in 2D

human pose estimation with deep learning. However, in addi-

tion to the issues discussed in the summary and discussion

section, some challenges remain to be addressed in the near

future works. Such as i) occlusion of body parts by clothes

and other people, ii) interactions between people, iii) human

body structure constraints, and iv) barely visible joints are

some of the prominent issues that need immense attention to

be resolved in the coming works.
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