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Abstract

Complex diseases are caused by a combination of genetic and environmental factors, creating a difficult
challenge for diagnosis and defining subtypes. This review article describes how distinct disease subtypes can
be identified through integration and analysis of clinical and multi-omics data. A broad shift toward molecular
subtyping of disease using genetic and omics data has yielded successful results in cancer and other complex
diseases. To determine molecular subtypes, patients are first classified by applying clustering methods to
different types of omics data, then these results are integrated with clinical data to characterize distinct disease
subtypes. An example of this molecular-data-first approach is in research on Autism Spectrum Disorder (ASD),
a spectrum of social communication disorders marked by tremendous etiological and phenotypic heterogeneity.
In the case of ASD, omics data such as exome sequences and gene and protein expression data are combined
with clinical data such as psychometric testing and imaging to enable subtype identification. Novel ASD
subtypes have been proposed, such as CHD8, using this molecular subtyping approach. Broader use of mo-
lecular subtyping in complex disease research is impeded by data heterogeneity, diversity of standards, and
ineffective analysis tools. The future of molecular subtyping for ASD and other complex diseases calls for an
integrated resource to identify disease mechanisms, classify new patients, and inform effective treatment
options. This in turn will empower and accelerate precision medicine and personalized healthcare.

Introduction

Complex diseases are caused by a combination of ge-
netic, biological, and environmental factors. The deter-

mination of disease etiology necessitates the alignment of
clinical phenotypes with underlying biomolecular mecha-
nisms. Consequently, researchers have traditionally first
identified distinct clinical phenotypes and then identified and
compared biomolecular factors that may explain differences
in disease manifestation. Biomolecular comparisons across
clinical phenotype have been successful in a variety of
complex diseases, such as cancer (Kehoe et al., 1999; Ring-
man et al., 2014; Wong et al., 2015). However, the rapidly
expanding availability of genetic and biomolecular expres-

sion data from new high-throughput technologies is begin-
ning to shift this traditional phenotype-first approach to a
genetics or molecular data-first approach. A molecular data-
first approach identifies recurrent genetic variants or ex-
pression patterns in order to reduce heterogeneity prior to
phenotypic profiling.

Molecular subtyping through gene sequencing, gene ex-
pression, and other epigenetic and omics data has been used
with great success in cancer to classify subtypes for more
effective treatment, understanding prognosis, and identifying
disease mechanisms. For example, major molecular subtypes
in breast cancer showed marked difference in their clinical
features, treatment response, and outcomes (Bertucci et al.,
2012; Dvorkin-Gheva and Hassell, 2014; Engstrøm et al.,
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2013; Schnitt, 2010). Molecular subtypes of lung cancer
determined by genetic aberrations were associated with
specific tests to assign the subtype and potentially relevant
therapies (West et al., 2012; Yauch et al., 2005). Three sub-
types of pancreatic cancer identified by transcriptomics
analysis showed differences in clinical outcomes and thera-
peutic response (Collisson et al., 2011). The molecular sub-
types of colorectal cancer showed marked differences in
survival times (Marisa et al., 2013; Phipps et al., 2015).
Molecular subtypes of classical Hodgkin’s disease correlated
with response to therapy and clinical outcome (Devilard
et al., 2002). Three subtypes of gastric cancer established
from gene expression data correlated with differences in
patients’ responses to therapy (Tan et al., 2011). Molecular
subtyping of this type is being adapted for other complex
diseases such as ASD.

This approach has recently been applied to the study of
neurodevelopmental disorders, such as Autism Spectrum
Disorders (ASD). ASD is characterized by deficits in social
communication and the presence of repetitive, restricted
patterns of behavior and interests (American Psychiatric
Association, 2013). This neurodevelopmental disorder af-
fects 1 in 68 children, impacting more males than females
(Baio, 2012). While individuals with ASD share a core set
of features, their genetic etiology and phenotypic presen-
tation are heterogeneous and complex (Betancur, 2011;
O’Roak et al., 2012a; Sanders et al., 2012; Stessman et al.,
2014). Recently, ASD was redefined in the Diagnostic and
Statistical Manual for Mental Disorders, version 5 (DSM-5),
to encompass previously distinct classifications of Autistic
Disorder, Asperger’s Syndrome, Childhood Disintegra-
tive Disorder, and Pervasive Developmental Disorder-Not
Otherwise Specified (American Psychiatric Association,
2013). In addition to concerns about reliability and validity of
the previous diagnostic criteria (Lord et al., 2012; Sharma
et al., 2012) and a lack of behaviorally-defined subtype
specific treatments, growing genetic advances failed to find
causal differences between these behaviorally-defined sub-
types, suggesting instead that a general continuum of autism
spectrum disorders with varying levels of severity was more
appropriate (King et al., 2014).

These recent developments are prompting efforts to define
the etiology of ASD more clearly by shifting research from
the predominantly phenotypic classification of the disorder
to a genetics-first, and ultimately a molecular data-first
approach. With this broader initiative toward identifying
disease subtypes using molecular data, known as molecular
subtyping, distinct subtypes of ASD are being explored
through genetic testing and omics data (genomics, tran-
scriptomics, proteomics). The use of molecular subtyping
and the identification of genes and other omics molecules that
affect common functional networks shows promise as a
means to reduce heterogeneity and explore similarities and
differences between interacting genotypes (Iossifov et al.,
2014; Jeste and Geschwind, 2014; O’Roak et al., 2012a;
Stessman et al., 2014).

The clinical relevance of molecular subtyping relies on
its ability to connect underlying disease mechanisms with
clinical and phenotypic data. This is exemplified in ASD
research: following the identification of recurrent gene dis-
ruptions associated with ASD, neurological and behavioral
mapping is taking place through imaging and psychometric

testing, identifying distinct phenotypic features that accom-
pany a targeted genotype (Bernier et al., 2014; Frazier et al.,
2014; Vandeweyer et al., 2014; van Bon et al., 2015).

The function and pathogenicity of many of the genetic
mutations found in individuals with ASD are still unknown.
Continued gene discovery requires large sample collections,
substantial data infrastructure, multidisciplinary collabora-
tion across research sites, and the ability to work iteratively
with families to characterize the clinical presentation ade-
quately (Stessman et al., 2014). This publication is a review
of the current state of genetics, omics, imaging, psychomet-
ric, and clinical data methods as they relate to ASD subtyp-
ing. In addition, a broadly applicable approach to statistical
methodology is presented, along with ASD-specific exam-
ples of the generation of biologically and clinically sig-
nificant molecular subtypes. Lastly, this review discusses
the need for the integration of genotypic and phenotypic data
to inform personalized outcomes and treatment options for
patients and their families.

Data in Molecular Subtyping

Molecular data

A broad array of genetics and omics data is being used to
carry out molecular subtyping of complex diseases. Mole-
cular subtyping is most often based upon the identification of
common genetic mutations and copy number variants, as well
as the patterns of gene and protein expression. Regulators of
gene and protein expression and activity such as miRNA,
DNA methylation, and protein phosphorylation are also in-
creasingly being used for molecular characterization of
complex diseases.

Candidate gene discovery and the identification of puta-
tive causal copy number variations mark the first steps in a
genetics-first approach to subtyping ASD. Exome sequencing
projects are well underway and have already identified de
novo likely gene disrupting mutations (LGD) associated with
ASD (Iossifov et al., 2014; O’Roak et al., 2012a, 2012b;
Sanders et al., 2012). Using whole exome sequencing, Ios-
sifov and colleagues (2014) determined that de novo muta-
tions, including copy number variants, account for 30% of
simplex autism cases (one affected individual in a family). Of
the LGDs identified thus far in individuals with ASD, many
belong to shared networks, indicating common biological
pathways are at play (Hormozdiari et al., 2015; Iossifov et al.,
2014; O’Roak et al., 2012a, 2012b). The use of targeted se-
quencing, such as molecular-inversion probes (MIP), provi-
des an efficient, cost-effective way to resequence recurrent
genetic events in larger populations (O’Roak et al., 2012a;
Turner et al., 2009).

However, individual sample collections often lack the size
to reach statistical significance; large samples of affected and
control subjects are needed. This has prompted multi-site col-
laborations, such as the Autism Sequencing Consortium, which
involves researchers who have agreed to share data in order to
determine genetic markers more quickly (Buxbaum et al., 2012;
Stessman et al., 2014). Patient–clinician–researcher networks,
such as that of the Simons VIP Consortium (Simons VIP
Consortium, 2012), have been developed for recurrent copy
number variations and single gene disrupting mutations asso-
ciated with developmental disorders (e.g., 16p11.2) in order to
determine clinical profiles through comprehensive behavioral

198 HIGDON ET AL.



phenotyping and neuroimaging. It is the hope that similar re-
search networks can be developed for specific candidate genes
as pathogenicity is confirmed.

The utility of identified ASD-associated gene disrupting
mutations remains incomplete without further understanding
of how these gene disruptions impact transcription, protein
expression, and biological pathway modulators. Under-
standing the molecular mechanisms involved in ASD is the
subject of transcriptomic and proteomic research, both of
which have indicated abnormal neuronal development and
inflammation (Broek et al., 2014). Transcriptomic studies,
which use cDNA microarray and RNA sequencing, have
identified dysregulated hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors in individuals with ASD, which have
known functions in synaptic plasticity (Isaac et al., 2007; Purcell
et al., 2001; van Spronsen and Hoogenraad, 2010). Disruptions
to the gamma-aminobutyric acid (GABA) receptor system,
which is involved in signal transduction and cellular adhesion,
have also been found in ASD samples (Broek et al., 2014;
Voineagu, 2012; Voineagu et al., 2011).

Proteomic studies have investigated protein expression in
serum, plasma, and postmortem brains of individuals with
ASD using techniques such as mass spectrometry and im-
munoassay (Broek et al., 2014; Schwarz et al., 2011; Taurines
et al., 2010). Studies have found increased levels of proteins
involved in synapse formation, such as brain-derived neu-
rotrophic factor (BDNF) and glial fibrillary acidic protein
(GFAP) in ASD samples (Chauhan et al., 2011; Correia et al.,
2010; Fatemi et al., 2002; Riikonen, 2003; Schwarz et al.,
2011; Thanseem et al., 2012). Proteomic analyses have also
found altered levels of immune system-regulating proteins,
such as apolipoprotein in the cerebrospinal fluid and blood of
individuals with ASD compared to controls (Corbett et al.,
2007; Molloy et al., 2006; Woods et al., 2012; Zimmerman
et al., 2005). Proteins show great promise as useful bio-
markers for ASD, but large-scale replications are needed.
Importantly, despite group differences between individuals
with ASD and typically developing counterparts, significant
variability is observed within the ASD group underscoring
the relevance of using this variance to define subpopulations
within ASD.

Clinical data

Molecular subtyping via genetics and omics data gains
clinical significance and utility when associated with phe-
notypic and clinical features. Genetic sequencing provides a
‘‘sieve’’ for the vast heterogeneity of complex diseases such
as ASD, sorting individuals at the molecular level prior to
phenotypic profiling, thus reducing heterogeneity and sim-
plifying the phenotypic subtyping process (Stessman et al.,
2014). While secondary in a genetics-first approach, com-
prehensive standardized psychometric testing gathers critical
information on cognitive, adaptive, behavioral, motor, and
neuropsychological levels of functioning. Once recurrent
genetic loci have been identified through genetic testing,
individuals with ASD and an identified genetic event should
be evaluated clinically in order to determine whether phe-
notypic characteristics suggest a unique ASD subtype (e.g.,
CHD8) (Bernier et al., 2014). Previous associations have
been found between genes associated with ASD and intel-
lectual disability (Kaufman et al., 2010), and already specific

gene disrupting mutations identified through molecular sub-
typing show co-morbidity with significant cognitive deficits
(e.g., ADNP, PTEN) (Frazier et al, 2014; Helsmoortel et al,
2014; Vandeweyer et al, 2014).

Clinical phenotyping should also include imaging and
physical examination, with an emphasis on head circum-
ference and physical dysmorphology, as these physical
measurements are easily, consistently, and reliably col-
lected in clinical settings (Stessman et al., 2014). These
latter observations are often part of patient medical records,
underscoring the utility of integration of electronic medical
records with omics data to parse the heterogeneity of neu-
rodevelopmental disorders such as ASD. Individuals with
recurrent disrupted genes belonging to a beta catenin/Wnt
signaling-associated protein–protein interaction network
show variations in head circumference by subset; macro-
cephaly is found in individuals with PTEN and CHD8 while
microcephaly is predominant in individuals with DYRK1A
mutations (Bernier et al., 2014; Frazier et al., 2014; O’Roak
et al., 2012a).

While the extent of known genotype–phenotype connec-
tions are still limited to small samples sizes, strong associa-
tions between identified ASD-associated genes and distinct
cognitive and physical phenotypes indicate successful first
steps in molecular subtyping. Longitudinal data is needed to
better understand the genetic contributions to phenotypic
presentation over the course of development. Understanding
long-term impact of gene and protein disruption due to dis-
ruptive mutations is essential to identifying additional med-
ical and psychiatric risks and informing treatment plans
across the lifespan.

Imaging data

Over the past decade, imaging studies of children and
adults with ASD continue to investigate whether there is
common convergence within the structural and/or functional
brain, despite the known heterogeneity of ASD (Anagnostou
and Taylor, 2011). A variety of technologies are used,
including functional and structural magnetic resonance im-
aging (fMRI; sMRI), electroencephalography (EEG), and
functional near-infrared spectroscopy (fNIRS). The primary
goal of ASD imaging research has been to identify bio-
markers that are strong diagnostic indicators (Ruggeri et al.,
2014). Several studies have implicated possible robust bio-
markers, including hypoactive social and language brain
areas (Carter et al., 2012; Pelphrey et al., 2011; Williams
et al., 2013), and atypical EEG rhythms and components
(Bernier et al., 2007; Maxwell et al., 2013; Oberman et al.,
2013; Webb et al., 2012). However, many imaging studies
report mixed findings, such as conflicting reports of long-
range brain connections that suggest under-connectivity ( Just
et al., 2004) versus reports of over-connectivity (McFadden
and Minshew, 2013).

To address these potential inconsistencies, recent work is
focusing on how molecular and genetic subtypes may impact
patterns of brain activation. In one study using sMRI (Qur-
eshi et al., 2014), a mirror phenotype of brain volume was
observed for individuals with ASD and a copy number var-
iation within the 16p11.2 locus, such that compared to con-
trols, deletion carriers exhibited increases and duplication
carriers exhibited decreases in brain size. Other work has
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associated autism risk genes to structural and functional brain
connectivity (e.g., CNTNAP2) (Dennis et al., 2011; Rudie
et al., 2012). These studies highlight the importance of
specifying ASD subtypes when investigating neural bio-
markers of ASD, considering the differences that are likely
derived from the etiology of subgroups of ASD.

In addition to characterizing atypical neural patterns of
individuals with ASD, other recent imaging initiatives seek
to detect neuroendophenotypes in individuals with a typical
clinical phenotype but also a genetic vulnerability for de-
veloping ASD (e.g., unaffected relatives). Neuroendophe-
notypes are heritable indicators that persist in unaffected
individuals, regardless of whether the pathology developed
(Gottesman and Gould, 2003). In other words, this approach
provides an opportunity to observe the neurobiological
mechanisms by which high-risk individuals (e.g., siblings of
children with autism) overcome genetic susceptibility (Con-
stantino et al., 2010). For instance, unaffected children who
have a sibling with ASD exhibit increased activation within
key social perception brain regions, such as the superior
temporal sulcus and ventromedial prefrontal cortex, above and
beyond typically developing children (Kaiser et al., 2010).
Similarly, other studies have targeted other social brain re-
gions, such as the amygdala, as being functionally and struc-
turally distinct for unaffected siblings (Dalton et al., 2007;
Segovia et al., 2014; Spencer et al., 2011). These compensa-
tory mechanisms may highlight areas of strength for unaf-
fected relatives that can be used for targeted treatment of
children with ASD and may better elucidate molecular eti-
ologies in tandem with state-like biomarkers of ASD.

Data resources

An increasing array of publically available genetics and
omics data is helping to greatly expand the use of molecu-
lar subtyping in complex diseases. This is most readily ap-
parent in cancer where the Cancer Genome Atlas (TCGA)
(McLendon et al., 2008; TCGA Network, 2011, 2012)

maintains a repository of omics data including sequencing,
gene and protein expression, SNPs, miRNA, and methylation
for thousands of tumors across dozens of types of cancer.
GEO and Array Express maintain huge repositories of gene
expression data (Barrett et al., 2010; Kolesnikov et al., 2015)
and other repositories are now storing raw proteomics data
(Farrah et al., 2014; Vizcaı́no et al., 2013). Other resources
such as the Multi-Omics Profiling Expression Database
(MOPED) are also processing these data to present more
accessible and standardized views of gene and protein ex-
pression data (Higdon et al., 2014; Kolker et al., 2012;
Montague et al., 2015, 2014).

In the field of autism research, large databases such as the
National Database for Autism Research (NDAR, ndar.nih
.gov) have been developed to house multidisciplinary bio-
molecular data, including exome sequencing, brain imaging,
and clinical diagnostic data. A large-scale genome mapping
study, AUT10K (funded by Autism Speaks) is using Google
Cloud to manage, analyze, and disseminate its data, which
provides new opportunities for broader access. However, the
utility of these resources is significantly limited due to the
lack of detailed clinical and phenotypic data being explicitly
linked to the molecular data.

Summary of data in molecular subtyping

With rapid advances in genetics, omics, imaging, and
clinical research on ASD, the need for collaborative data
sharing and integration becomes imperative for building a
comprehensive understanding of ASD etiology. In order to
initiate effective avenues for data integration, a clear under-
standing of the commonly used methods and resources for
data sharing and analysis in molecular subtyping is needed, as
they relate to subtype identification and patient classification
(Dumbill and Kolker, 2013; Field et al., 2009; Higdon et al.,
2013; Kolker and Stewart, 2014). Figure 1 shows a sample
database schema for integrating ASD data that can be used
for the generation of molecular subtypes.

FIG. 1. A model schema showing data used for molecular and disease subtyping
in ASD.
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Data Analysis and Integration for Molecular Subtyping

Figure 2 outlines an analysis approach to generating mo-
lecular and disease subtypes. This subtype and analysis ap-
proach can be used to characterize disease mechanisms,
relate molecular data to disease phenotypes through clinical
and environmental data, classify new patients, and identify
optimal and potential new treatments for different subtypes.

Classifying patients into subtypes

Following molecular data collection, the methods used to
classify patient genetic data into molecular subtypes vary
greatly depending on type and amount of data. When subtyping
by identified genetic mutations or CNVs, which are often
sparsely distributed across patient populations and rarely occur
with high multiplicity in any individual patients, the mere
presence of these mutations is enough to generate molecular
subtypes. However, differential gene expression and common
biological pathways can make phenotypic manifestations dif-
ficult to differentiate at a clinical subtyping level (Stessman

et al., 2014). In the case of ASD, it is anticipated that while
some gene mutations may be highly penetrant and possess
distinct clinical features indicative of syndromic subsets of
ASD, other mutations are linked to common pathways such
that phenotypic profiles are highly interconnected and more
difficult to tease apart (Stessman et al., 2014).

Due to this variability in genetic background, gene ex-
pression data obtained from microarrays or RNA-Seq pro-
vide a more quantitative basis for generating molecular
subtypes. The use of clustering methods with gene expression
data is well established and widespread (de Souto et al., 2008;
Eisen et al., 1998). The simplest and most commonly used
approach is hierarchical clustering where patients are itera-
tively grouped by using a distance metric based upon ex-
pression values. This approach has been used in many
previous molecular subtyping studies (Prat et al., 2010;
Rouzier et al., 2005; Sørlie et al., 2001). Iossifov and col-
leagues (2014) clustered functional classes to determine en-
richment of LGDs in individuals with ASD and their siblings
in the following functional domains: Fragile-X mental

FIG. 2. Approach to molecular and disease subtyping in ASD.
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retardation protein (FMRP) target genes, chromatin modi-
fying genes, genes encoding postsynaptic density proteins,
and those expressed in embryonic development.

There are many other clustering and unsupervised learning
approaches, two of the most frequently used for molecular
subtyping are k-means and self-organizing maps (SOM)
(Borkowska et al., 2014; Hartigan and Wong, 1979; Koho-
nen, 1989). These approaches can often create more defini-
tive and interpretable clusters than hierarchical methods. An
approach that has become popular in molecular subtyping for
cancer is consensus clustering. In this approach, a consensus
is created from repeated clustering using multiple subsets of
data and different numbers of clusters (Monti et al., 2003).

Typically, gene expression datasets contain data on thou-
sands of genes, which create a level of noise and complexity
that can make clustering algorithms inefficient and results
hard to interpret. This has led to the use of data reduction
methods such as principal components analysis (PCA)
(Yeung and Ruzzo, 2001) and partial least squares (PLS)
(Nguyen and Rocke, 2002) to reduce the dimension of data.
Other methods limit the number of feature or genes used for
clustering, creating both tighter and easier to interpret clus-
ters; among these are sparse clustering, gene shaving, and
dendogram sharpening (Hastie et al., 2000; Stanberry et al.,
2013, 2003; Witten and Tibshirani, 2010).

The methods used to analyze gene expression have been
adapted for other types of data platforms as well, such as
miRNA, methylation, SNP array, proteomics, and metabo-
lomics. Difficulties arise when the generation of subtypes
needs to be based upon multiple platforms. Clustering can be
applied individually to different sets of data and then the
clusters can be merged using various ad hoc approaches. Al-
ternatively, clustering can be applied jointly to different sets;
indeed, several approaches have been developed to do that
(Shen et al., 2010). All of these approaches will benefit for
consistently processed, normalized, and analyzed expression
data (Holzman and Kolker, 2004; Kolker et al., 2011).

Characterizing shared pathways and mechanisms
in molecular subtyping

The use of clustering algorithms applied to molecular data
can easily generate subgroups, but these are of little value if
they do not help characterize the underlying disease mecha-
nisms. Once molecular subtypes are established, they are most
often characterized by describing their common genetic mu-
tations and molecular features or by the over or under expres-
sion of specific molecules (genes, proteins, or other omics).

As mentioned previously, in the case of ASD, further
disease mechanism characterization is performed by linking
different genes according to their involvement in biological
pathways or interaction networks (Hormozdiari et al., 2015;
Iossifov et al., 2014). Many public (e.g., Reactome, Panther,
BioCyc, KEGG) (Caspi et al., 2014; Croft et al., 2014; Ka-
nehisa et al., 2014; Mi et al., 2013) and commercial pathway
resources (e.g. Ingenuity) are available, as well as interaction
databases (e.g., String, Intact) (Franceschini et al., 2013;
Kerrien et al., 2011). Some methods take advantage of these
resources to jointly combine pathway information with
clustering in order to generate subtypes that are more directly
interpretable and connected with existing pathway knowl-
edge (Milone et al., 2014). Joint clustering of genes and

patients may be able to identify sets of genes operating in
concert outside of known pathways (Shen et al., 2010).

When subtypes are based on expression data, conventional
analysis tools can be applied to molecular subtypes in order to
characterize them. This includes identifying genes (or other
molecules) that are highly differentially expressed across
subtypes. Popular models for differential expression analysis
include linear models for microarray analysis (LIMMA) and
significance analysis of microarrays (SAM) (Smyth, 2004;
Tusher et al., 2001). For example, a study by Zeidan-Chulia
and colleagues (2014) used LIMMA modeling to identify altered
expression of Alzheimer’s-related genes in the NOTCH and Wnt
signaling cascades in a sample of individuals with ASD, par-
ticularly the downregulation of mitochondria-regulating genes.

In addition, gene set approaches (Subramanian et al., 2005;
Wu et al., 2010; Wu and Smyth, 2012) can be used to identify
important pathways or networks that differ across subtypes in
their expression pattern. Improvements to these approaches
incorporate pathway structure to help identify important sub-
pathways as is done in the Differential Expression of Path-
ways (DEAP) method (Haynes et al., 2013). It is important to
note that if the same data are used for characterizing subtypes
as was used for generating subtypes, then measures of sta-
tistical significance ( p-values, etc.) will be highly biased.

Statistical models for connecting molecular subtypes
with clinical phenotype

In order to understand and treat a complex disease such as
ASD, molecular characteristics must be linked with the
clinical manifestation of the disease. Standard models can be
used to compare clinical data across established molecular
subtypes, including linear (for continuous data), generalized
linear (categorical, dichotomous, ordinal or count data), or
Cox (for survival or time to event data) models (Cox and
Oakes, 1984; McCullagh and Nelder, 1989). These models
can be adjusted for the interaction of molecular data with
environmental data (race, gender, parental factors, exposure
during pregnancy) by adding terms to the model.

An important aspect of complex diseases such as ASD is
progression of the disorder over time. Models that can incor-
porate longitudinal data, such as linear or generalized linear
mixed models, are important for identifying mechanisms re-
lated to progression of the disorder or response to treatment
(Breslow and Clayton, 1993; Laird and Ware, 1982). Long-
itudinal models incorporating molecular data have begun in
studies on the progression of ASD in early development, such
as the work of Glatt and colleagues (2012), who associated
mRNA biomarkers in infants who showed early signs of ASD
between 12 and 36 months of age. This ability to detect ASD
subtypes during early infancy will accelerate opportunities for
immediate and personalized treatment decisions. Other meth-
ods have been developed for complex diseases that combine
the generation of subtypes with analysis of clinical data, such as
survival, allowing for analysis when subtypes are not pre-
defined (Bair and Tibshirani, 2004).

New patient classification and treatment identification

Molecular subtyping can greatly enhance the classifi-
cation of new patients to disease subtypes, a crucial step to
understanding a prognosis and appropriately targeting treat-
ments. Since new patients will often have more limited data
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than the set patients used to generate the molecular subtypes,
new classifications need to be based on simpler, more easily
obtained data. In some cancer subtyping, small panels of
biomarkers are used to classify patients to subtypes (Bastien
et al., 2012; Choudhury et al., 2015; Taylor et al., 2012).
Previous analyses can be used to help identify sets of potential
predictor variables. The data can be randomly divided into
training and test sets to help build and validate the model. If the
amount of available data is small, cross-validation approaches
can be used to evaluate the model. A wide range of supervised
learning models are available to build a classifier such as lo-
gistic discriminant analysis, support vector machines, nearest
neighbor and Bayes classifiers (Hastie et al., 2009). Software
such as WEKA (Hall et al., 2009) can implement a wide range
of models, so both the predictors and the type model can be
easily evaluated. Additionally, electronic medical records can
be a simple, more easily obtained resource that can be mined
for the validation of subtype classification.

Two of the key objectives for molecular subtyping are
early identification of patients (i.e., early infancy) to target
the most effective treatment for individuals and to identify
new treatment targets. Genes and pathways identified in the
characterization of subtypes can be tied to different phar-
macological databases such as PharmGkb and DrugBank
(Law et al., 2014; Whirl-Carrillo et al., 2012). These re-
sources can be used to identify compounds that inhibit or
induce specific gene or protein expression or that block or
stimulate specific pathways. Clinical data regarding response
to treatment can be related back to molecular subtypes to
identify those with the best responses to particular treatments.
Linking longitudinal data to etiologically-derived subtypes
can reduce the variability in phenotypic presentation, un-
masking common behaviors or biomarkers that aid in diag-
nosis and predict prognosis.

Genetics has already informed pharmacological treatment
exploration for ASD (Jeste and Geschwind, 2014). For ex-
ample, CNTNAP2 variants have been associated with ASD
and other neurodevelopmental disorders (Alarcon et al.,
2008; Arking et al., 2008); this variant has been shown to
have increased expression in frontostriatal circuits of the

brain (Abrahams et al., 2007). CNTNAP2-mutant mouse
models, which present ASD-like symptoms, have shown al-
leviated repetitive behaviors, but no change in social deficits
when treated with risperidone, a dopamine antagonist (Pe-
nagarikano et al., 2011; Penagarikano and Geschwind, 2012).
As molecular subtyping continues in the field of ASD re-
search, it is expected that personalized treatment will emerge
for distinct molecular subtypes, better equipping medical
professionals to address symptoms of ASD, as well as co-
morbid conditions.

Emerging Molecular Subtypes in Autism

Even in its early stages, molecular subtyping with multiple
integrated data methods has been shown to be successful in
ASD research (Bernier et al., 2014; Frazier et al., 2014;
Vandeweyer et al., 2014). Using exome and targeted se-
quencing technology, recurrent de novo disruptive mutations,
such as CHD8, ADNP, DYRK1A, and PTEN have been found
in individuals with ASD (Iossifov et al., 2014; O’Roak et al.,
2012a, 2012b). Comprehensive phenotyping of a grow-
ing number of individuals with these disruptive mutations
indicates a high likelihood of autism and unique medical,
psychiatric, and morphological characteristics that suggest
specific genetic subtypes for ASD (Bernier et al., 2014;
Frazier et al., 2014; van Bon et al., 2015). Autism, intellectual
disability, and dysmorphic features have been found in in-
dividuals with a disruptive mutation to ADNP, along with
multiple reports of visual and cardiac defects (Vandeweyer
et al, 2014; Helsmoortel et al, 2014).

Individuals with mutations to CHD8 have enriched in-
stances of chronic gastrointestinal complications, distinct
facial dysmorphology, and macrocephalic head size (Bernier
et al, 2014). In contrast, those with DYRK1A mutations have
greater likelihood of microcephalic head size and early
growth difficulties (van Bon et al, in press). In a recent study
by Frazier and colleagues (2014), individuals with PTEN
mutations showed abnormal white matter brain volume in
addition to autism symptoms. These data, while still pre-
liminary due to small sample sizes, suggest that the genetic

FIG. 3. Comparison of expres-
sion levels across clinical features
and phenotypes of mutated genes
characterizing different molecular
subtypes of ASD.
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heterogeneity of autism can be successfully reduced to
smaller subsets of recurrent disruptive mutations in biologi-
cally related networks (Stessman et al., 2014). Figure 3 shows
an example comparative analysis of gene expression across
different clinical features and phenotypes for molecular
subtypes of ASD.

Future Directions

The potential of molecular subtyping for advancing re-
search, guiding personalized treatments, and providing a clear
understanding of disease prognosis and progression has clearly
been shown in diseases such as cancer and is emerging in ASD.
Further, the emergence of family groups and communities
centered on etiologically driven subgroups of neurode-
velopmental disorders, such as Simons VIP Connect (www
.simonsvipconnect.org) (Simons VIP Consortium, 2012), al-
lows for improved quality of life for families. However, a
broader use of molecular subtyping is impeded by data het-
erogeneity, diversity of standards, ineffective analysis tools,
and a lack of rich clinical phenotypic and clinical data linked to
molecular data. This limits the reproducibility and usage of
subtypes across patients, experiments, and diseases.

Challenges arise when trying to generate robust and re-
producible molecular subtypes from different experiments
and datasets with widely varying data types and experimental
protocols. This issue has impacted the generation of molec-
ular subtypes for diseases such as ASD (Stessman et al.,
2014). In addition, as new data and methods become avail-
able, the need to update subtypes must be addressed.

Achieving reproducible and robust molecular subtyping
will require resources and technology that provide data in-
tegration using community standards, proper normalization,
and sufficient meta-data across different omics (Chain et al.,
2009; Dumbill and Kolker, 2013; Field et al., 2009; Galperin
and Kolker, 2006; Garrity et al., 2008; Higdon et al., 2013,
2008; Hogan et al., 2006; Holzman and Kolker, 2004; Kolker
and Stewart, 2014). These resources should enable molecular
subtyping based upon only the highest quality data, experi-
ments, and standards, use only the most robust models and
analysis methods, and facilitate validation on sets of very
well characterized subjects (Hather et al., 2010; Higdon et al.,
2004; 2007; 2011; Higdon and Kolker, 2006; Kolker et al.,
2011). Robust models need to be available to accurately
predict the subtypes of new patients. Finally, molecular
subtypes need to be connected to rich, but easily attainable,
clinical and phenotypic data so that molecular subtyping can
be used to create personalized treatments for patients. The
development of such resources to assist the molecular sub-
typing of ASD has the potential to accelerate both the clas-
sification of new patients and the development of treatment
regimens tailored to the specific presentation of a given
subtype. As a result, these resources will empower and ac-
celerate precision medicine and personalized healthcare and
will ultimately serve families in more proactive and com-
prehensive ways.
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