
0018-9162/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society February 2008 69

R E S E A R C H F E A T U R E

The Promise of
High-Performance
Reconfigurable Computing

I
n the past few years, high-performance computing
vendors have introduced many systems contain-
ing both microprocessors and field-programmable
gate arrays. Three such systems—the Cray XD1,
the SRC-6, and the SGI Altix/RASC—are paral-

lel computers that resemble modern HPC architectures,
with added FPGA chips. Two of these machines, the
Cray XD1 and SGI Altix, also function as traditional
HPCs without the reconfigurable chips. In addition, sev-
eral Beowulf cluster installations contain one or more
FPGA cards per node, such as HPTi’s reconfigurable
cluster from the Air Force Research Laboratory.

In all of these architectures, the FPGAs serve as
coprocessors to the microprocessors. The main applica-
tion executes on the microprocessors, while the FPGAs
handle kernels that have a long execution time but lend
themselves to hardware implementations. Such kernels
are typically data-parallel overlapped computations that
can be efficiently implemented as fine-grained architec-
tures, such as single-instruction, multiple-data (SIMD)
engines, pipelines, or systolic arrays, to name a few.

Figure 1 shows that a transfer of control can occur
during execution of the application on the microproces-
sor, in which case the system invokes an appropriate
architecture in a reconfigurable processor to execute
the target operation. To do so, the reconfigurable pro-

cessor can configure or reconfigure the FPGA “on the
fly,” while the system’s other processors perform com-
putations. This feature is usually referred to as runtime
reconfiguration.1

From an application development perspective, devel-
opers can create the hardware kernel using hardware
description languages such as VHDL and Verilog. Other
systems allow the use of high-level languages such as
SRC Computers’ Carte C and Carte Fortran, Impulse
Accelerated Technologies’ Impulse C, Mitrion C from
Mitrionics, and Celoxica’s Handel-C. There are also
high-level graphical programming development tools
such as Annapolis Micro Systems’ CoreFire, Starbridge
Systems’ Viva, Xilinx System Generator, and DSPlogic’s
Reconfigurable Computing Toolbox.

Readers should consult Computer’s March 2007
special issue on high-performance reconfigurable com-
puting for a good overview of modern HPRC systems,
application-development tools and frameworks, and
applications.

HPRC ARCHITECTURAL TAXONOMY
Many early HPRC systems, such as the SRC-6E and

the Starbridge Hypercomputer, can be seen as attached
processors. These systems were designed around one
node of microprocessors and another of FPGAs. The

Several high-performance computers now use field-programmable gate arrays as reconfigurable

coprocessors. The authors describe the two major contemporary HPRC architectures and explore

the pros and cons of each using representative applications from remote sensing, molecular

dynamics, bioinformatics, and cryptanalysis.

Tarek El-Ghazawi, Esam El-Araby, and Miaoqing Huang, George Washington University

Kris Gaj, George Mason University

Volodymyr Kindratenko, University of Illinois at Urbana-Champaign

Duncan Buell, University of South Carolina

70 Computer

two nodes were connected directly, without a scalable
interconnection mechanism.

Here we do not address these early attached processor
systems but focus instead on scalable parallel systems such
as the Cray XD1, SRC-6, and SGI Altix/RASC as well
as reconfigurable Beowulf clusters. These architectures
can generally be distinguished by whether each node in
the system is homogeneous (uniform) or heterogeneous
(nonuniform).2 A uniform node in this context contains
one type of processing element—for example, only micro-
processors or FPGAs. Based on this distinction, modern
HPRCs can be grouped into two major classes: uniform
node nonuniform systems and nonuniform node uniform
systems.

Uniform node nonuniform systems
In UNNSs, shown in Figure 2a, nodes strictly have

either FPGAs or microprocessors and are linked via an
interconnection network to globally shared memory
(GSM). Examples of such systems include the SRC-6 and
the Altix/RASC. The major advantage of UNNSs is that

vendors can vary the ratio of reconfigu-
rable nodes to microprocessor nodes to
meet the different demands of custom-
ers’ applications. This is highly desirable
from an economic perspective given the
cost difference between FPGAs and
microprocessors, and it is particularly
suitable for special-purpose systems.

On the downside, having the reconfig-
urable node and the microprocessor node
interact over the shared interconnection
network makes them compete for over-
all bandwidth, and it also increases the
latency between the nodes. In addition,
code portability could become an issue
even within the same type of machine
if there is a change in the ratio between
the microprocessor nodes and the FPGA
nodes.

A representative example of the
UNNS is the SRC-6/SRC-7, which con-
sists of one or more general-purpose
microprocessor subsystems, one or
more MAP reconfigurable subsystems,
and global common memory (GCM)
nodes of shared memory space. These
subsystems are interconnected through
a Hi-Bar switch communication layer.
The microprocessor boards each include
two 2.8-GHz Intel Xeon microproces-
sors and are connected to the Hi-Bar
switch through a SNAP interface. The
SNAP card plugs into the dual in-line
memory module slot on the micropro-
cessor motherboard to provide higher

data transfer rates between the boards than the less effi-
cient but common peripheral component interconnect
(PCI) solution. The sustained transfer rate between a
microprocessor board and the MAP processors is 1,400
Mbytes per second.

The MAP Series C processor consists of one control
FPGA and two user FPGAs, all Xilinx Virtex II-6000-
4s. Additionally, each MAP unit contains six interleaved
banks of onboard memory (OBM) with a total capacity
of 24 Mbytes. The maximum aggregate data transfer rate
among all FPGAs and OBM is 4,800 MBps. The user
FPGAs are configured such that one is in master mode
and the other is in slave mode. A bridge port directly con-
nects a MAP’s two FPGAs. Further, MAP processors can
be connected via a chain port to create an FPGA array.

Nonuniform node uniform systems
NNUSs, shown in Figure 2b, use only one type of node,

thus the system level is uniform. However, each node
contains both types of resources, and the FPGAs are con-
nected directly to the microprocessors inside the node.

PC

µP

Pipelines, systolic arrays, SIMD, ...

RP (FPGA)

Figure 1. In high-performance reconfigurable computers, field-programmable

gate arrays serve as coprocessors to the microprocessors. During execution of the

application on the microprocessor, the system invokes an appropriate architecture

in the FPGA to execute the target operation.

IN and/or GSM

…

IN and/or GSM

…
…

µP node

…

µP node

RPM

…

RP node

…

RP node

µP1

µP1

µPN µPN RPM RPMµP1

µPN

RP1 RP1

(a)

(b)

RP1

Figure 2. Modern HPRCs can be grouped into two major classes: (a) uniform node

nonuniform systems (UNNSs) and (b) nonuniform node uniform systems (NNUSs).

 February 2008 71

Examples of such systems are the Cray XD1 and
reconfigurable clusters. NNUSs’ main drawback
is their fixed ratio of FPGAs to microprocessors,
which might not suit the traditional vendor-buyer
economic model. However, they cater in a straight-
forward way to the single-program, multiple-data
(SPMD) model that most parallel programming
paradigms embrace. Further, the latency between
the microprocessor and its FPGA coprocessor can
be low, and the bandwidth between them will be
dedicated—this can mean high performance for
many data-intensive applications.

A representative example of the NNUS is the
Cray XD1, whose direct-connected processor
(DCP) architecture harnesses multiple processors
into a single, unified system. The base unit is a chas-
sis, with up to 12 chassis per cabinet. One chassis
houses six compute cards, each of which contains
two 2.4-GHz AMD Opteron microprocessors and
one or two RapidArray Processors (RAPs) that
handle communication. The two Opteron micro-
processors are connected via AMD’s HyperTrans-
port technology with a bandwidth of 3.2 GBps
forming a two-way symmetric multiprocessing (SMP)
cluster. Each XD1 chassis can be configured with six
application-acceleration processors based on Xilinx
Virtex-II Pro or Virtex-4 FPGAs. With two RAPs per
board, a bandwidth of 8 GBps (4 GBps bidirectional)
between boards is available via a RapidArray switch.
Half of this switch’s 48 links connect to the RAPs on the
compute boards within the chassis, while the others can
connect to other chassis.

NODE-LEVEL ISSUES
We have used the SRC-6E and SRC-6 systems to inves-

tigate node-level performance of HPRC architectures in
processing remote sensing3 and molecular dynamics4
applications. These studies included the use of optimi-
zation techniques such as pipelining and data transfer
overlapping with computation to exploit the inherent
temporal and spatial parallelism of such applications.

Remote sensing
Hyperspectral dimension reduction3 is representative

of remote sensing applications with respect to node per-
formance. With FPGAs as coprocessors for the micropro-
cessor, substantial data in this data-intensive application
must move back and forth between the microprocessor
memory and the FPGA onboard memory. While the
bandwidth for such transfers is on the order of GBps,
the transfers are an added overhead and represent a chal-
lenge on the SRC-6 given the finite size of its OBM.

This overhead can be avoided altogether through
the sharing of memory banks, or the bandwidth can
be increased to take advantage of FPGAs’ outstanding
processing speed. Overlapping memory transfers—that

is, streaming—between these two processing elements
and the computations also can help. As Figure 3a shows,
such transfers (I/O read and write operations) take only
8 percent of the application execution time on a 1.8-
GHz Pentium 4 microprocessor, while the remaining
92 percent is spent on computations.

As Figure 3b shows, the first-generation SRC-6E
achieves a significant speedup over the microprocessor:
12.08× without streaming and 13.21× with streaming.
However, the computation time is now only 9 percent
of the overall execution time. In the follow-up SRC-6,
the bandwidth between the microprocessor and FPGA
increases from 380 MBps (sustained) to 1.4 GBps
(sustained). As Figure 3c shows, this system achieves
a 24.06× speedup (without streaming) and a 32.04×
speedup (with streaming) over the microprocessor.

These results clearly demonstrate that bandwidth
between the microprocessor and the FPGA must be
increased to support more data-intensive applications—
an area the third-generation SRC-7 is likely to address.
It should be noted, however, that in most HPRCs today,
transfers between the microprocessor and FPGA are
explicit, further complicating programming models.
These two memory subsystems should either be fused
into one or integrated into a hierarchy with the objective
of reducing or eliminating this overhead and making the
transfers transparent.

Molecular dynamics
Nanoscale molecular dynamics (NAMD)4 is repre-

sentative of floating-point applications with respect to
node performance. A recent case study revealed that
when porting such highly optimized code, a sensible
approach is to use several design iterations, starting with

Total execution time is 20.21 sec
(1.8-GHz Pentium 4)

92%

3% 5%

I/O-read
Comp
I/O-write

Total execution time is 0.84 sec
(SRC-6)

Speedup without streaming: 24.06x
Speedup with streaming: 32.04x

Total execution time is 1.67 sec
(SRC-6E, P3)

Speedup without streaming: 12.08x
Speedup with streaming: 13.21x

33%

9%

58%

50%
25%

25%

(a)

(b)

(c)

Figure 3. Execution profiles of hyperspectral dimension reduction. (a)

Total execution time on 1.8-GHz Pentium 4 microprocessor. (b) Total

execution time on SRC-6E. (c) Total execution time on SRC-6.

72 Computer

the simplest, most straightforward implementation and
gradually adding to it until achieving the best solution
or running out of FPGA resources.5

The study’s final dual-FPGA-based implementation
was only three times faster than the original code execu-
tion. These results, however, are data dependent. For a
larger cutoff radius, the original CPU code executes in
more than 800 seconds while the FPGA execution time
is unchanged, which would constitute a 260× speedup.
The need to translate data between the C++ data storage
mechanisms and the system-defined MAP/FPGA data
storage architecture required considerable development
effort. When creating code from scratch to run on an
FPGA architecture, a programmer would implement
the data storage mechanisms compatible between the
CPU and FPGA from the beginning,
but this is rarely the case for exist-
ing code and adds to the amount of
work required to port the code.

Although the “official bench-
mark” kernel employs double-pre-
cision floating-point arithmetic, the
NAMD researchers applied algo-
rithmic optimization techniques
and implemented their kernel using
single-precision floating-point arith-
metic for atom locations and 32-bit
integer arithmetic for forces. Consequently, the final
design occupies most available slices (97 percent), yet
utilization of on-chip memory banks (40 percent) and
hardware multipliers (28 percent) is low. The fact that the
slice limit was reached before any other resource limits
suggests that it might be necessary to restructure code to
better utilize other available resources. One possible solu-
tion is to overlap calculations with data transfer for the
next data set to use more available on-chip memory.

Despite the relatively modest speedup achieved, the
NAMD study clearly illustrates the potential of HPRC
technology. FPGA code development traditionally begins
with writing code that implements a textbook algorithm,
with little or no optimization. When porting such unop-
timized code to an HPRC platform and taking care to
optimize the FPGA design, it is easy to obtain a 10×-
100× speedup. In contrast, we began with decade-old
code optimized to run on the CPU-based platform; such
code successfully competes with its FPGA-ported coun-
terpart. It is important to keep in mind that the study’s
100-MHz FPGA achieved a 3× application performance
improvement over a 2.8-GHz CPU, and FPGAs are on a
faster technology growth curve than CPUs.6

Lessons learned
Optimization techniques such as overlapping data

transfers between the microprocessors and FPGAs with
computations are useful for data-intensive, memory-
bound applications. However, such applications, includ-

ing hyperspectral dimension reduction and NAMD, can
only achieve good performance when the underlying
HPRC architecture supports features such as streaming
or overlapping. Streaming can be enabled by architectures
that are characterized by high I/O bandwidth and/or tight
coupling of FPGAs with associated microprocessors. New
promising examples of these are DCP architectures such
as AMD’s Torrenza initiative for HyperTransport links
as well as Intel’s QuickAssist technology supporting front
side bus (FSB) systems. Large enough memory bandwidth
is another equally important feature.

By memory bandwidth we mean that the memory sys-
tem has sufficient multiplicity as well as speed, width, or
depth/size. In other words, because FPGAs can produce
and consume data at a high degree of parallelism, the

associated memory system should
also have an equal degree of multi-
plicity. Simply put, a large multiple
of memory banks with narrow word
length of local FPGA memory can
be more useful to memory-bound
applications on HPRCs than larger
and wider memories with fewer
parallel banks.

In addition, further node architec-
ture developments are clearly neces-
sary to support programming mod-

els with transparent transfers of data between FPGAs
and microprocessors by integrating the microprocessor
memory and the FPGA memory into the same hierar-
chy. Vendor-provided transparent transfers can enhance
performance by guaranteeing the most efficient transfer
modes for the underlying platform. This will let the user
focus on algorithmic optimizations that can benefit the
application under investigation rather than data trans-
fers or distribution. It also can improve productivity.

SYSTEM-LEVEL ISSUES
We have used the SRC-6 and Cray XD1 systems to

investigate system-level performance of HPRC archi-
tectures in bioinformatics7 and cryptanalysis8-10 appli-
cations. These applications provide a near-practical
upper bound on HPRC potential performance as well
as insight into system-level programmability and perfor-
mance issues apart from those associated with general
high-performance computers. They use integer arithme-
tic, an area where HPRCs excel, are compute-intensive
with lots of computations and not much data transfer
between the FPGAs and microprocessors, and inherit
both spatial and temporal parallelism.

We distributed the workload of both types of appli-
cations over all nodes using the message passing inter-
face (MPI). In the case of DNA and protein analysis, we
broadcast a database of reference sequences and scatter
sequence queries. The application identified matching
scores locally and then gathered them together. Each

Vendor-provided transparent

transfers can enhance

performance by guaranteeing

the most efficient transfer

modes for the underlying

platform.

 February 2008 73

FPGA had as many hardware kernels for the basic
operation as possible. In the case of cryptanalysis, we
broadcast the ciphertext as well as the corresponding
plaintext; upon finding the key, a worker node sent it
back to the master to terminate the search.

Bioinformatics
Figure 4 compares DNA and protein sequencing on

the SRC-6 and Cray XD1 with the open source FASTA
program running on a 2.4-GHz Opteron microproces-
sor. We used giga cell updates per second (GCUPS) as the
throughput metric as well as to compute speedup over
the Opteron. With its FPGA chips running at 200 MHz,
the XD1 had an advantage over the SRC-6, which could
run its FPGAs at only 100 MHz.

By packing eight kernels on each FPGA chip, the Cray
XD1 achieved a 2,794× speedup using one chassis with
six FPGAs. An FPGA with one engine produced a 91×
speedup instead of the expected 98× speedup due to asso-
ciated overhead such as pipeline latency, resulting in 93
percent efficiency. On the other hand, eight cores on the
same chip collectively achieved a 695× speedup instead
of the expected 788× speedup due to intranode com-
munication and I/O overhead. The achieved speedup for
eight engines/chip was 2,794× instead of the estimated
(ideal) of 4,728× due to MPI internode communications
overhead, resulting in 59 percent efficiency.

These results demonstrate that, with FPGAs’ remark-
able speed, overhead such as internode and intranode

communication must be at much lower levels in HPRCs
than what is accepted in conventional high-performance
computers. However, given the speed of HPRCs, very
large configurations might not be needed.

Cryptanalysis
The cryptanalysis results, shown in Tables 1 and 2, are

even more encouraging, especially since this application
has even lower overhead. With the Data Encryption Stan-
dard (DES) cipher, the SRC-6 achieved a 6,757× speedup
over the microprocessor—again, a 2.4-GHz Opteron—
while the Cray XD1 achieved a 12,162× speedup. The
application’s scalability is almost ideal.

In the case of the Cray XD1, straightforward MPI
application resulted in using all nodes. However, it made
sense for the node program to run on only one micro-
processor and its FPGA; the other microprocessors on
each node were not used. On the SRC-6, MPI processes
had to run on the microprocessors, and the system had
to establish an association between each microprocessor
and a MAP processor. Because the SRC-6 was limited to
two network interface cards that could not be shared effi-
ciently, two MPI processes were sufficient. This meant
the program could only run on one microprocessor and
one MAP processor.

Lessons learned
Heterogeneity at the system level—namely, UNNS

architectures—can be challenging to most accepted

Expected Measured

Throughput
(GCUPS)

Speedup
Throughput

(GCUPS)
Speedup

FASTA
(ssearch34)

Opteron
2.4 GHz

DNA NA NA 0.065 1

Protein NA NA 0.130 1

SRC-6
100 MHz (32x1)

XD1
200 MHz (32x1)

DNA

1 Engine/chip 3.2 49.2×

4 Engines/chip 12.8 197×

8 Engines/chip 25.6 394×

Protein 3.2 24.6×

DNA

1 Engine/chip 6.4 98×

4 Engines/chip 25.6 394×

8 Engines/chip 51.2 788×

Protein 6.4 49×

3.19 � 12.2
1 � 4 chips

49 � 188
1 � 4 chips

12.4 � 42.7
1 � 4 chips

191 � 656
1 � 4 chips

24.1 � 74
1 � 4 chips

371 � 1,138
1 � 4 chips

3.12 � 11.7
1 � 4 chips

24 � 90
1 � 4 chips

5.9 � 32
1 � 6 chips

91 � 492
1 � 6 chips

23.3 � 120.7
1 � 6 chips

359 � 1,857
1 � 6 chips

45.2 � 181.6
1 � 6 chips

695 � 2,794
1 � 6 chips

5.9 � 34
1 � 6 chips

45 � 262
1 � 6 chips

Figure 4. DNA and protein sequencing on the SRC-6 and Cray XD1 versus the open source FASTA program. An FPGA with one engine

produced a 91× speedup, while eight cores on the same chip collectively achieved a 695× speedup.

74 Computer

SPMD programming paradigms. This occurs because
current technology utilizes the reconfigurable processors
as coprocessors to the main host processor through a
single unshared communication channel. In particular,
when the ratio of microprocessors, reconfigurable pro-
cessors, and their communication channels differs from
unity, SPMD programs, which generally assume a unity
ratio, might underutilize some of the microprocessors.
On the other hand, heterogeneity at the node level does
not present a problem for such programs.

Heterogeneity at the system level is driven by nontech-
nological factors such as cost savings, which develop-
ers can achieve by tailoring systems to customers using
homogeneous node architectures. However, this is at
least partly offset by the increased difficulty in code por-
tability. NNUS architectures are more privileged in this
respect than their UNNS counterparts.

HPRC PERFORMANCE IMPROVEMENT
To assess the potential of HPRC technology, we

exploited the maximum hardware parallelism in the pre-
viously cited studies’ testbeds at both the chip and system
levels. For each application, we filled the chip with as
many hardware cores as possible that can run in parallel.
We obtained additional system-level parallelism via par-
allel programming techniques, using the MPI to break
the overall problem across all available nodes in order
to decrease execution time. After estimating the size of
a computer cluster capable of the same level of speedup,

we derived the corresponding cost, power, and size sav-
ings that can be achieved by an SRC-6, Cray XD1, and
SGI Altix 4700 with an RC100 RASC module compared
with a conventional high-performance PC cluster.

As Tables 3-5 show, the improvements are many orders
of magnitude larger. In this analysis, a 100× speedup indi-
cates that the HPRC’s cost, power, and size are compared
to those of a 100-processor Beowulf cluster. The estimates
are very conservative, because when parallel efficiency is
considered, a 100-processor cluster will likely produce
a speedup much less than 100×—in other words, we
assumed the competing cluster to be 100 percent efficient.
We also assumed that one cluster node consumes about
220 watts, and that 100 cluster nodes have a footprint of
6 square feet. Based on actual prices, we estimated the
cost ratio to be 1:200 in the case of the SRC-6 and 1:100
in the case of the Cray XD1. The cost reduction is actually
much larger than the tables indicate when considering the
systems’ associated power and size.

These dramatic improvements can be viewed as real-
istic upper bounds on the promise of HPRC technol-
ogy because the selected applications are all compute-
intensive integer applications, a class at which HPRCs
clearly excel. However, with additional FPGA chip
improvements in the areas of size and floating-point
support, and with improved data-transfer bandwidths
between FPGAs and their external local memory as well
as between the microprocessor and the FPGA, a much
wider range of applications can harness similar levels of

Table 1. Secret-key cipher cryptanalysis on SRC-6.

 Hardware Software

 Number of Throughput Number of Throughput

Application search engines (keys/s) search engines (keys/s) Speedup

Data Encryption Standard (DES) 40 4,000 M 1 0.592 M 6,757×

breaking

International Data Encryption 16 1,600 M 1 2.498 M 641×

Algorithm (IDEA) breaking

RC5-32/12/16 breaking 4 400 M 1 0.351 M 1,140×
RC5-32/8/8 breaking 8 800 M 1 0.517 M 1,547×

Table 2. Secret-key cipher cryptanalysis on Cray XD1.

 Hardware Software

 Number of Throughput Number of Throughput

Application search engines (keys/s) search engines (keys/s) Speedup

Data Encryption Standard (DES) 36 7,200 M 1 0.592 M 12,162×

breaking

International Data Encryption 30 6,000 M 1 2.498 M 2,402×

Algorithm (IDEA) breaking

RC5-32/8/8 breaking 6 1,200 M 1 0.517 M 2,321×

 February 2008 75

benefits. For example, in the hyperspectral dimension
reduction study, data transfer improvements between
the SRC-6E and SRC-6, while using the same FPGA
chips, almost doubled the speedup.

O
ur research revealed that HPRCs can achieve up to
four orders of magnitude improvement in perfor-
mance, up to three orders of magnitude reduction

in power consumption, and two orders of magnitude
savings in cost and size requirements compared with
contemporary microprocessors when running compute-
intensive applications based on integer arithmetic.

In general, these systems were less successful in pro-
cessing applications based on floating-point arithmetic,
especially double precision, whose high usage of FPGA
resources constitutes an upper bound on fine-grained
parallelism for application cores. However, they can
achieve as high performance on embarrassingly parallel
floating-point applications, subject to area constraints,
as integer arithmetic applications. FPGA chips will likely
become larger and have more integrated cores that can
better support floating-point operations.

Our future work will include a comprehensive study
of software programming tools and languages and their
impact on HPRC productivity, as well as multitasking/
multiuser support on HPRCs. Because porting applica-
tions from one machine to another, or even to the same
machine after a hardware upgrade, is nontrivial, hard-
ware architectural virtualization and runtime systems
support for application portability is another good
research candidate. ■

References

 1. M. Taher and T. El-Ghazawi, “A Segmentation Model for

Partial Run-Time Reconfiguration,” Proc. IEEE Int’l Conf.

Field Programmable Logic and Applications, IEEE Press,

2006, pp. 1-4.

 2. T. El-Ghazawi, “Experience with Early Reconfigurable High-

Performance Computers,” 2006; http://hpcl.seas.gwu.edu/

talks/Tarek_DATE2006.ppt.

 3. S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic

Reduction of Hyperspectral Imagery Using Wavelet Spectral

Analysis,” IEEE Trans. Geoscience and Remote Sensing, vol.

41, no. 4, 2003, pp. 863-871.

 4. J.C. Phillips et al., “Scalable Molecular Dynamics with

NAMD,” J. Computational Chemistry, vol. 26, no. 16, 2005,

pp. 1781-1802.

 5. V. Kindratenko and D. Pointer, “A Case Study in Porting

a Production Scientific Supercomputing Application to a

Reconfigurable Computer,” Proc. 14th Ann. IEEE Symp.

Field-Programmable Custom Computing Machines, IEEE

CS Press, 2006, pp. 13-22.

 6. K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-Point

Performance,” Proc. 12th ACM/SIGDA Int’l Symp. Field Pro-

grammable Gate Arrays, ACM Press, 2004, pp. 171-180.

 7. D.W. Mount, Bioinformatics: Sequence and Genome Analy-

sis, 2nd ed., Cold Spring Harbor Laboratory Press, 2004.

 8. O.D. Fidanci et al., “Implementation Trade-Offs of Triple

DES in the SRC-6E Reconfigurable Computing Environ-

ment,” Proc. 5th Ann. Int’l Conf. Military and Aerospace

Programmable Logic Devices, 2002; www.gwu.edu/~hpc/

rcm/publications/MAPLD2002.pdf.

 9. R.L. Rivest, “The RC5 Encryption Algorithm,” revised ver-

sion, MIT Laboratory for Computer Science, Cambridge,

Mass., 20 Mar. 1997; http://people.csail.mit.edu/rivest/

Rivest-rc5rev.pdf.

 10. A. Michalski, K. Gaj, and T. El-Ghazawi, “An Implementa-

tion Comparison of an IDEA Encryption Cryptosystem on

Two General-Purpose Reconfigurable Computers,” Proc.

13th Ann. Conf. Field-Programmable Logic and Applica-

tions, LNCS 2778, Springer, 2003, pp. 204-219.

Table 3. Performance improvement of SRC-6 compared

with a Beowulf cluster.

 Savings

Application Speedup Cost Power Size

DNA and protein 1,138× 6× 313× 34×

sequencing

DES breaking 6,757× 34× 856× 203×
IDEA breaking 641× 3× 176× 19×
RC5 breaking 1,140× 6× 313× 34×

Table 4. Performance improvement of Cray XD1

compared with a Beowulf cluster.

 Savings

Application Speedup Cost Power Size

DNA and protein 2,794× 28× 148× 29×

sequencing

DES breaking 12,162× 122× 608× 127×
IDEA breaking 2,402× 24× 120× 25×
RC5 breaking 2,321× 23× 116× 24×

Table 5. Performance improvement of SGI Altix 4700 with

RC100 RASC module compared with a Beowulf cluster.

 Savings

Application Speedup Cost Power Size

DNA and protein 8,723× 22× 779× 253×

sequencing

DES breaking 28,514× 96× 3,439× 1,116×
IDEA breaking 961× 2× 86× 28×
RC5 breaking 6,838× 17× 610× 198×

Tarek El-Ghazawi is a professor in the Department of

Computer and Electrical Engineering, a founder of the

High-Performance Computing Lab (HPCL) at George

Washington University, and cofounder of the NSF Cen-

ter for High-Performance Reconfigurable Computing

(CHREC). His research interests include high-perfor-

mance computing, parallel computer architectures, high-

performance I/O, reconfigurable computing, experi-

mental performance evaluations, computer vision, and

remote sensing. El-Ghazawi received a PhD in electrical

and computer engineering from New Mexico State Uni-

versity. He is a senior member of the IEEE and a member

of the ACM. Contact him at tarek@gwu.edu.

Esam El-Araby is a doctoral student in the Department

of Computer and Electrical Engineering and a research

assistant in the HPCL at George Washington University.

His research interests include reconfigurable computing,

hybrid architectures, evolvable hardware, performance

evaluation, digital signal/image processing, and hyper-

spectral remote sensing. El-Araby received an MSc in

computer engineering from the George Washington Uni-

versity. Contact him at esam@gwu.edu.

Miaoqing Huang is a doctoral student in the Department of

Computer and Electrical Engineering and a research assis-

tant in the HPCL at George Washington University. His

research interests include reconfigurable computing, high-

performance computing architectures, cryptography, image

processing, and computer arithmetic. Huang received a BS

in electronics and information systems from Fudan Univer-

sity, Shanghai. Contact him at mqhuang@gwu.edu.

Kris Gaj is an associate professor in the Department of

Electrical and Computer Engineering and leads the Cryp-

tographic Engineering Lab at George Mason University.

His research interests include reconfigurable computing,

cryptography, computer arithmetic, hardware description

languages, and software-hardware codesign. Gaj received

a PhD in electrical and computer engineering from War-

saw University of Technology, Warsaw. He is a member of

the International Association for Cryptologic Research.

Contact him at kgaj@gmu.edu.

Volodymyr Kindratenko is a senior research scientist in

the Innovative Systems Laboratory at the National Center

for Supercomputing Applications, University of Illinois at

Urbana-Champaign. His research interests include high-

performance, reconfigurable, and scientific computing.

Kindratenko received a DSc in analytical chemistry from

the University of Antwerp, Antwerp, Belgium. He is a

senior member of the IEEE and the ACM. Contact him

at kindr@ncsa.uiuc.edu.

Duncan Buell is a professor and chair of the Department

of Computer Science and Engineering at the University of

South Carolina. His research interests include high-per-

formance computing applications, parallel algorithms and

architectures, computer security, computational number

theory, information retrieval, and algorithm analysis.

Buell received a PhD in mathematics from the University

of Illinois at Chicago. He is a senior member of the IEEE

Computer Society and a member of the ACM and the

American Mathematical Society. Contact him at buell@

engr.sc.edu.

31 May 2008
UC Berkeley

• General Session: 9:00am
Zellerbach Hall

• Technical Session: 11:00am
Wheeler Hall

Tribute to Honor Jim Gray

The IEEE Computer Society, ACM, and UC
Berkeley will join the family and colleagues
of Jim Gray in hosting a tribute to the
legendary computer science pioneer,
missing at sea since 28 Jan. 2007.

http://www.eecs.berkeley.edu/ipro/jimgraytribute

Registration is required for technical sessions

76 Computer

