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Immunotherapy by immune checkpoint inhibitors has emerged as an effective treatment

for a slight proportion of patients with aggressive tumors. Currently, some molecular

determinants, such as the expression of the programmed cell death ligand-1 (PD-L1)

or the tumor mutational burden (TMB) have been used in the clinical practice as

predictive biomarkers, although they fail in consistency, applicability, or reliability to

precisely identify the responding patients mainly because of their spatial intratumoral

heterogeneity. Therefore, new biomarkers for early prediction of patient response to

immunotherapy, that could integrate several approaches, are eagerly sought. Novel

methods of quantitative image analysis (such as radiomics or pathomics) might offer a

comprehensive approach providing spatial and temporal information from macroscopic

imaging features potentially predictive of underlying molecular drivers, tumor-immune

microenvironment, tumor-related prognosis, and clinical outcome (in terms of response

or toxicity) following immunotherapy. Preliminary results from radiomics and pathomics

analysis have demonstrated their ability to correlate image features with PD-L1 tumor

expression, high CD3 cell infiltration or CD8 cell expression, or to produce an image

signature concordant with gene expression. Furthermore, the predictive power of

radiomics and pathomics can be improved by combining information from other

modalities, such as blood values or molecular features, leading to increase the accuracy

of these models. Thus, “digital biopsy,” which could be defined by non-invasive

and non-consuming digital techniques provided by radiomics and pathomics, may

have the potential to allow for personalized approach for cancer patients treated

with immunotherapy.
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INTRODUCTION

In the data deluge era, there is a unique opportunity to
explore biological processes at multiple scales. Deriving useful
information from data, often poorly structured, at large scales,
led to the emergence of the so-called “-omics” disciplines
(genomic, transcriptomic, proteomic, metabolomic, etc.)
(1). Powerful bioinformatic tools allow for high-throughput
extraction processes that convert images into data, from which
biostatistical analysis, combined with clinical or other “-omics”
data, may enhance diagnostic accuracy and find new predictive
or prognostic factors (2). Applied to radiological images (most
often computed tomography [CT], magnetic resonance [MR]
imaging, and positron-emission tomography [PET]), it is called
radiomics, which has been the pioneer in the field of images data
analysis. Pathomics, that is a more recent discipline, ensues when
the same processes are being applied to histopathological images.

In this review, we describe the basic background based
on which these new disciplines have emerged and the
important steps involved in imaging acquisition to clinical
supporting correlations. Selected radiomics and pathomics
reports will illustrate achievements in this field, with a focus
on immunotherapy. Challenges and future development will be
then considered.

BACKGROUND FOR RADIOMICS AND
PATHOMICS

The founder hypothesis supporting the use of radiomics and
pathomics in medical care is that data derived from images
have a correlation with the underlying biological processes.
More precisely, data derived from images would give additional
information in relation with the underlying biological processes
in comparison with the visual interpretation of the image as a
picture, which is the traditional way of interpreting images (3).

Radiomics and, at a lesser extent, pathomics, fill the need
to assess tumor heterogeneity. The presence, within the tumor,
of distinct molecular cell clones, is a hallmark of cancer
physiopathology (4). Natural history of cancer, as well as
resistance mechanisms acquired through therapeutic selective
pressure, manifest spatial and temporal heterogeneity of tumor
cells (5, 6). Addressing tumor heterogeneity is one of the major
goals of new therapeutic approaches and blood biomarkers may
present limitations that could be overcome by radiomics and
pathomics. In particular, radiomics represents a promising non-
invasive and repeatable tool during the course of the disease.

Furthermore, traditional medical practice, based on human
visual interpretation of images, is known to be inaccurate in up to
20% of cases in radiology and almost the same discrepancy rates
are found in pathology reports (2). Despite many explanations
accounting for these reporting errors, the result is the high
prevalence of diagnosis unreliability, with clinical consequences
for patients.

As far as cancer immunotherapy is concerned, immune
checkpoint inhibitors (CPIs) have emerged as an effective
therapeutic option for patients with aggressive tumors such as

lung cancer (7, 8), although a few patients seem to benefit
from the long-term benefit from this treatment (9). Aiming
at identifying these patients, the expression of programmed
cell death ligand-1 (PD-L1) has been widely explored as a
predictive biomarker with contrasting results across different
tumor subtypes and several methodological issues, mostly related
to its variability and spatial intratumoral heterogeneity, that
have been undermining its role and use (10). Other predictive
biomarkers, such as the tumor mutational burden (TMB),
are currently poorly applicable in the clinical practice and,
noteworthy, identify a different sensitive population from the
one selected by the PD-L1 (11). Thus, there is a need for new
biomarkers to integrate into clinical practice in order to early
identify patient response (or progression) to CPIs and avoid their
potential sever toxicity (12–14).

PROCESS DESCRIPTION AND METHODS

Every “-omics” analysis requires a multistep process. Each stage
has its own specificities. Radiomics process has been established
as a model for other disciplines in image data analysis (such
as pathomics) and essentially consists in the following five
steps: image acquisition, identification of the target volumes,
segmentation of the volumes, features extraction from the
volumes and analysis [see Figure 1; (3, 15)].

After the first step, the identification of the volumes must
identify tumor location and determine distinct parts within
the tumor. These regions will be called habitats, and present
specific biological properties (blood flow, cell density, edema,
necrosis). Image data analysis can help to identify such habitats
(16) before data extraction. This step is intentionally done before
data extraction, thus giving additional data that would not be
automatically detected by subsequent data analysis (17).

The next step, the most critical one, is the segmentation. It
consists in contouring the volumes of interest. Its importance
derives from the fact that all the data extraction process will
be generated by each segmented volume, and any error at this
point could mislead further interpretation. Given inter-operator
variability and the time consuming of manual delineation, semi-
automated tools seem to be the most reliable and cost-effective
approaches to this step (18).

Next stages, highly technical, allow for high-throughput
extraction of quantitative data and their analysis. Data
extraction results in image-based “features.” These features
are mathematically and bioinformatically derived from images
through first-, second-, or higher order statistical processes.

Radiomics features could be “texture” feature, “tumor
heterogeneity” feature, etc. Quantitative features may be
presented based on histograms for each volume of interest.

Analysis of radiomics features, along with clinical data or
other “-omics” data try to find correlations with biological
processes. The analysis aims to define and validate image-derived
features as biomarkers that could have prognostic or predictive
values helping thus to support medical decisions.

Different methods could apply to exploit this process, but
we will exclusively describe, as an example to understand the
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FIGURE 1 | Essential steps of the radiomics/pathomics process.

full operation, the bio-inspired system we have been currently
investigating within a multi-disciplinary joint lab (engineers,
mathematicians, and clinicians) for pathomics and radiomics.
The mathematical core is based on recent Machine Learning
(ML) approaches. The high capability of the ML systems in
addressing complex problems and, in particular, those related to
healthcare and medical applications, has already been confirmed
(19, 20). As an additional validation, we have also implemented
a joined mathematical-ML system for the early discrimination
of skin lesions by dermoscopic images with high diagnostic
accuracy (21). The bio-inspired system is based on the correlation
between the tumor aggressiveness and fractal dimension of the
related lesions (22).

Currently, we have been testing this approach within two
specific subject areas. The first one in the field of pathomics
for lung cancer (reported in Figure 2A), regards specifically
the prediction of PD-L1 overexpression (a biomarker predictive
of response to immunotherapy in this tumor subtype) by the
analysis of histopathological hematoxylin stained images; this
could represent a useful guide to pathologists (and physicians).
The second one concerns radiomics for urothelial cancer and
it is aimed to correlate tumor response to immunotherapy with
CT-scans medical images and other blood data (i.e., radiomics).

Starting from these premises, for pathomics, we
have implemented a hyper-filtering pre-processing of
histopathological hematoxylin stained images (Figure 2A). Each
of the analyzed images has been converted from RGB (red-green-
blue) color spaces to luminance (Y) chrominance information
(CbCr) spaces with the divided gray-level representation of the
histopathologic image. The luminance Y gray-level images have
been then pre-processed by the hyper-filtering layer inside the
“Pre-processing Block” using an ad-hoc adaptive thresholds-
based approach in order to obtain a 1D representation of the
source gray-level Y images. From every pre-processed Y images,
the system computes the corresponding fractal dimension
according to the Hausdorf model allowing to obtain, through
an additional computing analysis, a time-series collection of
those fractal dimensions (23). These pathomics features, ensued
along with histopathologic image-features extracted by the
AutoEncoder system (that is designed with one hidden layer of
20 neurons) also included in the “Pre-processing Block” are fed
into a regression neural network learned by a classical Scalable
Conjugate Gradient (SCG) back-propagation algorithm, with the
final classification layer based on the SoftMax approach (21).

For the learning process (training phase), the authors used
70 percent of the histopathologic images while the remaining 30

percent serves for testing and validation. The learning dynamic of

the bio-inspired system and an example of the fractal dimension
time-series extracted from images are represented in Figure 2B.

For our radiomics project, the system is basically the same as
above described (Figure 2A) with the input being the sequence
of segmented CT-scan slices in which the lesion is visible
along with the possible association of normalized representation
of laboratory data (i.e., blood values). Through an innovative
patented approach, time-series mapped signals are extracted in
the pre-processing layer, starting from an ad-hoc analysis of the
morpho-geometric dynamic of the CT-scan lesion in each of the
slices. The resulting output (time-series data) feed, as a new input,
the regression neural layer and then the SoftMax classificatory,
which finally provide the binary discrimination of the positive or
negative response to the immunotherapy (Figure 2C).

RADIOMICS AND PATHOMICS
APPLICATIONS

Diagnosis (Early) and Classification
Computer-aided diagnosis and detection system (CAD) help
for better detection and diagnostic accuracy (24). Radiomics
analysis, although sharing some principles with CAD, do not
answer only a precise question (detection) but it is a complex
process looking for a correlation with biological mechanisms.
Magnetic resonance (MR) images from 147 patients with
confirmed prostate cancer showed that several MR derived
“texture” features were significantly different in benign and
malignant prostate tissue and in samples with different Gleason
scores (25). Another study confirmed that texture features
extracted from MR prostatic images could define with accuracy
not only the Gleason score but also score patterns: two patterns of
Gleason score 7 (“4+ 3” vs. “3+ 4”) were correctly discriminated
with 92% accuracy (26).

Pathomics studies were preceded by computer-aided-system
tools, with for instance a fractal analysis set, showing powerful
discrimination in grading prostatic cancer (27). In another
study, analysis from 39 patients with colorectal lesions finds
that analysis of multiscale texture features, extracted through
a “3D wavelet transform filter” from histopathological images,
were able to correctly distinguish different colorectal cancer
grades (28).

In the context of immunotherapy, Tang et al. associated
radiomics features with PDL1 expression and CD3 count in
two cohorts (training and validation cohort of n = 114 and
n = 176, respectively) lung cancer patients (29). Sun et al.
developed a radiomic signature for tumor-infiltrating CD8 cells
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FIGURE 2 | Bio-inspired system for radiomics and pathomics. (A) Bio-inspired system for pathomics in lung cancer; (B) the diagram on the left shows an example of

fractal dimension time–series extracted from a single histopathological hematoxylin stained image. The one on the right illustrates the learning dynamic of the system

during the training session: the lower (blue) curve shows the training dynamic (i.e., the progressive error reduction) while the middle (red) and the upper (green) curves

show the testing and validation, respectively; (C) bio-inspired system for radiomics in urothelial cancer. The pre-processing input data used arise from CT-scan images

and blood analysis data.
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in a retrospective multicohort study on overall 491 patients with
advanced solid tumors (30).

Prognosis
The prognostic value of radiomics was reported in 108 patients
with lung adenocarcinoma (separated in two independent
cohorts), radiomics features (including tumor shape complexity
and intratumor density variation) were strongly correlated with
overall survival (31). Furthermore, Aerts et al. analyzed 440
image-related features extracted from CT images of 1019 patients
with lung or head and neck cancer. They could find many
radiomic features having a prognosis value and built a prognostic
radiomic signature, which was found to be correlated with
underlying gene-expression patterns (32).

Pathomics could also yield prognostic information. Pathomics
features derived from the analysis of 2186 histopathological
images were explored to distinguish short-term and long-term
survivors in patients with non-small lung cancer. The survival
prediction model was validated on 294 additional images (33).

Pathomics and radiomics studies in glioblastoma patients
illustrated how correlations derived from different data
scales (neuroimaging, pathologic and genomic) may give a
deeper understanding of tumor biology and predict clinical
outcomes (34–37).

Regarding immunotherapy, in the above-mentioned
study of Tang et al. (29), a radiomic immune pathology-
informed model was developed. The model defined four
subsets of lung cancer patients significantly associated
with overall survival. A group of patients with favorable
prognosis was identified, harboring low CT intensity
and high heterogeneity (as radiomic features) and low
PDL1 with high CD3 infiltration, indicating a favorable
immune activity.

Outcome Prediction
To date, fewer works have explored the predictive value
of radiomics and pathomics features. MR images-derived
texture features from 58 breast cancer patients showed that
radiomic features before neoadjuvant chemotherapy could
predict response (38).

As far as immunotherapy is concerned, in the study of
Sun et al. (30), the radiomic-based biomarker of tumor-
infiltrating CD8 cells was validated in 3 independent cohorts
and showed predictive value for tumor response to the
anti-PD-1 or anti-PD-L1 therapy. Moreover, Colen et al.
elaborated a two-feature radiomic model in order to predict

immunotherapy-induced pneumonitis characterized by strong
internal accuracy (100%) (39).

FUTURE CHALLENGES OF
IMAGE-DERIVED FEATURES

Some challenges regarding the multistep process of radiomics
and pathomics still need to be adequately addressed.
Methodologically, quantitative image-derived features
biomarkers should undergo a multicenter prospective trial
to be validated, as it is for other biomarkers. Technically,
each step of image data analysis needs proper benchmarking
and reproducibility. Furthermore, curation of big data, time
processing and data sharing are other major challenges. In
this sense, great efforts have been made by the scientific
community to share tools (software, web-based platforms)
allowing physicians to explore image data analysis (40–42). The
Quantitative Imaging Network, for instance, initiated in 2008
and supported by the National Cancer Institute, is an example
of the importance of these new disciplines. Along with the
identification of biological biomarkers, assessed by longitudinal
repeated tumor samples taken by tissue biopsy and/or liquid
biopsy, we postulate that “digital biopsy,” as previously defined,
could allow to find potential correlation between biological
biomarkers and “radiomics and pathomics biomarkers,” and
have the potential to better define prognosis and prediction of
response. Interdisciplinarity and integration within “-omics”
disciplines and clinicians will certainly be of key importance for
greater precision in oncology diagnosis and treatment in the
next future.

DATA AVAILABILITY

All datasets for this study are included in the manuscript and the
supplementary files.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

The United Lincolnshire NHS Hospital Trust provided funding
for the publication of this paper.

REFERENCES

1. Cavallaro S, Paratore S, de Snoo F, Salomone E, Villari L, Buscarino C, et al.

Genomic analysis: toward a new approach in breast cancer management. Crit

Rev Oncol Hematol. (2012) 81:207–23. doi: 10.1016/j.critrevonc.2011.03.006

2. El Naqa I, Ten Haken RK. Can adiomics personalise immunotherapy? Lancet

Oncol. (2018) 19:1138–9. doi: 10.1016/S1470-2045(18)30429-7

3. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,

Granton P, et al. Radiomics: extracting more information from medical

images using advanced feature analysis. Eur J Cancer. (2012) 48:441–6.

doi: 10.1016/j.ejca.2011.11.036

4. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance

to cancer therapies. Nat Rev Clin Oncol. (2018) 15:81–94.

doi: 10.1038/nrclinonc.2017.166

5. Banna GL, Tiseo M. How to develop novel treatments for EGFR-mutant lung

cancer. Future Oncol. (2015) 11:2375–8. doi: 10.2217/fon.15.172

6. Pilotto S, Rossi A, Vavala T, Follador A, Tiseo M, Galetta D, et al. Outcomes

of first-generation EGFR-tkis against non-small-cell lung cancer harboring

uncommon EGFR mutations: a post hoc analysis of the BE-POSITIVE study.

Clin Lung Cancer. (2018) 19:93–104. doi: 10.1016/j.cllc.2017.05.016

7. Novello S, Milella M, Tiseo M, Banna G, Cortinovis D, Di Maio

M, et al. Maintenance therapy in NSCLC: why? To whom? Which

Frontiers in Medicine | www.frontiersin.org 5 July 2019 | Volume 6 | Article 172

https://doi.org/10.1016/j.critrevonc.2011.03.006
https://doi.org/10.1016/S1470-2045(18)30429-7
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.2217/fon.15.172
https://doi.org/10.1016/j.cllc.2017.05.016
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Banna et al. Radiomics for Immunotherapy

agent? J Exp Clin Cancer Res. (2011) 30:50. doi: 10.1186/1756-

9966-30-50

8. Yang Y. Cancer immunotherapy: harnessing the immune system to battle

cancer. J Clin Invest. (2015) 125:3335–7. doi: 10.1172/JCI83871

9. Addeo A, Banna GL. PROS: should immunotherapy be incorporated in the

treatment of oncogene-driven lung cancer? Transl Lung Cancer Res. (2018)

7(Suppl. 3):S287–S289. doi: 10.21037/tlcr.2018.07.09

10. Banna GL, Passiglia F, Colonese F, Canova S, Menis J, Addeo A, et al.

Immune-checkpoint inhibitors in non-small cell lung cancer: a tool to

improve patients’ selection. Crit Rev Oncol Hematol. (2018) 129:27–39.

doi: 10.1016/j.critrevonc.2018.06.016

11. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-

Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a

high tumor mutational burden. N Engl J Med. (2018) 378:2093–104.

doi: 10.1056/NEJMoa1801946

12. Paratore S, Banna GL, D’Arrigo M, Saita S, Iemmolo R, Lucenti L, et al.

CXCR4 and CXCL12 immunoreactivities differentiate primary non-small-

cell lung cancer with or without brain metastases. Cancer Biomark. (2011)

10:79–89. doi: 10.3233/CBM-2011-0232

13. Banna GL, Anile G, Russo G, Vigneri P, Castaing M, Nicolosi M, et al.

Predictive and prognostic value of early disease progression by PET

evaluation in advanced non-small cell lung cancer.Oncology. (2017) 92:39–47.

doi: 10.1159/000448005

14. Addeo A, Banna GL. The crucial role of predicting brain metastases

development in non-small cell lung cancer patients. J Thorac Dis. (2018)

10(Suppl 26):S3305–S3307. doi: 10.21037/jtd.2018.08.95

15. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al.

Radiomics: the process and the challenges. Magn Reson Imaging. (2012)

30:1234–48. doi: 10.1016/j.mri.2012.06.010

16. Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution

and ecology. Radiology. (2013) 269:8–15. doi: 10.1148/radiol.13122697

17. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

18. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho

S, Mak RH, et al. Robust Radiomics feature quantification using

semiautomatic volumetric segmentation. PLoS ONE. (2014) 9:e102107.

doi: 10.1371/journal.pone.0102107

19. Rundo F, Conoci S, Ortis A, Battiato S. An advanced bio-inspired

photoplethysmography (PPG) and ECG pattern recognition system for

medical assessment. Sensors. (2018) 18:405. doi: 10.3390/s18020405

20. Rundo F, Ortis A, Battiato S, Conoci S. Advanced bio-inspired system for

noninvasive cuff-less blood pressure estimation from physiological signal

analysis. Computation. (2018) 6:46. doi: 10.3390/computation6030046

21. Rundo F, Conoci S, Banna GL, Ortis A, Stanco F, Battiato S. Evaluation of

Levenberg–Marquardt neural networks and stacked autoencoders clustering

for skin lesion analysis, screening and follow-up. IET Comp Vision. (2018)

12:957–62. doi: 10.1049/iet-cvi.2018.5195

22. Chan A, Tuszynski JA. Automatic prediction of tumour malignancy in

breast cancer with fractal dimension. R Soc Open Sci. (2016) 3:160558.

doi: 10.1098/rsos.160558

23. Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT,

et al. Lung cancer-a fractal viewpoint. Nat Rev Clin Oncol. (2015) 12:664–75.

doi: 10.1038/nrclinonc.2015.108

24. Liang M, Tang W, Xu DM, Jirapatnakul AC, Reeves AP, Henschke CI, et al.

Low-dose CT screening for lung cancer: computer-aided detection of missed

lung cancers. Radiology. (2016) 281:279–88. doi: 10.1148/radiol.2016150063

25. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D,

et al. Haralick texture analysis of prostate MRI: utility for differentiating

non-cancerous prostate from prostate cancer and differentiating prostate

cancers with different Gleason scores. Eur Radiol. (2015) 25:2840–50.

doi: 10.1007/s00330-015-3701-8

26. Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas

HA, et al. Automatic classification of prostate cancer Gleason scores from

multiparametric magnetic resonance images. Proc Natl Acad Sci USA. (2015)

112:E6265–6273. doi: 10.1073/pnas.1505935112

27. Huang PW, Lee CH. Automatic classification for pathological prostate images

based on fractal analysis. IEEE Trans Med Imaging. (2009) 28:1037–50.

doi: 10.1109/TMI.2009.2012704

28. Chaddad A, Daniel P, Niazi T. Radiomics evaluation of histological

heterogeneity using multiscale textures derived from 3D wavelet

transformation of multispectral images. Front Oncol. (2018) 8:96.

doi: 10.3389/fonc.2018.00096

29. Tang C, Hobbs B, Amer A, Li X, Behrens C, Canales JR, et al. Development

of an immune-pathology informed radiomics model for non-small cell lung

cancer. Sci Rep. (2018) 8:1922. doi: 10.1038/s41598-018-20471-5

30. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR,

et al. A radiomics approach to assess tumour-infiltrating CD8 cells

and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging

biomarker, retrospective multicohort study. Lancet Oncol. (2018) 19:1180–91.

doi: 10.1016/S1470-2045(18)30413-3

31. Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A,

Wang H, et al. Quantitative computed tomographic descriptors

associate tumor shape complexity and intratumor heterogeneity with

prognosis in lung adenocarcinoma. PLoS ONE. (2015) 10:e0118261.

doi: 10.1371/journal.pone.0118261

32. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P,

Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nat Commun. (2014) 5:4006.

doi: 10.1038/ncomms5006

33. Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, et al. Predicting non-

small cell lung cancer prognosis by fully automated microscopic pathology

image features. Nat Commun. (2016) 7:12474. doi: 10.1038/ncomms

12474

34. Cooper LA, Kong J, Gutman DA, Wang F, Cholleti SR, Pan TC, et al. An

integrative approach for in silico glioma research. IEEE Trans Biomed Eng.

(2010) 57:2617–21. doi: 10.1109/TBME.2010.2060338

35. Cooper LA, Kong J, Gutman DA, Wang F, Gao J, Appin C, et al.

Integrated morphologic analysis for the identification and characterization

of disease subtypes. J Am Med Inform Assoc. (2012) 19:317–23.

doi: 10.1136/amiajnl-2011-000700

36. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, et al.

MR imaging predictors of molecular profile and survival: multi-institutional

study of the TCGA glioblastoma data set. Radiology. (2013) 267:560–9.

doi: 10.1148/radiol.13120118

37. Kong J, Cooper LA, Wang F, Gao J, Teodoro G, Scarpace L,

et al. Machine-based morphologic analysis of glioblastoma using

whole-slide pathology images uncovers clinically relevant molecular

correlates. PLoS ONE. (2013) 8:e81049. doi: 10.1371/journal.pone.

0081049

38. Teruel JR, Heldahl MG, Goa PE, Pickles M, Lundgren S, Bathen TF,

et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment

prediction of clinical and pathological response to neoadjuvant chemotherapy

in patients with locally advanced breast cancer. NMR Biomed. (2014) 27:887–

96. doi: 10.1002/nbm.3132

39. Colen RR, Fujii T, Bilen MA, Kotrotsou A, Abrol S, Hess KR, et al. Radiomics

to predict immunotherapy-induced pneumonitis: proof of concept. Invest

New Drugs. (2018) 36:601–7. doi: 10.1007/s10637-017-0524-2

40. Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone

ME, et al. Biological imaging software tools. Nat Methods. (2012) 9:697–710.

doi: 10.1038/nmeth.2084

41. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC,

Pujol S, et al. 3D Slicer as an image computing platform for the

Quantitative Imaging Network. Magn Reson Imaging. (2012) 30:1323–41.

doi: 10.1016/j.mri.2012.05.001

42. Saltz J, Almeida J, Gao Y, Sharma A, Bremer E, DiPrima T, et al.

Towards generation, management, and exploration of combined radiomics

and pathomics datasets for cancer research. AMIA Jt Summits Transl Sci Proc.

(2017) 2017:85–94.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Banna, Olivier, Rundo, Malapelle, Fraggetta, Libra and Addeo.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Medicine | www.frontiersin.org 6 July 2019 | Volume 6 | Article 172

https://doi.org/10.1186/1756-9966-30-50
https://doi.org/10.1172/JCI83871
https://doi.org/10.21037/tlcr.2018.07.09
https://doi.org/10.1016/j.critrevonc.2018.06.016
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.3233/CBM-2011-0232
https://doi.org/10.1159/000448005
https://doi.org/10.21037/jtd.2018.08.95
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1148/radiol.13122697
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1371/journal.pone.0102107
https://doi.org/10.3390/s18020405
https://doi.org/10.3390/computation6030046
https://doi.org/10.1049/iet-cvi.2018.5195
https://doi.org/10.1098/rsos.160558
https://doi.org/10.1038/nrclinonc.2015.108
https://doi.org/10.1148/radiol.2016150063
https://doi.org/10.1007/s00330-015-3701-8
https://doi.org/10.1073/pnas.1505935112
https://doi.org/10.1109/TMI.2009.2012704
https://doi.org/10.3389/fonc.2018.00096
https://doi.org/10.1038/s41598-018-20471-5
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1371/journal.pone.0118261
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/ncomms12474
https://doi.org/10.1109/TBME.2010.2060338
https://doi.org/10.1136/amiajnl-2011-000700
https://doi.org/10.1148/radiol.13120118
https://doi.org/10.1371/journal.pone.0081049
https://doi.org/10.1002/nbm.3132
https://doi.org/10.1007/s10637-017-0524-2
https://doi.org/10.1038/nmeth.2084
https://doi.org/10.1016/j.mri.2012.05.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	The Promise of Digital Biopsy for the Prediction of Tumor Molecular Features and Clinical Outcomes Associated With Immunotherapy
	Introduction
	Background for Radiomics and Pathomics
	Process Description and Methods
	Radiomics and Pathomics Applications
	Diagnosis (Early) and Classification
	Prognosis
	Outcome Prediction

	Future Challenges of Image-Derived Features
	Data Availability
	Author Contributions
	Funding
	References


