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The promise of mRNA vaccines: a biotech and industrial

perspective
Nicholas A. C. Jackson1*, Kent E. Kester 2, Danilo Casimiro2, Sanjay Gurunathan2 and Frank DeRosa3

mRNA technologies have the potential to transform areas of medicine, including the prophylaxis of infectious diseases. The

advantages for vaccines range from the acceleration of immunogen discovery to rapid response and multiple disease target

manufacturing. A greater understanding of quality attributes that dictate translation efficiency, as well as a comprehensive

appreciation of the importance of mRNA delivery, are influencing a new era of investment in development activities. The

application of translational sciences and growing early-phase clinical experience continue to inform candidate vaccine selection.

Here we review the state of the art for the prevention of infectious diseases by using mRNA and pertinent topics to the

biotechnology and pharmaceutical industries.
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INTRODUCTION

Continued growth in the vaccine business is expected based on

expanded coverage, improved existing products, and new

vaccines. Among other factors, manufacturing must change to

support growth. Capital-rich investment in fixed facilities that

commit to a given form of production for a given target poses

significant costs and challenges to vaccine manufacturers if

there is a major change in strategy. Long lead times in

manufacturing, and potentially hundreds of complex process

steps, all complicate capabilities. Vaccine companies, like the

biotech industry, desire novel production methods out of a

need for efficiency that reduce the cost of goods, shorten time

to licensure, and respond quicker to disease outbreaks. mRNA-

based vaccines hold the promise to revolutionize the field by

addressing current manufacturing challenges and offering

novel vaccine compositions.
Assuming that mRNA vaccines will be proven clinically

efficacious and safe, one of the central advantages hinges on

rapidity of manufacture. Within weeks, clinical batches can be

generated after the availability of a sequence encoding the

immunogen. The process is cell-free and scalable. Of paramount

advantage, a facility dedicated to mRNA production should be

able to rapidly manufacture vaccines against multiple targets,

with minimal adaptation to processes and formulation. In

addition, new targets requiring multi-antigen approaches will

benefit from the speed in which mRNA can render multiple

constructs.
Beyond manufacturing advantages, mRNA technology is

impacting vaccine discovery and research. Expression may be

possible for complex proteins that are difficult or impossible to

generate with current expression systems.1 mRNA constructs can

also be used to express potent monoclonal antibodies for novel

immunoprophylaxis.2 Here we review the state of the art in mRNA

constructs and delivery technologies for the prevention of

infectious diseases, and a review of pertinent topics to the

biotechnology and pharmaceutical industries.

“STATE-OF-THE-ART” mRNA CONSTRUCTS AND DELIVERY
TECHNOLOGIES

The core principle behind mRNA as a technology for vaccination is
to deliver the transcript of interest, encoding one or more
immunogen(s), into the host cell cytoplasm where expression
generates translated protein(s) to be within the membrane,
secreted or intracellularly located. Two categories of mRNA
constructs are being actively evaluated: non-replicating mRNA
(NRM) and self-amplifying mRNA (SAM) constructs (Fig. 1). Both
have in common a cap structure, 5′ and 3′ untranslated regions
(UTRs), an open-reading frame (ORF), and a 3′ poly(A) tail.3 SAM
differs with the inclusion of genetic replication machinery derived
from positive-stranded mRNA viruses, most commonly from
alphaviruses such as Sindbis and Semliki-Forest viruses.4,5 Gen-
erally, the ORF encoding viral structural proteins is replaced by the
selected transcript of interest, and the viral RNA-dependent RNA
polymerase is retained to direct cytoplasmic amplification of the
replicon construct. The potential merits of NRM versus SAM will be
addressed later.
The manufacturing process begins with the generation of a

plasmid DNA (pDNA) containing a DNA-dependent RNA poly-
merase promoter, such as T7,6 and the corresponding sequence
for the mRNA construct. The pDNA is linearized to serve as a
template for the DNA-dependent RNA polymerase to transcribe
the mRNA, and subsequently degraded by a DNase process step.
The addition of the 5′ cap and the 3′ poly(A) tail can be achieved
during the in vitro transcription step7,8 or enzymatically after
transcription.9 Enzymatic addition of the cap can be accomplished
by using guanylyl transferase and 2′-O-methyltransferase to yield
a Cap 0 (N7MeGpppN) or Cap 1 (N7MeGpppN2′-OMe) structure,
respectively, while the poly-A tail can be achieved through
enzymatic addition via poly-A polymerase.
Purification is a crucial next step, which can be achieved with

the application of high-pressure liquid chromatography (HPLC).10

The resultant drug substance is then formulated into drug product
and released based on sterility, identity, purity, and potency
testing. These processes allow Good Manufacturing Practise
(GMPs) facilities to switch to a new vaccine within a very short
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period of time, given that the reaction materials and vessels are
the same.
The design of a mRNA construct for vaccination, once released

into the cytoplasm of a cell, is to efficiently utilize the translational
machinery of the host cell to generate a sufficient quantity of the
encoded immunogen that is presented appropriately to the
immune system. Across the field, several critical quality attributes
have been, and continue to be, the focus of efforts to maximize

gene expression (Fig. 2). First, the purity of the mRNA is a crucial
determinant of yields, and it is known that the DNA-dependent
RNA polymerases yield smaller oligoribonucleotide impurities as a
result of abortive initiation events,11 as well as double-stranded
(ds) RNA generated by self-complementary 3′ extension,12 which
can result in type I interferon and inflammatory cytokine
production through pattern recognition receptors. Karikó et al.13

demonstrated that removal of contaminants in mRNA
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Fig. 1 Two categories of mRNA constructs are being actively evaluated. Non-replicating mRNA (NRM) constructs encode the coding
sequence (CDS), and are flanked by 5′ and 3′ untranslated regions (UTRs), a 5′-cap structure and a 3′-poly-(A) tail. The self-amplifying mRNA
(SAM) construct encodes additional replicase components able to direct intracellular mRNA amplification. (1) NRM and SAM are formulated in
this illustration in lipid nanoparticles (LNPs) that encapsulate the mRNA constructs to protect them from degradation and promote cellular
uptake. (2) Cellular uptake of the mRNA with its delivery system typically exploits membrane-derived endocytic pathways. (3) Endosomal
escape allows release of the mRNA into the cytosol. (4) Cytosol-located NRM constructs are immediately translated by ribosomes to produce
the protein of interest, which undergoes subsequent post-translational modification. (5) SAM constructs can also be immediately translated by
ribosomes to produce the replicase machinery necessary for self-amplification of the mRNA. (6) Self-amplified mRNA constructs are translated
by ribosomes to produce the protein of interest, which undergoes subsequent post-translational modification. (7) The expressed proteins of
interest are generated as secreted, trans-membrane, or intracellular protein. (8) The innate and adaptive immune responses detect the protein
of interest.
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Fig. 2 Critical quality attributes (CQAs) have been identified that dictate the performance of the mRNA construct to express the gene of
interest efficiently. Five principal CQAs include 5′ capping efficiency and structure; UTR structure, length, and regulatory elements;
modification of coding sequence; poly-A-tail properties; mRNA purity.
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preparations reduced innate immune responses and resulted in
significantly higher levels of reporter protein expression in vitro.
Second, the 5′ and 3′ UTR regions are important for maximizing

gene expression. The length of the 3′ UTR,14 5′ UTR structures, and
regulatory elements in both UTRs15 all impact efficiency. Third, the
5′ 7-methylguanosine (m7G) cap of the mRNA molecule, linked via
a triphosphate bridge to the first transcribed nucleotide, is
essential for efficient translation, and blocks 5′–3′ exonuclease-
mediated degradation. The specific cap structure plays a critical
role in both protein production and immunogenicity, with
incomplete capping (5′ triphosphate) and Cap 0 structures shown
to stimulate RIG-1.16–18 In addition, 2-O′-unmethylated capped
RNA can be sequestered by cellular IFN-induced proteins with
tetratricopeptide repeats (IFIT1) that prevent the initiation of
translation,19 or detected by the cytoplasmic RNA sensor MDA5.20

Manufacturers of mRNA vaccines pay careful attention to the
choice of enzyme and reaction conditions, in order to catalyze the
highest percentage of cap formation. Fourth, the poly (A) tail and
its properties such as length, are crucial for translation and
protection of the mRNA molecule.21,22

Last, codon optimization and modification of nucleotides have
contributed to translation efficiency. For example, optimization of
guanine and cytosine (GC) content can have a significant impact,23

and has been well established with DNA vaccines. The innate
immune activation to mRNA can also influence its utility as a
delivery system. The use of modified nucleosides, such as
pseudouridine or N-1-methylpseudouridine to remove intracellu-
lar signaling triggers for protein kinase R (PKR) activation, resulted
in enhanced antigen expression and adaptive immune
responses.24–26 It has been demonstrated that successful protein
production, minimal undesired inflammatory responses, and
systemic adaptive immune responses could be achieved pre-
clinically by using unmodified mRNA27 through a combination of
optimizing the coding sequence and removal of any unwanted
inflammatory impurities.28,29 Ultimately, comparative immuno-
genicity between these approaches require studies that control all
potential factors, including the delivery system. Human studies
“head-to-head” comparing modified and unmodified nucleoside
mRNA constructs would confirm clinically relevant differences, if
any. Similarly, controlled comparisons of the aforementioned NRM
and SAM are needed to determine any distinctions. Until then, all
the approaches—modified, unmodified, NRM, SAM, and combina-
tions thereof—appear feasible, and are supported by preclinical
data, although unmodified nucleoside constructs may be desir-
able for manufacturing efficiency and transcriptional fidelity.30,31

In addition to optimizing an mRNA construct, and of
quintessential importance, is the delivery of the mRNA vaccine
from the bolus at the injection site into the cytoplasm of cells for
the initiation of translation. As mRNA is a transient molecule by
nature that is susceptible to degradation primarily through
nuclease activity, efficient protection is required.32,33 This has
been an intense area of research in the field, for which lipid
nanoparticle (LNP) formulations are currently emerging as a
leading category.
LNP delivery systems serve multiple purposes in their applica-

tions. In addition to the aforementioned sustained stability
imparted through protection from nuclease degradation, they
also facilitate organ specificity, efficient cellular uptake, and
provide endosomal escape properties that can enhance the
successful delivery of the mRNA cargo to the cytoplasmic site of
action.34–36 There have been numerous examples of successful
delivery of mRNA by using LNPs for therapeutic37–40 as well as
vaccine applications.41–44

Much of the focus of the continued development of such LNP
carrier systems involves optimization of the ionizable lipid
component, with particular focus on the acid dissociation constant
(pKa) and fusogenic properties (both of the ionizable component
as well as helper lipid[s]), which have been demonstrated to play

key roles in efficient cytoplasmic entry and release of cargo.45–48

Next-generation LNPs may include specific targeting motifs for
homing and uptake by professional antigen-presenting cells, such
as dendritic cells (DC). Ligands for DC receptors could be
embedded on the surface of the LNPs to target these cells and
promote antigen presentation to the immune system.

BIOTECH AND INDUSTRIAL PERSPECTIVES

Perspective #1: Improved understanding of the molecular
mechanisms of action will guide further improvements in mRNA
constructs and formulations

Continual optimization and improvements toward developing the
next generation of mRNA-based drugs are undoubtedly occurring.
Sequence optimization within UTRs and coding regions of mRNA
providing greater stability and/or potency can result in higher
production of the desired antigen, potentially leading to a more
favorable therapeutic index.49,50

Additional sites within the mRNA construct are available for
optimization as well. Novel cap structures focused on base or
sugar modifications have resulted in greater translational proper-
ties through increased ribosomal interaction or enhanced
stability.51 Improved stability of mRNA can also be achieved
through various modifications of the triphosphate bridge within
the cap structure.52–54

Optimization of the carrier system can provide significant
benefit as well. Substantial attention has been placed on the
development of novel ionizable lipids and formulations, with
improvements in cellular uptake, endosomal release, potency, and
biodegradability.55–57 The combinations of all of these areas for
optimization are near limitless, and success within any of these
parameters can allow for beneficial effects and can provide novel
approaches for vaccines to successfully prevent disease.

Perspective #2: Translational sciences will inform preclinical and
clinical studies to promote rapid downselection of constructs and
formulations

A key aspect of vaccine development efforts is the goal of making
early informed decisions, based on objective data that favor or
disfavor a particular candidate. It is underappreciated in the field
that multi-antigen vaccine approaches are a significant challenge
in the decision-making process. For example, the LNP:mRNA mass
ratio can be around 10:1 – 30:1. Thus, multi-antigen candidates
necessitate a significant amount of LNP for a given dose. LNPs are
known to have inherent adjuvant properties.58 Therefore, safety
and tolerability may limit multi-antigen approaches, and here
translational sciences are crucial for development.
There are a variety of new translational medicine tools that can

be leveraged in evaluating immunity, which include in vitro
human immune system models and the related organoids to
improve the predictability of clinical results.59 Systems biology
techniques can help in the understanding of fine differences
between various NRM and SAM vaccine sequences, as well as
serving as useful tools to frame sequence optimizations during
iterative development schemes.60 Further, the use of functional
assessments, like human challenge models,61 where the immu-
nologic profiles of the participants and the specific details of the
challenge strain(s) are well characterized—an approach mostly
used to date in the evaluation of more traditional vaccines—
provides an important and powerful method to obtain early
decision-making data regarding the performance of an mRNA
vaccine candidate. These tools are likely quintessential for
development because current data have demonstrated a poor
translation between preclinical and clinical studies with an mRNA
pandemic influenza vaccine. In ferrets (ID, 2 × 50/100 mcg),
nonhuman primates (ID/IM, 2 × 400 mcg), and humans (IM, 2 ×
100mcg), an H10N8-derived HA mRNA vaccine formulated with
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LNP elicited HAI titers in the range of 2000–8000, 10,000, and 70,
respectively.62,63 Whether this lack of translation is a function of
mRNA not having optimized quality attributes, suboptimal
delivery or an inherent limitation of preclinical or in vitro
translational models is not known. Understanding this is going
to be key for further development.

Perspective #3: Challenges ahead for clinical trials

While specific regulatory guidelines are lacking for the clinical
development of mRNA-based vaccines, the following general
principles, as outlined in overarching guidance documents, are
generally sufficient to help facilitate the entry of candidate
vaccines into early-phase clinical trials. At the time of writing, 12
clinical trials for mRNA-based infectious disease vaccines have
been completed, or are at various stages of progression, building
experience (see Table 1). All studies assess viral targets, many have
been reviewed elsewhere recently.64

The current focus from a clinical perspective is to optimize the
benefit (immunogenicity and efficacy) while reducing the risk
(safety) profile of a candidate mRNA vaccine by optimizing the
quality attributes that dictate expression and/or augmenting
delivery. It is clear that immune activation can be both
advantageous and potentially detrimental, and has to be titrated
accordingly. Thus, early-phase clinical trials need to be designed in
a way to appropriately capture the inflammatory component
intrinsic to all mRNA vaccines, given that several intracellular
innate immune response sensors are activated by RNA.65 Elements
include measuring administration site reactions such as pain,
tenderness-associated systemic reactions such as fever and
malaise, and routine biochemical laboratory parameters (e.g.,
serum electrolytes, liver function test, and CBC). These parameters,
when followed closely, can be designed to develop enrollment
pause rules in the event that severe tolerability issues are
observed in a clinical trial.66 Detailed characterization of the
immune response fully leveraging modern techniques such as
transcriptomics and systems biology, in addition to traditional
methods of immune monitoring, needs to be implemented.
Several agency guidelines developed for the study of novel
adjuvants in human subjects provide sufficient guidance that can
be applied to mRNA candidate vaccines on how to monitor safety
in early-phase clinical studies.67

The data from early-phase clinical studies, particularly around
local and self-limiting systemic reactogenicity, have been
mixed.68,69 In fact, reporting of human trials has generally
concluded that new formulations are required to optimize the
profile. However, these early claims need further confirmation, and
in many cases, complete datasets are still awaited. As mentioned
above, multi-antigen approaches will only complicate the issue of
establishing acceptable tolerability.
Humoral elicited responses have been generally underwhelm-

ing, compared with the established potency in the field of protein
or live attenuated vaccines.63,69 This indicates that much formula-
tion work is still needed to achieve sufficient immunological
potency of different vaccine candidates, while maintaining
acceptable tolerability—but we can be encouraged by incre-
mental progress to date. Furthermore, very limited data exist on
repeat administration of mRNA vaccines in humans. These data
are important as most vaccines generally require a booster dose.
As the field accrues more data from early-phase human studies,

the focus of mRNA vaccines will shift from documenting local and
systemic tolerability to capturing potential long-term safety.
Unfortunately detecting safety signals for uncommon adverse
events requires thousands of subjects. As with novel adjuvants, an
adequate safety database to assure safety for candidate mRNA
vaccines is likely to be in the tens of thousands range. Given that
different manufacturers are pursuing different strategies to
optimize their candidate vaccines, conclusions from one candidate Ta
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may not be generalizable. Therefore, it is likely that each candidate
vaccine will have to independently prove its risk/benefit profile
that is favorable.

SUMMARY

The potential advantages of mRNA as a vaccine range from the
discovery of immunogens to rapid response manufacturing.
Currently, the field is pursuing two approaches: non-replicating
and self-replicating constructs. A number of quality attributes, that
dictate stability and efficiency of expression, continue to be an
intense area of development. It is widely recognized that the
delivery of the mRNA into the cytoplasm is equally important to
successfully elicit a robust and durable immunity. As a result,
much progress has been achieved with considerable focus on
novel ionizable lipid formulations and the next generation of
delivery systems.
The nature of mRNA technology allows rapid refinement with

almost limitless combinations of derivatives in the pursuit of
optimization. This necessitates the application of translational
sciences to accelerate selection of the optimal construct and
formulation for subsequent development. Clinical experience in
the last 2 years is building upon the plethora of preclinical data
generated. These trials have informed our understanding of the
need to find the optimal balance between immune and
inflammatory activation to establish an acceptable risk/benefit
profile for a given vaccine. Whether clinical results from different
sponsors will be generalizable for mRNA technologies and
formulations remains to be determined.
Overall, with significant advances in mRNA biology, delivery,

and manufacturing, the biotechnology and vaccine industries are
poised for further investment in the development of novel
products.

Received: 9 October 2019; Accepted: 20 December 2019;
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