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R E S E A R C H  F E A T U R E

The Promise of 
High-Performance 
Reconfigurable Computing

I
n the past few years, high-performance computing 
vendors have introduced many systems contain-
ing both microprocessors and field-programmable 
gate arrays. Three such systems—the Cray XD1, 
the SRC-6, and the SGI Altix/RASC—are paral-

lel computers that resemble modern HPC architectures, 
with added FPGA chips. Two of these machines, the 
Cray XD1 and SGI Altix, also function as traditional 
HPCs without the reconfigurable chips. In addition, sev-
eral Beowulf cluster installations contain one or more 
FPGA cards per node, such as HPTi’s reconfigurable 
cluster from the Air Force Research Laboratory. 

In all of these architectures, the FPGAs serve as 
coprocessors to the microprocessors. The main applica-
tion executes on the microprocessors, while the FPGAs 
handle kernels that have a long execution time but lend 
themselves to hardware implementations. Such kernels 
are typically data-parallel overlapped computations that 
can be efficiently implemented as fine-grained architec-
tures, such as single-instruction, multiple-data (SIMD) 
engines, pipelines, or systolic arrays, to name a few. 

Figure 1 shows that a transfer of control can occur 
during execution of the application on the microproces-
sor, in which case the system invokes an appropriate 
architecture in a reconfigurable processor to execute 
the target operation. To do so, the reconfigurable pro-

cessor can configure or reconfigure the FPGA “on the 
fly,” while the system’s other processors perform com-
putations. This feature is usually referred to as runtime 
reconfiguration.1

From an application development perspective, devel-
opers can create the hardware kernel using hardware 
description languages such as VHDL and Verilog. Other 
systems allow the use of high-level languages such as 
SRC Computers’ Carte C and Carte Fortran, Impulse 
Accelerated Technologies’ Impulse C, Mitrion C from 
Mitrionics, and Celoxica’s Handel-C. There are also 
high-level graphical programming development tools 
such as Annapolis Micro Systems’ CoreFire, Starbridge 
Systems’ Viva, Xilinx System Generator, and DSPlogic’s 
Reconfigurable Computing Toolbox.

Readers should consult Computer’s March 2007 
special issue on high-performance reconfigurable com-
puting for a good overview of modern HPRC systems, 
application-development tools and frameworks, and 
applications.

HPRC ARCHITECTURAL TAXONOMY
Many early HPRC systems, such as the SRC-6E and 

the Starbridge Hypercomputer, can be seen as attached 
processors. These systems were designed around one 
node of microprocessors and another of FPGAs. The 
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two nodes were connected directly, without a scalable 
interconnection mechanism. 

Here we do not address these early attached processor 
systems but focus instead on scalable parallel systems such 
as the Cray XD1, SRC-6, and SGI Altix/RASC as well 
as reconfigurable Beowulf clusters. These architectures 
can generally be distinguished by whether each node in 
the system is homogeneous (uniform) or heterogeneous 
(nonuniform).2 A uniform node in this context contains 
one type of processing element—for example, only micro-
processors or FPGAs. Based on this distinction, modern 
HPRCs can be grouped into two major classes: uniform 
node nonuniform systems and nonuniform node uniform 
systems.

Uniform node nonuniform systems 
In UNNSs, shown in Figure 2a, nodes strictly have 

either FPGAs or microprocessors and are linked via an 
interconnection network to globally shared memory 
(GSM). Examples of such systems include the SRC-6 and 
the Altix/RASC. The major advantage of UNNSs is that 

vendors can vary the ratio of reconfigu-
rable nodes to microprocessor nodes to 
meet the different demands of custom-
ers’ applications. This is highly desirable 
from an economic perspective given the 
cost difference between FPGAs and 
microprocessors, and it is particularly 
suitable for special-purpose systems.

On the downside, having the reconfig-
urable node and the microprocessor node 
interact over the shared interconnection 
network makes them compete for over-
all bandwidth, and it also increases the 
latency between the nodes. In addition, 
code portability could become an issue 
even within the same type of machine 
if there is a change in the ratio between 
the microprocessor nodes and the FPGA 
nodes.

A representative example of the 
UNNS is the SRC-6/SRC-7, which con-
sists of one or more general-purpose 
microprocessor subsystems, one or 
more MAP reconfigurable subsystems, 
and global common memory (GCM) 
nodes of shared memory space. These 
subsystems are interconnected through 
a Hi-Bar switch communication layer. 
The microprocessor boards each include 
two 2.8-GHz Intel Xeon microproces-
sors and are connected to the Hi-Bar 
switch through a SNAP interface. The 
SNAP card plugs into the dual in-line 
memory module slot on the micropro-
cessor motherboard to provide higher 

data transfer rates between the boards than the less effi-
cient but common peripheral component interconnect 
(PCI) solution. The sustained transfer rate between a 
microprocessor board and the MAP processors is 1,400 
Mbytes per second. 

The MAP Series C processor consists of one control 
FPGA and two user FPGAs, all Xilinx Virtex II-6000-
4s. Additionally, each MAP unit contains six interleaved 
banks of onboard memory (OBM) with a total capacity 
of 24 Mbytes. The maximum aggregate data transfer rate 
among all FPGAs and OBM is 4,800 MBps. The user 
FPGAs are configured such that one is in master mode 
and the other is in slave mode. A bridge port directly con-
nects a MAP’s two FPGAs. Further, MAP processors can 
be connected via a chain port to create an FPGA array.

Nonuniform node uniform systems 
NNUSs, shown in Figure 2b, use only one type of node, 

thus the system level is uniform. However, each node 
contains both types of resources, and the FPGAs are con-
nected directly to the microprocessors inside the node. 
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Figure 1. In high-performance reconfigurable computers, field-programmable 

gate arrays serve as coprocessors to the microprocessors. During execution of the 

application on the microprocessor, the system invokes an appropriate architecture 

in the FPGA to execute the target operation. 
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Figure 2. Modern HPRCs can be grouped into two major classes: (a) uniform node 

nonuniform systems (UNNSs) and (b) nonuniform node uniform systems (NNUSs).
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Examples of such systems are the Cray XD1 and 
reconfigurable clusters. NNUSs’ main drawback 
is their fixed ratio of FPGAs to microprocessors, 
which might not suit the traditional vendor-buyer 
economic model. However, they cater in a straight-
forward way to the single-program, multiple-data 
(SPMD) model that most parallel programming 
paradigms embrace. Further, the latency between 
the microprocessor and its FPGA coprocessor can 
be low, and the bandwidth between them will be 
dedicated—this can mean high performance for 
many data-intensive applications.

A representative example of the NNUS is the 
Cray XD1, whose direct-connected processor 
(DCP) architecture harnesses multiple processors 
into a single, unified system. The base unit is a chas-
sis, with up to 12 chassis per cabinet. One chassis 
houses six compute cards, each of which contains 
two 2.4-GHz AMD Opteron microprocessors and 
one or two RapidArray Processors (RAPs) that 
handle communication. The two Opteron micro-
processors are connected via AMD’s HyperTrans-
port technology with a bandwidth of 3.2 GBps 
forming a two-way symmetric multiprocessing (SMP) 
cluster. Each XD1 chassis can be configured with six 
application-acceleration processors based on Xilinx 
Virtex-II Pro or Virtex-4 FPGAs. With two RAPs per 
board, a bandwidth of 8 GBps (4 GBps bidirectional) 
between boards is available via a RapidArray switch. 
Half of this switch’s 48 links connect to the RAPs on the 
compute boards within the chassis, while the others can 
connect to other chassis.

NODE-LEVEL ISSUES 
We have used the SRC-6E and SRC-6 systems to inves-

tigate node-level performance of HPRC architectures in 
processing remote sensing3 and molecular dynamics4 
applications. These studies included the use of optimi-
zation techniques such as pipelining and data transfer 
overlapping with computation to exploit the inherent 
temporal and spatial parallelism of such applications.

Remote sensing
Hyperspectral dimension reduction3 is representative 

of remote sensing applications with respect to node per-
formance. With FPGAs as coprocessors for the micropro-
cessor, substantial data in this data-intensive application 
must move back and forth between the microprocessor 
memory and the FPGA onboard memory. While the 
bandwidth for such transfers is on the order of GBps, 
the transfers are an added overhead and represent a chal-
lenge on the SRC-6 given the finite size of its OBM. 

This overhead can be avoided altogether through 
the sharing of memory banks, or the bandwidth can 
be increased to take advantage of FPGAs’ outstanding 
processing speed. Overlapping memory transfers—that 

is, streaming—between these two processing elements 
and the computations also can help. As Figure 3a shows, 
such transfers (I/O read and write operations) take only 
8 percent of the application execution time on a 1.8-
GHz Pentium 4 microprocessor, while the remaining 
92 percent is spent on computations.

As Figure 3b shows, the first-generation SRC-6E 
achieves a significant speedup over the microprocessor: 
12.08× without streaming and 13.21× with streaming. 
However, the computation time is now only 9 percent 
of the overall execution time. In the follow-up SRC-6, 
the bandwidth between the microprocessor and FPGA 
increases from 380 MBps (sustained) to 1.4 GBps 
(sustained). As Figure 3c shows, this system achieves 
a 24.06× speedup (without streaming) and a 32.04× 
speedup (with streaming) over the microprocessor. 

These results clearly demonstrate that bandwidth 
between the microprocessor and the FPGA must be 
increased to support more data-intensive applications—
an area the third-generation SRC-7 is likely to address. 
It should be noted, however, that in most HPRCs today, 
transfers between the microprocessor and FPGA are 
explicit, further complicating programming models. 
These two memory subsystems should either be fused 
into one or integrated into a hierarchy with the objective 
of reducing or eliminating this overhead and making the 
transfers transparent.

Molecular dynamics
Nanoscale molecular dynamics (NAMD)4 is repre-

sentative of floating-point applications with respect to 
node performance. A recent case study revealed that 
when porting such highly optimized code, a sensible 
approach is to use several design iterations, starting with 
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Figure 3. Execution profiles of hyperspectral dimension reduction. (a) 

Total execution time on 1.8-GHz Pentium 4 microprocessor. (b) Total 

execution time on SRC-6E. (c) Total execution time on SRC-6.
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the simplest, most straightforward implementation and 
gradually adding to it until achieving the best solution 
or running out of FPGA resources.5 

The study’s final dual-FPGA-based implementation 
was only three times faster than the original code execu-
tion. These results, however, are data dependent. For a 
larger cutoff radius, the original CPU code executes in 
more than 800 seconds while the FPGA execution time 
is unchanged, which would constitute a 260× speedup. 
The need to translate data between the C++ data storage 
mechanisms and the system-defined MAP/FPGA data 
storage architecture required considerable development 
effort. When creating code from scratch to run on an 
FPGA architecture, a programmer would implement 
the data storage mechanisms compatible between the 
CPU and FPGA from the beginning, 
but this is rarely the case for exist-
ing code and adds to the amount of 
work required to port the code. 

Although the “official bench-
mark” kernel employs double-pre-
cision floating-point arithmetic, the 
NAMD researchers applied algo-
rithmic optimization techniques 
and implemented their kernel using 
single-precision floating-point arith-
metic for atom locations and 32-bit 
integer arithmetic for forces. Consequently, the final 
design occupies most available slices (97 percent), yet 
utilization of on-chip memory banks (40 percent) and 
hardware multipliers (28 percent) is low. The fact that the 
slice limit was reached before any other resource limits 
suggests that it might be necessary to restructure code to 
better utilize other available resources. One possible solu-
tion is to overlap calculations with data transfer for the 
next data set to use more available on-chip memory.

Despite the relatively modest speedup achieved, the 
NAMD study clearly illustrates the potential of HPRC 
technology. FPGA code development traditionally begins 
with writing code that implements a textbook algorithm, 
with little or no optimization. When porting such unop-
timized code to an HPRC platform and taking care to 
optimize the FPGA design, it is easy to obtain a 10×-
100× speedup. In contrast, we began with decade-old 
code optimized to run on the CPU-based platform; such 
code successfully competes with its FPGA-ported coun-
terpart. It is important to keep in mind that the study’s 
100-MHz FPGA achieved a 3× application performance 
improvement over a 2.8-GHz CPU, and FPGAs are on a 
faster technology growth curve than CPUs.6

Lessons learned
Optimization techniques such as overlapping data 

transfers between the microprocessors and FPGAs with 
computations are useful for data-intensive, memory-
bound applications. However, such applications, includ-

ing hyperspectral dimension reduction and NAMD, can 
only achieve good performance when the underlying 
HPRC architecture supports features such as streaming 
or overlapping. Streaming can be enabled by architectures 
that are characterized by high I/O bandwidth and/or tight 
coupling of FPGAs with associated microprocessors. New 
promising examples of these are DCP architectures such 
as AMD’s Torrenza initiative for HyperTransport links 
as well as Intel’s QuickAssist technology supporting front 
side bus (FSB) systems. Large enough memory bandwidth 
is another equally important feature.

By memory bandwidth we mean that the memory sys-
tem has sufficient multiplicity as well as speed, width, or 
depth/size. In other words, because FPGAs can produce 
and consume data at a high degree of parallelism, the 

associated memory system should 
also have an equal degree of multi-
plicity. Simply put, a large multiple 
of memory banks with narrow word 
length of local FPGA memory can 
be more useful to memory-bound 
applications on HPRCs than larger 
and wider memories with fewer 
parallel banks. 

In addition, further node architec-
ture developments are clearly neces-
sary to support programming mod-

els with transparent transfers of data between FPGAs 
and microprocessors by integrating the microprocessor 
memory and the FPGA memory into the same hierar-
chy. Vendor-provided transparent transfers can enhance 
performance by guaranteeing the most efficient transfer 
modes for the underlying platform. This will let the user 
focus on algorithmic optimizations that can benefit the 
application under investigation rather than data trans-
fers or distribution. It also can improve productivity.

SYSTEM-LEVEL ISSUES 
We have used the SRC-6 and Cray XD1 systems to 

investigate system-level performance of HPRC archi-
tectures in bioinformatics7 and cryptanalysis8-10 appli-
cations. These applications provide a near-practical 
upper bound on HPRC potential performance as well 
as insight into system-level programmability and perfor-
mance issues apart from those associated with general 
high-performance computers. They use integer arithme-
tic, an area where HPRCs excel, are compute-intensive 
with lots of computations and not much data transfer 
between the FPGAs and microprocessors, and inherit 
both spatial and temporal parallelism.

We distributed the workload of both types of appli-
cations over all nodes using the message passing inter-
face (MPI). In the case of DNA and protein analysis, we 
broadcast a database of reference sequences and scatter 
sequence queries. The application identified matching 
scores locally and then gathered them together. Each 

Vendor-provided transparent 

transfers can enhance 

performance by guaranteeing 

the most efficient transfer 

modes for the underlying 

platform. 
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FPGA had as many hardware kernels for the basic 
operation as possible. In the case of cryptanalysis, we 
broadcast the ciphertext as well as the corresponding 
plaintext; upon finding the key, a worker node sent it 
back to the master to terminate the search.

Bioinformatics
Figure 4 compares DNA and protein sequencing on 

the SRC-6 and Cray XD1 with the open source FASTA 
program running on a 2.4-GHz Opteron microproces-
sor. We used giga cell updates per second (GCUPS) as the 
throughput metric as well as to compute speedup over 
the Opteron. With its FPGA chips running at 200 MHz, 
the XD1 had an advantage over the SRC-6, which could 
run its FPGAs at only 100 MHz. 

By packing eight kernels on each FPGA chip, the Cray 
XD1 achieved a 2,794× speedup using one chassis with 
six FPGAs. An FPGA with one engine produced a 91× 
speedup instead of the expected 98× speedup due to asso-
ciated overhead such as pipeline latency, resulting in 93 
percent efficiency. On the other hand, eight cores on the 
same chip collectively achieved a 695× speedup instead 
of the expected 788× speedup due to intranode com-
munication and I/O overhead. The achieved speedup for 
eight engines/chip was 2,794× instead of the estimated 
(ideal) of 4,728× due to MPI internode communications 
overhead, resulting in 59 percent efficiency. 

These results demonstrate that, with FPGAs’ remark-
able speed, overhead such as internode and intranode 

communication must be at much lower levels in HPRCs 
than what is accepted in conventional high-performance 
computers. However, given the speed of HPRCs, very 
large configurations might not be needed.

Cryptanalysis
The cryptanalysis results, shown in Tables 1 and 2, are 

even more encouraging, especially since this application 
has even lower overhead. With the Data Encryption Stan-
dard (DES) cipher, the SRC-6 achieved a 6,757× speedup 
over the microprocessor—again, a 2.4-GHz Opteron—
while the Cray XD1 achieved a 12,162× speedup. The 
application’s scalability is almost ideal.

In the case of the Cray XD1, straightforward MPI 
application resulted in using all nodes. However, it made 
sense for the node program to run on only one micro-
processor and its FPGA; the other microprocessors on 
each node were not used. On the SRC-6, MPI processes 
had to run on the microprocessors, and the system had 
to establish an association between each microprocessor 
and a MAP processor. Because the SRC-6 was limited to 
two network interface cards that could not be shared effi-
ciently, two MPI processes were sufficient. This meant 
the program could only run on one microprocessor and 
one MAP processor.

Lessons learned
Heterogeneity at the system level—namely, UNNS 

architectures—can be challenging to most accepted 

Expected Measured

Throughput
(GCUPS)

Speedup
Throughput

(GCUPS)
Speedup

FASTA
(ssearch34)

Opteron
2.4 GHz

DNA NA NA 0.065 1

Protein NA NA 0.130 1

SRC-6
100 MHz  (32x1)

XD1
200 MHz  (32x1)

DNA

1 Engine/chip 3.2 49.2×

4 Engines/chip 12.8 197×

8 Engines/chip 25.6 394×

Protein 3.2 24.6×

DNA

1 Engine/chip 6.4 98×

4 Engines/chip 25.6 394×

8 Engines/chip 51.2 788×

Protein 6.4 49×

3.19 � 12.2
1 � 4 chips 

49 � 188
1 � 4 chips 

12.4 � 42.7
1 � 4 chips 

191 � 656
1 � 4 chips 

24.1 � 74
1 � 4 chips 

371 � 1,138
1 � 4 chips 

3.12 � 11.7
1 � 4 chips 

24 � 90
1 � 4 chips 

5.9 � 32
1 � 6 chips 

91 � 492
1 � 6 chips 

23.3 � 120.7
1 � 6 chips 

359 � 1,857
1 � 6 chips 

45.2 � 181.6
1 � 6 chips 

695 � 2,794
1 � 6 chips 

5.9 � 34
1 � 6 chips 

45 � 262
1 � 6 chips 

Figure 4. DNA and protein sequencing on the SRC-6 and Cray XD1 versus the open source FASTA program. An FPGA with one engine 

produced a 91× speedup, while eight cores on the same chip collectively achieved a 695× speedup.
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SPMD programming paradigms. This occurs because 
current technology utilizes the reconfigurable processors 
as coprocessors to the main host processor through a 
single unshared communication channel. In particular, 
when the ratio of microprocessors, reconfigurable pro-
cessors, and their communication channels differs from 
unity, SPMD programs, which generally assume a unity 
ratio, might underutilize some of the microprocessors. 
On the other hand, heterogeneity at the node level does 
not present a problem for such programs. 

Heterogeneity at the system level is driven by nontech-
nological factors such as cost savings, which develop-
ers can achieve by tailoring systems to customers using 
homogeneous node architectures. However, this is at 
least partly offset by the increased difficulty in code por-
tability. NNUS architectures are more privileged in this 
respect than their UNNS counterparts.

HPRC PERFORMANCE IMPROVEMENT
To assess the potential of HPRC technology, we 

exploited the maximum hardware parallelism in the pre-
viously cited studies’ testbeds at both the chip and system 
levels. For each application, we filled the chip with as 
many hardware cores as possible that can run in parallel. 
We obtained additional system-level parallelism via par-
allel programming techniques, using the MPI to break 
the overall problem across all available nodes in order 
to decrease execution time. After estimating the size of 
a computer cluster capable of the same level of speedup, 

we derived the corresponding cost, power, and size sav-
ings that can be achieved by an SRC-6, Cray XD1, and 
SGI Altix 4700 with an RC100 RASC module compared 
with a conventional high-performance PC cluster. 

As Tables 3-5 show, the improvements are many orders 
of magnitude larger. In this analysis, a 100× speedup indi-
cates that the HPRC’s cost, power, and size are compared 
to those of a 100-processor Beowulf cluster. The estimates 
are very conservative, because when parallel efficiency is 
considered, a 100-processor cluster will likely produce 
a speedup much less than 100×—in other words, we 
assumed the competing cluster to be 100 percent efficient. 
We also assumed that one cluster node consumes about 
220 watts, and that 100 cluster nodes have a footprint of 
6 square feet. Based on actual prices, we estimated the 
cost ratio to be 1:200 in the case of the SRC-6 and 1:100 
in the case of the Cray XD1. The cost reduction is actually 
much larger than the tables indicate when considering the 
systems’ associated power and size. 

These dramatic improvements can be viewed as real-
istic upper bounds on the promise of HPRC technol-
ogy because the selected applications are all compute-
intensive integer applications, a class at which HPRCs 
clearly excel. However, with additional FPGA chip 
improvements in the areas of size and floating-point 
support, and with improved data-transfer bandwidths 
between FPGAs and their external local memory as well 
as between the microprocessor and the FPGA, a much 
wider range of applications can harness similar levels of 

Table 1. Secret-key cipher cryptanalysis on SRC-6.

 Hardware Software

 Number of  Throughput Number of Throughput 

Application search engines (keys/s) search engines (keys/s) Speedup

Data Encryption Standard (DES) 40 4,000 M 1 0.592 M 6,757× 

breaking

International Data Encryption  16 1,600 M 1 2.498 M 641× 

Algorithm (IDEA) breaking

RC5-32/12/16 breaking 4 400 M 1 0.351 M 1,140×
RC5-32/8/8 breaking 8 800 M 1 0.517 M  1,547×

Table 2. Secret-key cipher cryptanalysis on Cray XD1.

 Hardware Software

 Number of  Throughput Number of Throughput 

Application search engines (keys/s) search engines (keys/s) Speedup

Data Encryption Standard (DES) 36 7,200 M 1 0.592 M 12,162× 

breaking

International Data Encryption  30 6,000 M 1 2.498 M 2,402× 

Algorithm (IDEA) breaking

RC5-32/8/8 breaking 6 1,200 M 1 0.517 M  2,321×
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benefits. For example, in the hyperspectral dimension 
reduction study, data transfer improvements between 
the SRC-6E and SRC-6, while using the same FPGA 
chips, almost doubled the speedup.

O
ur research revealed that HPRCs can achieve up to 
four orders of magnitude improvement in perfor-
mance, up to three orders of magnitude reduction 

in power consumption, and two orders of magnitude 
savings in cost and size requirements compared with 
contemporary microprocessors when running compute-
intensive applications based on integer arithmetic. 

In general, these systems were less successful in pro-
cessing applications based on floating-point arithmetic, 
especially double precision, whose high usage of FPGA 
resources constitutes an upper bound on fine-grained 
parallelism for application cores. However, they can 
achieve as high performance on embarrassingly parallel 
floating-point applications, subject to area constraints, 
as integer arithmetic applications. FPGA chips will likely 
become larger and have more integrated cores that can 
better support floating-point operations. 

Our future work will include a comprehensive study 
of software programming tools and languages and their 
impact on HPRC productivity, as well as multitasking/
multiuser support on HPRCs. Because porting applica-
tions from one machine to another, or even to the same 
machine after a hardware upgrade, is nontrivial, hard-
ware architectural virtualization and runtime systems 
support for application portability is another good 
research candidate. ■
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Table 4. Performance improvement of Cray XD1  

compared with a Beowulf cluster.

 Savings

Application Speedup Cost Power Size

DNA and protein  2,794× 28× 148× 29× 

sequencing

DES breaking  12,162× 122× 608× 127×
IDEA breaking 2,402× 24× 120× 25×
RC5 breaking 2,321× 23× 116× 24×

Table 5. Performance improvement of SGI Altix 4700 with 

RC100 RASC module compared with a Beowulf cluster.

 Savings

Application Speedup Cost Power Size

DNA and protein  8,723× 22× 779× 253× 

sequencing

DES breaking  28,514× 96× 3,439× 1,116×
IDEA breaking 961× 2× 86× 28×
RC5 breaking 6,838× 17× 610× 198×
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31 May 2008
UC Berkeley

•  General Session: 9:00am
Zellerbach Hall

•  Technical Session: 11:00am
Wheeler Hall

Tribute to Honor Jim Gray

The IEEE Computer Society, ACM, and UC
Berkeley will join the family and colleagues
of Jim Gray in hosting a tribute to the 
legendary computer science pioneer, 
missing at sea since 28 Jan. 2007.

http://www.eecs.berkeley.edu/ipro/jimgraytribute

Registration is required for technical sessions
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