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Abstract. Motivated by the low structural fidelity for near-regular textures in current texture synthesis algorithms,

we propose and implement an alternative texture synthesis method for near-regular texture. We view such textures

as statistical departures from regular patterns and argue that a thorough understanding of their structures in terms of

their translation symmetries can enhance existing methods of texture synthesis. We demonstrate the perils of texture

synthesis for near-regular texture and the promise of faithfully preserving the regularity as well as the randomness

in a near-regular texture sample.
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1. Motivation

Near-regular textures are common in our daily life.

They can be observed in man-made products, by hand

or by machine, ranging from buildings to fabrics,

as well as in nature and biological process of life

science (Feynman, 1998; Chambers, 1995; Senechal,

1995; Zee, 1999; Hargittai and Hargittai, 2000). Hu-

mans have an innate ability to perceive and take ad-

vantage of symmetry (Leyton, 1992). Rao and Lohse

(1993) showed that regularity plays an important role

in human texture perception. However, it is not obvious

how to automate this powerful insight.

Mathematically speaking, regular texture refers to

periodic patterns that present non-trivial translation

symmetry, with the possible addition of rotation, re-

flection and glide-reflection symmetries (Miller Jr.,

1972; Coxeter, 1980; Grünbaum and Shephard, 1987).

When studying periodic patterns, a useful fact from

mathematics is the answer to Hilbert’s 18th prob-
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lem: there is only a finite number of symmetry

groups for all possible periodic patterns in dimension n

(Bieberbach, 1910). When n = 1 there are seven frieze

groups, and when n = 2 there are 17 wallpaper

groups. Here group is referring to the symmetry group

of a periodic pattern. A symmetry group is composed of

transformations that keep the pattern setwise invariant.

In computer vision and computer graphics, the appli-

cation of this classic mathematics for regular or near-

regular pattern analysis has yet to be fully explored.

Only recently, have computer algorithms of symmetry

group classification been developed for periodic pat-

terns in real images under Euclidean (Liu and Collins,

2000; Liu et al., 2004) and affine transformations (Liu

and Collins, 2001), based on a careful analysis of the

basic tile shapes of regular patterns. In computer graph-

ics, one interesting recent work (Kaplan and Salesin,

2000) is to find Escher-like tilings by deforming a sin-

gle closed planar figure to tile a plane.

Near-regular texture is referring to textures that

are not strictly symmetrical. The irregularity can be

caused by various statistical departures from regular

textures. These departures can happen along different
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Figure 1. Symmetry or regularity of images spans a continuous,

multi-dimensional space.

dimensions of symmetry (Liu, 2001), for example,

color (single, multi) (Tsin et al., 2001), intensity (ir-

regular statistical alterations, random noise), global or

local geometric deformations (affine, projective, ran-

dom) (Liu and Collins, 2000, 2001), and resolution. See

Fig. 1 from Liu (2001) for some examples of symmetry

dimensions. The focus of this paper is on faithful tex-

ture synthesis of near-regular textures where departure

from regularity is primarily caused by statistical color

and intensity variations, while the underlying struc-

tural regularity remains. There are many examples of

this type of near-regular textures, e.g. brick walls, tiled

floors, carpets, and woven sheets, where the texture pat-

terns (each brick, tile, straw or bamboo strip) vary only

locally. The idea of viewing a random texture as a dis-

torted version of a regular texture was expressed in an

early paper by Zucker (1976). More recently, we have

demonstrated a computational model for near-regular

textures that vary along geometry, lighting and color

dimensions (Liu et al., 2004).

Existing work on texture synthesis has achieved

impressive results for a variety of different types

of textures (e.g., De Bonet, 1997; Efros and

Leung, 1999; Ashikhmin, 2001; Efros and Freeman,

2001; Hsu and Wilson, 1998; Wei and Levoy, 2000;

Hertzmann et al., 2001; Xu et al., 2001; Liang

et al., 2001; Zhu et al., 2000; Kwatra et al., 2003;

Cohen et al., 2003). These texture synthesis algorithms

share a common theme of local neighborhood-based

statistical approaches. Distinctions can be drawn be-

tween approaches that constructively establish statis-

tical models for the input texture (Cross and Jain,

1983; Zhu et al., 1997) versus others that seek to

find matching joint statistics directly in the input

samples (De Bonet, 1997; Portilla and Simoncelli,

2000; Zhu et al., 2000). More recently, non-parametric

estimation of texture PDFs has become popular

(Efros and Leung, 1999; Wei and Levoy, 2000; Efros

and Freeman, 2001; Liang et al., 2001). These tex-

ture synthesis algorithms are relatively simple to

implement, fast to run (Wei and Levoy, 2000; Liang

et al., 2001) and able to reproduce a large variety of

textures, from regular to random, as claimed by the au-

thors. However, after reviewing the results of existing

work applied to near-regular textures, we observe that

the structural regularity is usually not well preserved

in the synthesized texture. This is especially true when

the input sample has interlocking near-regular patterns,

or is oriented obliquely. For example, we have not yet

seen an existing texture synthesis algorithm that pre-

serves the regularity in a brick wall sample (Fig. 2(a)).

In addition, the structural property of near-regular tex-

tures has not been used as an objective measure for

texture synthesis algorithms (Lin et al., 2004).

This situation motivates us to propose and implement

an alternative texture synthesis method for near-regular

texture that is particularly faithful to its structural prop-

erty while preserving the randomness observed in the

input data. Figures 2 and 3 demonstrate two sample

results from our texture synthesis algorithm in contrast

to the texture synthesis results reported in Efros and

Freeman (2001).

Section 2 defines basic properties of regular texture

such as generating tile, symmetry groups and lattice

types. In Section 3 we explain our texture analysis and

synthesis algorithm and demonstrate some experimen-

tal results. Section 4 discusses several relevant issues

in near-regular texture synthesis, from window size to

the concept of textons. Section 5 concludes with a sum-

mary and future research directions.

2. Regular Texture Analysis

A symmetry of a 2D periodic pattern P is a distance

preserving mapping g: R2 × I ⇒ R2 × I such that

g(P) = P , where I can either be gray values in the

range of [0, 255] or RGB intensity values. It can be

proven that all symmetries of P form its symmetry

group. All the translation symmetries of a periodic pat-

tern form its translation subgroup, a group generated

by two linearly independent, shortest translation sym-

metries �t1, �t2 of P (Schattschneider, 1978). Mathemat-

ically speaking, symmetry groups are defined only for

periodic patterns of infinite extent. In practice, we an-

alyze a periodic pattern bounded within a finite image

area, and thus use the concept of symmetry group G
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Figure 2. (a) input texture sample. (b) texture synthesis result from Efros and Freeman (2001). This is one of the best results on brick wall

texture synthesis that we can find. However, the regularity in the input texture sample is not faithfully preserved in the synthesized texture: two

short bricks are stacked together and there are more than two brick sizes in the synthesized image. (c) the texture synthesis result of our algorithm

proposed in this paper.

Figure 3. (a) input texture sample. (b) texture synthesis result from Efros and Freeman (2001). Straw pattern: one vertical line is terminated

midway. (c) the texture synthesis result of our algorithm proposed in this paper.
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of P to mean G is the symmetry group of an infinite

periodic pattern for which P is a finite region with more

than one period.

Each 2D regular texture is a 2D periodic pattern

that contains a non-empty parallelogram T . The or-

bit of T under the action of its translation symme-

try subgroup produces simultaneously a covering (no

gaps) and a packing (no overlaps) of the original pat-

tern (Grünbaum and Shephard, 1987; Schattschneider,

1978). We call the smallest such parallelogram the tile

of the texture. For a given regular texture its tile is

uniquely defined in shape, size, and orientation but not

in location, thus its pixelwise intensity and color con-

tent may vary, depending on where the lattice of the

texture pattern is anchored.

A mature mathematical theory for wallpaper-like

regular texture has been known for over 100 years

(Fedorov, 1885; Grünbaum and Shephard, 1987),

namely the theory of wallpaper groups.1 For

monochrome planar periodic patterns, there are sev-

enteen wallpaper groups describing patterns extended

by two linearly independent translational generators.

Despite the infinite variety of regular texture instanti-

ations, this finite set of symmetry groups and their 17

corresponding lattice/tile structures completely char-

acterize the possible structural symmetry of any 2D

periodic pattern. There are only five possible lattice

shapes (Coxeter and Moser, 1980), therefore five tile

shapes, and they form a shape hierarchy (Fig. 4):

1. parallelogram,

2. rectangular,

3. rhombic,

4. square, and

5. hexagonal.

Figure 4. There are only five possible types of tiles in 2D regular

textures.

Each lattice unit or tile shape is a parallelogram. A

rectangular tile has angles of 90o. A rhombic tile has

equal-length edges. Square and hexagonal tiles are spe-

cial cases of rectangle and rhombic, respectively.

Work in structural texture analysis (Enrich and

Foith, 1978; Lu and Fu, 1978) is also based on the idea

of a unit pattern together with a set of well-defined

placement rules. However, its generality and computa-

tional tractability are limited: unit patterns are either re-

gions centered about a local maximum that is bounded

on all sides by local minima (Enrich and Foith, 1978)

or square texture regions with an unspecified window

size (Lu and Fu, 1978). Conners and Harlow (1980) use

mathematical tiling theory for the analysis of texture,

but they do not take advantage of the complete char-

acterization of lattice types and the inner structures of

2D regular texture afforded by wallpaper groups, and

their characterization of pattern elements is dominated

by the inertia feature alone.

One essential element in our method is to acknowl-

edge the regularity in a near-regular texture by first

locating the generating “tile” precisely. This computa-

tional effort is guided by the basic principles and un-

derstanding of tiles and their symmetries, as concisely

summarized in their wallpaper groups. In order to find

tiles in a given 2D near-regular pattern we developed

an algorithm in Liu and Collins (2000) and refined

in Liu et al. (2004), based on regions of dominance,

for locating the underlying lattice of a given pattern.

Figure 5 shows the variations of shapes, sizes and ori-

entations of lattices automatically generated from three

real-world near-regular patterns. In addition, the gener-

ating translation vectors and a typical tile are indicated

as an example on one of the three textures. The �t1, �t2
translational symmetries of a regular pattern alone fix

the size, shape and orientation of the lattice, but leave

open the question of where the lattice is located on the

pattern. Any offset of the lattice on a pattern carves

the pattern into a set of similar tiles, any one of which

can generate the whole 2D pattern. For perception pur-

poses (Liu and Collins, 2001; Liu et al., 2004), a motif

(a representative tile) can be chosen that reflects the

symmetry property of the whole pattern. For synthesis

purposes, on the other hand, the tiles could be chosen

to optimize the “blending” effects (Section 3.1).

3. Our Method for Texture Synthesis

Perfect regularities are rarely found in the real world,

while varying degrees of deviation from regularity
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Figure 5. Examples of imperfect, real-world near-regular patterns overlayed with automatically detected underlying lattices using an algorithm

developed in Liu et al. (2004). Notice the different shape, size and orientations of the tiles. The arrows drawn on the middle image give an

example of the two shortest generating translations �t1,�t2 for this texture pattern. The region bounded by the two vectors (enclosed by the two

vectors and two dotted lines) indicates a tile for this pattern. For each near-regular texture, there exists a well-defined tile that is bounded by the

two linearly independent translations of its wallpaper pattern.

are common to observe. Our research interest is to

capture both regularity and randomness by combin-

ing the mathematical theory of regular patterns with

statistical modeling of data in texture analysis and

synthesis.

We treat a set of tiles carved by the detected lattice as

multiple samples of the same tile. We define these tiles

as minimum tiles {ti } since by definition of regular pat-

terns there are no 2D regions smaller than these tiles that

can tile the whole texture pattern under its translation

subgroup. Correspondingly, we define a set of maxi-

mum tiles {Ti } by circumscribing each minimum tile

ti with the smallest rectangularly shaped convex hull.

Note that depending on the shape and orientation of the

ti ’s, maximum tiles Ti can be in any possible orienta-

tion and aspect ratio. The minimum (maximum) tile set

also contains tiles centered on half-way shifted lattice

points (i.e. at locations ((n + 1/2)�t1, (m + 1/2)�t2) from

the anchored lattice position, where m, n are integers).

For texture synthesis, at each time a tile is randomly

chosen from these tile sets. This process provides the

promise of capturing statistical color and intensity vari-

ations from different tiles, which can give the generated

texture more natural appearance, while reproducing its

regularity.

3.1. Algorithm for Texture Synthesis

of Near-Regular Patterns

Input: a sample near regular texture S

Output: a synthesized texture S′ statistically similar

to S.

Stage 1 (analysis):

• First determine the translational symmetry vectors
�t1, �t2 from the given sample near-regular texture pat-

tern. In our experiments, these vectors can either

be (1) computed automatically (Liu and Collins,

2001; Liu et al., 2004); (2) indicated by the user

by clicking on three nearest corresponding points of

the texture, or (3) computed first and verified by the

user.

• Determine where the lattice should be anchored such

that all the minimum tiles ti are uniquely defined. This

is one parameter that the user can control to make

the boundary of the tiles align with low frequency

regions for the benefit of better blending results. In

our experiments, most lattice locations have been

hand-located.

• For each ti construct the corresponding maximum tile

sets T and Th . T contains all the Ti s centered on the
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Figure 6. The sample tiles (rhombic shaped tiles are minimum tiles {ti } and rectangle shaped tiles are maximum tiles {Ti }) are shown, they are

carved from the input brick texture. (a) and (b) show two different lattice positions.

lattice points, and Th contains all the Ti s centered on

the half-way shifted lattice points.

Figure 6 shows the brick wall sample as an example.

Each rhombic shaped tile ti is enclosed by a rectangular

maximum tile.

Stage 2 (synthesis):

1. Start from the top left corner with a random tile

chosen from T .

2. One tile is added at a time into the synthesized tex-

ture in a scanline order along the direction of �t1 + �t2
with a step size of |(�t1 + �t2)/2|. When the process

reaches the right boundary of the desired image size,

one tile is placed in the direction of �t2− �t1 with a step

size of |(�t2 − �t1)/2| from the leftmost synthesized

tile of the current row.

3. At each lattice or half-way lattice point, alter-

natively select the T or Th tile set. For each

tile in the selected tile set, we compute its

color difference to the existing synthesized im-

age in the overlapping region where the tile

is going to be pasted. The error function is:

Ferror(im1, im2) = �i, j (dist(im1(i, j), im2(i, j)))

where dist(im1(i, j), im2(i, j)) = �(abs(Ri1
− Ri2

)

+ abs(G i1
− G i2

)+abs(Bi1
− Bi2

)) and R, G, B are

rgb values of a pixel. A candidate tile set is formed

by selecting those tiles that have an RGB intensity

difference less than a threshold. A tile is then ran-

domly picked from the candidate tile set. If the can-

didate set is empty, we pick the tile with minimum
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error to paste to the synthesized image. The size

of the candidate tile set varies at every lattice

point.

4. Register the selected candidate tile using a

correlation-based method such that small move-

ments around the current lattice point are possible.

5. Use dynamic programming to “stitch” together the

overlapping tiles in a similar manner as described

in Efros and Freeman (2001). The dynamic pro-

gramming technique is applied separately along the

horizontal and vertical directions.

6. When pasting a tile to the existing image, blending

is applied to the boundaries where the dynamic pro-

gramming along horizontal and vertical directions

may have conflicting decisions. In other words, all

pixels on the boundary of the selected tile and ex-

isting synthesized texture are either results of dy-

namic programming or blending. The blending is

done on a padded region around the boundary of

the selected tile ti and existing synthesized tile t,

based on this formula: w(i, j) × ti (i, j) + (1 −
w(i, j)) × t(i, j) where 0 ≤ w(i, j) ≤ 1 depend-

ing on the distance from the pixel (i, j) to the

boundary.

Figure 7. (a) and (b) random sampling from tile sample sets (Figs. 2 and 3) using our texture synthesis method, which preserve both the

near-regular nature of the texture and the variations across tiles. The symmetry group of both patterns is classified as cmm containing translation,

rotation, reflection and glide-reflection symmetries (Liu and Collins, 2000). (c) and (d) direct tiling results. Though the regularity of the input

texture is preserved, the synthesized texture does not reflect the intensity variations in the input texture.

7. Repeat steps 2 through 6 until the whole image is

synthesized.

The reason we use maximum tiles instead of mini-

mum tiles for synthesis is to have redundant overlap-

ping regions for a smoother transition on the tile bound-

aries. Using this method, each tile has half to three

quarters of overlap with the currently synthesized im-

age. As a result, correlation-based registration can be

done robustly. However, as departure from regularity

in the texture increases, one can expect less coherence

in the synthesized image. It takes about 20 seconds to

synthesize an image of size 544 by 565 on a 2.2 Ghz

PC, using non-optimized Matlab code.

3.2. Experimental Results

Images (c) in Figs. 2 and 3 show our synthesized results

in comparison with the corresponding results from

Efros and Freeman (2001). Figure 6 shows both the

minimum and the maximum tiles used in the brick wall

example (Fig. 2). Figure 7 demonstrates the difference

between naive direct tiling and our random selection
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Figure 8. More examples on texture synthesis using our proposed approach.

method. Figure 8 shows more sample results of our

method. Figures 9–11 demonstrate the synthesized re-

sults of three near regular textures where the lattices

are automatically generated as shown in Fig. 5. These

experimental results reflect our intention of preserv-

ing the near-regular structure of the input texture as

well as the statistical variations across and within the

tiles.

Due to the blending procedure, the synthesized tex-

ture may appear not as sharp as the input texture (e.g.

Image (c) of Fig. 3). The top result shown in Fig. 8

may appear more regular than the input texture as a

result of using an error threshold that is too tight after a

random candidate tile selection. There is a tradeoff be-

tween allowing more variations in the synthesized tex-

ture and keeping the textures over the stitching bound-

aries more similar to each other. However, there is a

natural agreement between the probability of a tile ap-

pear in the input texture and its chance to appear in

the synthesized texture. For example, tiles containing

holes in the rug textures (Fig. 5) have a lesser chance

to be selected than those similar-looking tiles in the
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Figure 9. The synthesized result from one of the real-world near-regular textures shown in Fig. 5, where the underlying lattices are automatically

detected using an algorithm developed in Liu et al. (2004).

Figure 10. The synthesized result from one of the real-world near-regular textures shown in Fig. 5, where the underlying lattices are automatically

detected using an algorithm developed in Liu et al. (2004).

input texture, due to their oddness in the tile popula-

tion. As a result, the holes may not appear in the output

texture at all as shown in Figs. 10 and 11. When the

direction of �t1 + �t2 is not parallel with horizontal and

vertical axes of the image, for simplicity in our ex-

periments the shape of the maximum tile remains to

be an upright rectangle containing the minimum tile

(Fig. 6). An alternative, perhaps better, choice is to use
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Figure 11. The synthesized result from one of the real-world near-regular textures shown in Fig. 5, where the underlying lattices are automatically

detected using an algorithm developed in Liu et al. (2004).

the coordinate system of the texture defined by the min-

imum tile shape to define the shape of the maximum

tile.

4. Discussion

One obvious limitation of this work is its focus on

near-regular texture alone. Nevertheless, several fun-

damental issues for texture understanding and synthe-

sis seem to be related. Firstly, with respect to the very

different properties of different textures (random ver-

sus regular) should we treat all textures uniformly? If

not, how should we combine different methodologies

together? Secondly, almost all the texture synthesis al-

gorithms have to define a window, sometime called

patch, and which we call a tile, to sample the orig-

inal input textures. (In this paper, we use the word

window, patch and tile interchangeably). What are the

basic variables involved in choosing a window, and

what are their impacts? Thirdly, for near-regular tex-

tures, can we do better than what has been proposed

here? What will happen if we go beyond translation

symmetry and investigate the effect of rotation, reflec-

tion and glide-reflection symmetries? and how may

this be related to the concept of texton for near-regular

texture?

In the following, under the context of texture synthe-

sis, we shall elaborate on each of these topics in more

detail.
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4.1. Regular Texture Versus Random Texture

It is beyond the topic of this paper to investigate the def-

inition of texture and whether regular or near-regular

patterns should be considered as texture. However,

near-regular texture does have its own special prop-

erties and relevant mathematical theories that can be,

and actually have to be, taken into consideration in or-

der to carry out the texture synthesis properly. On the

other hand, it is also a reasonable concern that if regu-

larity dominates the synthesized texture to the extreme

of regular tiling, there will be no meaning in texture

synthesis.

One fundamental principle in texture synthesis we

are following is to be faithful to the input sample texture

by respecting both its regularity and statistical random-

ness. One of the perils when dealing with near-regular

texture is the temptation to use direct tiling (of a tile)

to fill the whole 2D image. Though tiling is the cen-

tral theme and appropriate means for many artistic and

design tasks (Washburn and Crowe, 1991; Grünbaum

and Shephard, 1987), it is usually not suited for pro-

viding natural visual effects in the context of texture

synthesis. The results from simple tiling are overly reg-

ular, usually more so than the original input sample

(Fig. 7).

The two perils of near-regular texture are:

1. random treatment: ignoring the special property of

regularity, thus regularity (a global property) is no

longer preserved (images (b) in Figs. 2 and 3);

2. regular treatment: only recognizing that the tex-

ture is regular, thus ended up repeating a single tile

(Fig. 7).

Alternatively, one can avoid both of these two poten-

tial traps. There are many ways to combine the treat-

ment of near-regular texture proposed here with exist-

ing local-neighborhood methods that are known to be

particularly effective for random textures. One way is

to build a texture regularity classifier F . Given a sam-

ple texture T , if F(T ) = 1 exceeds a certain thresh-

old, use our near-regular texture algorithm, otherwise

resort to one of the local-neighborhood methods. Peo-

ple have already experimented with such classifiers.

For example, Chetverikov (2000) provides a score for

a textured pattern that seems to be consistent with hu-

man perception. See Fig. 12 from Chetverikov (2002)

for an example of regularity scores. Our lattice detec-

tion algorithm (Liu and Collins, 2000) or other future

robust lattice extraction algorithms can also serve as

a periodicity measure. In this manner, both the near-

regular end and the random end of the textures will be

well covered. The question then will become: how to

treat those textures that are in the middle of the tex-

ture spectrum. We foresee a continuous spectrum from

regular to random texture, but where to draw the line be-

tween regular, near-regular, near-random and random

remains an open problem. It would be interesting to

quantify how strong the regularity in a texture should

be for the proposed texture synthesis method to be most

effective.

4.2. Will the Regularity in the Input Texture

be Preserved by Increasing Window Size

During Texture Synthesis?

Despite common belief, the answer to the above ques-

tion is no. Figure 13 from Efros and Leung (1999) does

show a trend towards regularity with the increase of the

window size, however, it does not show that the regu-

larity of the input texture can be reproduced with the

increase of the window size. As a matter of fact, if one

looks at the right-most synthesized result in Fig. 13

carefully, it becomes obvious that the regularity pro-

duced in the synthesized texture with the larger win-

dow size is not the same kind of structural regularity

presented in the input texture. Even though the smaller

sized bricks occur in the input texture due to cut-offs at

image borders, there is sufficient evidence to indicate

that the input texture has bricks of only one size.

A local neighborhood-based approach is incapable

of perceiving texture structure beyond the image bor-

ders, therefore it is not surprising that the synthesized

texture reproduces what it can observe, and thus we

see the mix of short bricks with the longer ones. Im-

age quilting (Efros and Freeman, 2001) as a typical

local approach allows variations around the overlap-

ping boundary regions. When two patches are placed

too close to each other due to an inappropriate window

size, the algorithm can only maximize the similarity

and smoothness locally to achieve a better looking lo-

cal boundary, even though a global transformation is

required to reproduce the similar spacing indicated in

the original pattern. One can push the window size ar-

gument to the extreme: imagine using the whole input

texture as the largest possible patch, even then the reg-

ularity of the input texture will still not be preserved,

unless the cut-offs happen right at the matching line

(e.g. the short bricks happen to have half-brick length

in Fig. 13). The input texture has to be a super tile,
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Figure 12. Image from Chetverikov (2002) shows the regularity scores for various types of textures.

Figure 13. Image from Efros and Leung (1999) shows that the synthesized texture becomes more regular with the increase of the window size.

The question is: whether the regularity in the input sample will be reproduced by increasing the window size? The answer is: in general, No.

otherwise by putting its own copies together the regular

pattern in the original texture (with a smaller generating

tile) still can not be reproduced without discontinuity.

4.3. How to Determine the Sample Window

Shape Used for Texture Synthesis?

It is stated in Efros and Freeman (2001) that:

Determining precisely what are the patches for a

given texture and how they are put together is still

an open problem ... let us define the ... (patch) ... to

be a square block of user-specified size ...

For lack of a better choice of window shapes, an upright

square window is a common choice for many texture

synthesis algorithms (Efros and Freeman, 2001; Wei

and Levoy, 2000; Xu et al., 2001; Liang et al., 2001).

The reason that local texture synthesis algorithms

work on certain near-regular textures (patterns of dots

or knots, for example) is due to a judicious choice of the

window size and shape that happens to match the tile

shape and orientation of the input sample. In the case
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Figure 14. For this pattern (p6m, one of the 17 wallpaper groups patterns), only the triangle region is needed to recover the whole image

through rotation, reflection and translations. Thus much smaller tile sizes and more sample numbers can be used for texture synthesis of better

quality.

of dots and knots (Figs. 3 and 4 in Efros and Freeman,

2001), it is an upright square; and in the case of soup

cans and rows of windows, it is an upright rectangle

such that a proper square can serve as a super tile (Fig. 4

in Efros and Freeman (2001)). Conversely, an improper

choice of window size and shape usually causes failure

in faithful texture synthesis (e.g. images (b) in Figs. 2

and 3 from Efros and Freeman (2001)).

A key factor in reproducing regularity is to recog-

nize, simultaneously, the shape, orientation and size of

a basic tile of the input near-regular texture. This is

the attempt we make in our texture synthesis method

(Fig. 5). One advantage of our approach is that the tile

shape (not necessarily a square), orientation (not nec-

essarily upright), and size are determined up front, ex-

plicitly, and customized to each input near-regular tex-

ture pattern (Fig. 5). Even though the input texture’s

color and intensity may vary randomly, recognizing

the underlying structural regularity provides a skeleton

for the appropriate texture displacement while allowing

color and intensity variations. We have demonstrated

the feasibility of this approach in Section 3.2.

4.4. Go Beyond Translational Symmetry and How

it is Related to the Concept of Texton

When one really understands the making of

a periodic pattern and its generating regions

(Schattschneider, 1978), modifications can be made to

direct tiling such that more natural appearance can be

achieved. In particular, we have only used translational

symmetry in this paper, rotation, reflection and glide

reflection symmetries can also be used to generate pat-

terns from much smaller tiles (Fig. 14). This means that

a much larger sample set of observed statistical vari-

ations can be obtained in a principled and controlled

manner.

In many texture related papers (e.g., Zhu et al., 2002)

the concept of a “texton” has been suggested. Texton

is referring to the atomic element in a texture. There

exists an interesting interplay between what is a texton

and which group of transformations that one is consid-

ering. In the case at hand (Fig. 14), if we only consider

the translation subgroup of the symmetry group of the

texture pattern, the texton would be the parallelogram

for hexagonal shape shown in the lower right corner of

Fig. 4. If we consider the whole symmetry group of the

texture pattern, the corresponding texton then becomes

the small triangle indicated in Fig. 14. Near-regular

textures provide a more structured environment for ex-

ploring the elusive concept of multi-layered textons.

5. Conclusion and Research Directions

In this paper, we provide a new method for near-regular

texture synthesis. Our method differs from most local-

neighborhood approaches to texture synthesis in that it

first does a texture structure analysis by identifying the

specific tile shape of the given texture. Our approach

also separates the treatment of spatial layout regularity
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(tiles) from the intensity/color variations (the content

of a tile). A special treatment for near-regular texture in

texture synthesis has been a missing piece in the texture

synthesis puzzle.

We point out that it is actually a misconception that

the regularity in the input sample will be reproduced

when the window size is large enough. It should be re-

alized by now that the regularity preservation problem

can not be solved by adjusting window size alone.

We are investigating the use of a richer set of symme-

tries residing in near regular texture beyond translation.

Our long term goal is to model a continuous texture

spectrum from regular to near-regular to chaotic pat-

terns, and to study texture variations along different

dimensions of symmetry (Liu, 2001).
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Note

1. These groups are also called two dimensional Crystallographic

groups (Henry and Lonsdale, 1969).
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