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Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substan-
tia nigra of the brain. Since there are limited treatment options for PD, neuroprotective
agents are currently being tested as a means to slow disease progression. Agents tar-
geting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates
for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the
most promising neuroprotective agents for PD, and they are all currently in phase III tri-
als. Other agents possessing protective characteristics in delaying PD include stimulants,
vitamins, supplements, and other drugs. Additionally, combination therapies also show
benefits in slowing PD progression. The identification of neuroprotective agents for PD
provides us with therapeutic opportunities for modifying the course of disease progression
and, perhaps, reducing the risk of onset when preclinical biomarkers become available.
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INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disorder that
results from the death of neuronal cells containing dopamine (DA)
in the midbrain. Usually at the time of clinical diagnosis the patient
has already lost 60% or more of the neurons in the substantia nigra
pars compacta (SNpc). PD affects approximately 3% of the pop-
ulation over the age of 65. Most cases of PD are idiopathic and
current evidence suggests that environmental factors along with
a genetic susceptibility are the major causes (Lang and Lozano,
1998). Genetic forms of PD exist, but they represent less than 5%
of the cases (Langston, 1998). Oxidative stress, mitochondrial dys-
function, and inflammation play key roles in the development of
PD (Michel et al., 2002; Jenner, 2003). Because a large propor-
tion of the baby boomers are reaching the typical age of onset for
PD, there have been increased efforts to search for neuroprotective
agents that will prevent the irreversible loss of neurons. In this
review we summarize the current evidence that neuroprotective
agents may be useful for preventing or slowing the development
of PD.

CAFFEINE AND NICOTINE ARE PROMISING
NEUROPROTECTIVE STIMULANTS FOR PARKINSON’S
DISEASE
Most epidemiological studies support a protective benefit of drink-
ing caffeinated beverages (Ross et al., 2000; Ascherio et al., 2001;
Saaksjarvi et al., 2008), although one study showed no benefit
(Xu et al., 2006). Animal studies in general also indicate that caf-
feine is neuroprotective. Chronic caffeine administration in mice
provided protection against dopaminergic neuron toxicity from
exposure to a combination of paraquat and maneb (van den
Pol, 1986; Kachroo et al., 2010). In addition, acute and chronic

treatment of mice with caffeine reduced the effect of acute 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Chen et al.,
2001) and 6-hydroxydopamine (6-OHDA) treatment on striatal
DA loss (Joghataie et al., 2004). Motor dysfunctions were atten-
uated and DA levels increased after caffeine treatment in MPTP-
and 6-OHDA-treated animals (Joghataie et al., 2004; Aguiar et al.,
2006). In addition, caffeine treatment partially restored noradren-
aline, DA, 3,4 dihydroxyphenylacetic acid, homovanillic acid, and
their metabolites in 6-OHDA-lesioned rats (Aguiar et al., 2006).
Although serotonin levels decreased, levels of its metabolite, 5-
hydroxyindoleacetic acid, were unchanged. In treatment, the time
frame of caffeine’s beneficial effects is extended by its metabolites
theophylline and paraxanthine, which also exert protective effects
(Xu et al., 2010). An additional benefit of caffeine is that tolerance
does not develop with long-term exposure (Xu et al., 2002).

The effect of estrogen on caffeine’s neuroprotective capabil-
ities is significant. Results from epidemiological studies showed
improvement in male Parkinson’s patients only (Ascherio et al.,
2001; Costa et al., 2010). Interestingly, in post-menopausal women,
caffeine consumption is also linked to a reduced risk of PD, but
only among those who were not taking hormone-replacement
therapy (Ascherio et al., 2003). In a follow up case-controlled study
the relationships between gender, caffeine intake, estrogen, and
the risk of PD were examined by investigating single nucleotide
polymorphisms (SNPs) in the caffeine metabolizing genes [the
cytochrome P450 (CYP) gene CYP1A2 and N -acetyltransferase
2 (NAT2)] and estrogen receptors (ESR1 and ESR2). A signif-
icant increased risk of PD was observed in women who had the
CYP1A2 polymorphism, whereas NAT2, ESR1, and ESR2 had mar-
ginal effects on PD risk (Palacios et al., 2010). In another study,
estrogen and caffeine were administered to both male and female
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MPTP-treated mice, which prevented neuroprotection in all of
the animals (Xu et al., 2006). Thus, the beneficial effects of caf-
feine may be limited to men and post-menopausal women who
are not receiving hormone-replacement therapy.

Complimentary genetic and pharmacological data from rodent
studies indicate that one mechanism by which caffeine reduces
dopaminergic toxicity is through antagonism of adenosine A2A

receptors (see review Prediger, 2010). In contrast, the indirect
pathway of the basal ganglia contributes to the progression of
PD via glutamatergic neuron overstimulation through adenosine
A2A receptors (Bove et al., 2005b). Caffeine also activates PI3K/Akt
signaling and thus reduces apoptosis (Nakaso et al., 2008).

Nicotine is comparable to caffeine with regards to lowering
the risk of developing PD (Simon et al., 2009). In a Chinese epi-
demiological study, there was a significant reduced rate of PD in
individuals who drank coffee and smoked cigarettes, which was
dose-dependent (Tan et al., 2003). Toxicant responsive enzymes,
including CYP1A1, CYP2E1, and glutathione S-transferase (GST)
enzymes GST-ya, GST-yc, GSTA4-4, and vesicular monoamine
transporter-2 play critical roles in modulating the protective effects
of nicotine and caffeine in MPTP-treated animals (Singh et al.,
2008). Interestingly, decaffeinated coffee and nicotine-free tobacco
were neuroprotective in a Drosophila model of PD, but, the neu-
roprotection depended on the cytoprotective transcription factor
nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and cafestol
(an activator) (Trinh et al., 2010). This suggests that coffee and
tobacco containing Nrf2-activating compounds account for the
decreased risk of PD.

Nicotine without caffeine, has also shown beneficial effects in
reducing the risk of PD in epidemiological studies and animal
studies (reviewed in Quick, 2004). Animals receiving nicotine at
low doses (0.1 mg/kg s.c) in vitro showed reduce DA depletion
resulting from MPTP and 6-OHDA treatments (Ferger et al., 1998;
Costa et al., 2001). A large dosage of nicotine (0.4 mg/kg s.c),
however, enhanced dopamine loss in vivo (Ferger et al., 1998).
Additionally, nicotine attenuated motor deficits and nigrostri-
atal neurodegeneration produced by chronic administration of
rotenone in mice. In 6-OHDA-lesioned rats, subchronic nicotine
(0.4 mg/kg) and apomorphine treatment reduced parkinsonian
contralateral rotations (Meshul et al., 2002). Chronic nicotine
treatment in MPTP-treated primates restored and maintained
dopaminergic function and prevented cell loss in the SNpc (Quik
et al., 2006). In addition, simple exposure to tobacco smoke prior
to MPTP treatment reduced the loss of striatal DA in mice (Carr
and Rowell, 1990). Additionally, in humans, acute nicotine treat-
ment can improve impaired controlled semantic processing in PD
patients (Holmes et al., 2011). To date, nicotine is still in Phase II
trials focusing on optimizing dosage and increasing sample size.

Nicotine is an alkaloid that is the predominant ingredient
found in cigarettes. It has a high rate of absorption and diffuses
quickly through the bloodstream and across the blood–brain bar-
rier (BBB). Nicotine reduces the oxidative stress that is associated
with the progression of PD by scavenging free radicals produced by
monoamine oxidase-B (MAO-B), which metabolizes DA (Fowler
et al., 1996; Iida et al., 1999). In addition, nicotine is capable of aug-
menting neurotrophic factors and cholinergic receptor expression
(Ferrea and Winterer, 2009). Nicotine pretreatment attenuated

the loss of dopaminergic cells in MPTP-induced mesencephalic
neurons (Quik and Jeyarasasingam, 2000). Neuroprotection was
blocked by a nicotine receptor antagonist suggesting the effect
was mediated by nicotinic acetylcholine receptors (nAChR; Quik
and Jeyarasasingam, 2000). These results suggest that the neuro-
protective mechanism of nicotine may be directly or indirectly
connected to the nAChR up-regulation in cerebral cortical blood
flow (Linville et al., 1993). Moreover, it indicates that nAChR ago-
nists could be beneficial in slowing the progression of PD (Mag-
gio et al., 1997). Recently it has been suggested that stimulating
nAChRs or PI3KAkt/PKB signaling could suppress dopaminergic
cell death induced by rotenone (Takeuchi et al., 2009). In similar
studies, nicotine induced fibroblast growth factor (FGF-2) and
the brain-derived neurotrophic factor (BDNF) in the striatum
(Maggio et al., 1997). Neuroprotection of DA neurons by nico-
tine is primarily gated by cytoplasmic Ca2+ through a mechanism
involving α-bungarotoxin-sensitive (α7) nAChRs and secondarily
through T-type voltage-gated calcium channels (Toulorge et al.,
2011).

URATE AND URIC ACID HAVE MODERATE
NEUROPROTECTIVE PROPERTIES
Uric acid (UA) is a natural antioxidant that can reduce oxidative
stress by acting as a scavenger of free radicals and an iron chealator
(Ames et al., 1981; Davies et al., 1986; Yu et al., 1998; Hink et al.,
2002). Urate suppresses oxyradical accumulation (Yu et al., 1998),
inhibits cytotoxic activity of lactoperoxidase (Everse and Coates,
2004), and protects against DA-induced apoptosis (Jones et al.,
2000). UA has been found to suppress oxidative stress and prevent
dopaminergic cell death in animals (Duan et al., 2002). In addi-
tion, slower rates of clinical progression were observed in untreated
early stage PD patients who have higher plasma, serum, and cere-
brospinal fluid (CSF) concentrations of UA (Schwarzschild et al.,
2008; Ascherio et al., 2009). In contrast, lower levels of urate were
present in CSF (Tohgi et al., 1993) and post-mortem in the SNpc of
patients with PD (Church and Ward, 1994). In a population-based
cohort study of 4,695 participants aged 55 years and older, higher
serum levels of UA were associated with a significantly decreased
risk of PD (de Lau et al., 2005). Urate therapy reduced the risk
of PD in a dose-dependent manner (de Lau et al., 2005; Schwarz-
schild et al., 2008). Additionally in a prospective study of subjects
with early stage PD there was a 49% reduction in the progression
of the disease with high urate intake (Schwarzschild et al., 2008).

Like caffeine, urate (Alonso et al., 2007) and UA (Alonso et al.,
2007; Schwarzschild et al., 2008; Andreadou et al., 2009) show a
gender-specific bias with a greater benefit observed in male PD
patients. Epidemiological studies however contradict these results
and show no gender specificity (de Lau et al., 2005; Annanmaki
et al., 2007; Chen et al., 2009).

Life style choices play an important role in PD progres-
sion. Exercise, for example, decreases PD, possibly by increasing
serum UA levels and decreasing excretion of UA (Schlesinger and
Schlesinger, 2008). Additionally, individuals who eat diets that
increase plasma urate levels have a reduced risk of PD. Dietary
changes expected to increase plasma urate levels like dairy pro-
tein (but not milk) (Choi et al., 2005) and vitamin C contribute to
reducing the risk of PD in men (Gao et al., 2008). These studies also
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suggest that a PD patient’s diet should include adequate sources of
purines, such as meat and seafood, which results in higher concen-
trations of UA (Annanmaki et al., 2007). Diets that result in lower
UA levels could accelerate disease progression (Annanmaki et al.,
2007). One must keep in mind however that a high concentration
of UA in the blood serum increases the risk of gout and high alco-
hol and fructose consumption compounds this risk (Choi et al.,
2004). Therefore, even if PD patients choose to modify their diet
for potential neuroprotective effects, the physician must carefully
monitor them for other at risk chronic diseases (Gao et al., 2008).

VITAMIN D, BETA-CAROTENE AND RIBOFLAVIN ARE
CANDIDATES FOR NEUROPROTECTIVE AGENTS
Vitamin E (α-tocopherol) is a lipid-soluble antioxidant that can
inhibit iron accumulation, suppress microglial activation, scav-
enge oxygen radicals, and prohibits the peroxidation of membrane
lipids (Tappel, 1962; Burton et al., 1983; Cheeseman et al., 1988;
Chow, 1991; Lan and Jiang, 1997; Li et al., 2001). Vitamin E also
induces interleukin-1α and tumor necrosis factor (TNF)-α and
suppresses p38 MAPK and NFκB activation (Li et al., 2001). Vit-
amin E is regulated by α-tocopherol transfer protein (TTP) in
the liver and brain (Kaempf-Rotzoll et al., 2003). Studies have
demonstrated that lack of TTP causes a systemic deficiency of vit-
amin E in humans and mice (Traber and Sies, 1996; Yokota et al.,
2001), which can lead to enhanced oxidative stress in the brain
(Yokota et al., 2001). However, vitamin E is also believed to reduce
oxidative stress caused by iron accumulation in the brain (Lan
and Jiang, 1997). Vitamin E deficiency increases MPTP toxicity
in mice (Odunze et al., 1990). Vitamin E supplementation, how-
ever, had a protective effect on DA neurons in the SNpc (Roghani
and Behzadi, 2001) and reduced DA loss (Lan and Jiang, 1997).
Pretreatment with vitamin E was shown to reduce lipid peroxi-
dation levels (Lan and Jiang, 1997), but depletion of striatal DA
was not attenuated by pretreatment (Gong et al., 1991; Chi et al.,
1992). Other studies have shown that vitamin E has no protec-
tive effects against DA-induced toxicity in PC12 cells (Offen et al.,
1996) and only partial protection in MPTP-treated rodents (Perry
et al., 1987). In addition, a genetic vitamin E deficiency did not
affect MPTP susceptibility in mice (Ren et al., 2006). So either the
protective effects of vitamin E is dependent on the mechanism by
which PD is induced or high acute dose of vitamin E have different
neuroprotective effects than chronic low doses (Fariss and Zhang,
2003; Ricciarelli et al., 2007).

There are no differences in the amount of vitamin E in the cere-
bellum (Dexter et al., 1992) or CSF (Molina et al., 1997) between
PD patients and healthy individuals. Clinical trials also show no
neuroprotective benefit of taking vitamin E (Fernandez-Calle et al.,
1992; LeWitt, 1994; Morens et al., 1996). A meta-analysis however
showed a protective effect of both moderate intake (0.67–0.98)
and high intake (0.78, 0.57–1.06) of vitamin E (Etminan et al.,
2005). Thus, choosing foods that are vitamin E-rich may be neu-
roprotective (Perlmutter, 1988; Zhang et al., 2002). The risk of PD
was significantly lower in men than in women with high intake of
vitamin E from food (Zhang et al., 2002).

Vitamin C or ascorbate, is highly concentrated in the CNS,
and is associated primarily with the activity of glutamatergic neu-
rons, which makes it a good candidate for a neuroprotector or
a neuromodulator (Grunewald, 1993). Vitamin C is decreased in

vascular parkinsonisms (Paraskevas et al., 2003). Results from a
pilot study in which high doses of vitamin E and C were given to
participants showed a decrease in PD progression in early stage
patients (Fahn, 1992). Yet, other studies have shown few beneficial
effects of vitamin C alone and some have shown an increase risk
of PD (Scheider et al., 1997; Zhang et al., 2002; Etminan et al.,
2005). In a case-controlled study of people who consumed diets
rich in vitamin C, there was a 40% risk reduction of PD than those
consuming small amounts (Perlmutter, 1988). Because of the con-
flicting data, there is currently not enough data to support vitamin
C as neuroprotective for PD.

Calcitriols are a group of fat-soluble secosteroids that include
vitamin D and its derivatives D2, D3, D4, and D5 (Garcion et al.,
2002). D3 is obtained through the skin during sun exposure and
can be ingested (Eyles et al., 2003). Vitamin D deficiency is preva-
lent in PD patients (Sato et al., 1997). Vitamin D receptors (DVR)
in the brain are found primarily in dopaminergic neurons in the
SNpc (Eyles et al., 2005) and VDR mRNA expression in the blood
is a useful risk marker for identifying PD patients (Scherzer et al.,
2007). Vitamin D has anti-inflammatory properties, it can regulate
expression of glial cell line-derived neurotrophic factor (GDNF),
and regulates calcium (Ca2+) homeostasis (Evans, 1988; Naveilhan
et al., 1996; Garcion et al., 2002; Smith et al., 2006; Chan et al., 2009;
Butler et al., 2011). A disruption of Ca2+ homeostasis accelerates
SNpc dopaminergic neuron loss (Butler et al., 2011). In contrast,
GDNF stimulation can alleviate PD symptoms in both primate and
PD patients (Gash et al., 1996; Kordower et al., 2000; Gill et al.,
2003). Vitamin D was also shown to be beneficial in 6-OHDA-
treated animals and in cell cultures (Wang et al., 2001; Smith et al.,
2006). In addition, vitamin D increased neuromuscular function
in parkinsonian rodents (Holick, 2007). In contrast to these find-
ings, one case-controlled human study found an increased risk of
PD with high consumption of vitamin D (Anderson et al., 1999).
Together these findings suggest that dietary intake of vitamin D
in moderate amounts may be effective in protecting individuals
from PD progression although further studies are needed (Holick,
2007).

Serum levels of vitamin A are similar between, PD patients and
controls suggesting that levels of vitamin A are unrelated to the risk
of PD (Fernandez-Calle et al., 1992, 1993; Jimenez-Jimenez et al.,
1993; Etminan et al., 2005). An epidemiological study, however,
found that there was a decrease in the risk of PD in individuals
who consumed foods containing carotenoids and beta-carotene
(Perlmutter, 1988). Vitamin A’s precursor beta-carotene, may offer
neuroprotective effects by preventing lipid peroxidation (Glover,
1960; Kartha and Krishnamurthy, 1977). A recent study showed
that pretreatment with beta-carotene partially protected against
MPTP-induced neurotoxicity in mice (Perry et al., 1985;Yong et al.,
1986), although the same was not true of primates (Perry et al.,
1987).

Riboflavin, vitamin B-2, is a water-soluble vitamin present pre-
dominately in dairy products (Powers, 2003). Its biologically active
forms are flavin adenine dinucleotide and flavin mononucleotide,
which are electron carriers that participate in a wide range of redox
reactions (Huennekens, 1956; Merrill et al., 1981). Riboflavin plays
an active role in energy production and affects iron accumula-
tion (Sirivech et al., 1977; Powers et al., 1983; Powers, 1987). The
mechanism of action of riboflavin in the brain remains unknown,
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but may involve glutathione depletion, cumulative mitochondrial
DNA mutations, disturbed mitochondrial protein complexes, and
abnormal iron metabolism (Di Monte, 1991; Jenner et al., 1992;
Logroscino et al., 1997). Riboflavin may also effect glutathione
production (Perlmutter, 1988). The amount of riboflavin is lower
in PD patients compared to healthy and disease controls, suggest-
ing that taking riboflavin supplements may be beneficial (Coimbra
and Junqueira, 2003). Intake of riboflavin, compared to other B-
vitamins was shown to reduce the risk of PD (Murakami et al.,
2010). In fact, the risk of PD was reduced 51% by users obtaining a
high consumption (Perlmutter, 1988) and daily doses of riboflavin
for 6 months showed improved motor capacity of PD patients in
3 months (Coimbra and Junqueira, 2003). These promising results
indicate that additional longitudinal studies are needed to deter-
mine the long-term effects of chronic administration of riboflavin
supplements.

AMONG THE SUPPLEMENTS CREATINE SHOWS THE MOST
PROMISE AS A NEUROPROTECTIVE AGENT
Coenzyme Q10 (CoQ10), also known as ubiquinone, is a promis-
ing agent for neuroprotection in PD and other neurodegenerative
diseases because of its role in the mitochondrial electron trans-
port chain (METC) and as an antioxidant (Beal and Shults, 2003).
CoQ10 serves as an electron acceptor in complex I and II of the
METC. CoQ10 is protective by inhibiting SIN-1-induced apop-
tosis (Sharma et al., 2004), suppressing intra-mitochondrial and
intra-nuclear biosynthesis of 8-OH-2dG, inhibiting translocation
of caspase-3, attenuating α-synuclein expression, and blocking
intra-mitochondrial accumulation of metal ions (Ebadi et al.,
2004).

Animal studies have shown that rotenone-induced parkinson-
ism reduced CoQ10 concentrations in plasma and the striatum
with a corresponding decrease in striatal levels of DA, mitochon-
drial complex I activity and ATP levels, as well as significant
increase in B-cell lymphoma 2 (Bcl-2) expression (Abdin and
Hamouda, 2008). Administration of CoQ10 protected the nigros-
triatal dopaminergic neurons in MPTP-treated mice (Shults et al.,
1999). In addition, a diet containing CoQ10 (1,600 mg/kg/day,
2 months) or CoQ10 supplementation diminished neural tissue
damage (Cleren et al., 2008). CoQ10 was also effective in pre-
venting DA depletion, loss of tyrosine hydroxylase neurons and
formation of α-synuclein inclusions in the SNpc in mice (Cleren
et al., 2008).

Reduced levels of CoQ10 are present in PD patients’ plasma and
platelets (Matsubara et al., 1991; Gotz et al., 2000) and in cortex
(Hargreaves et al., 2008), which correlated with reduced activity
of complex I and II/III (Shults et al., 1997, 1999). In addition, the
percent of CoQ10 in its oxidized form is elevated in PD patients
(Sohmiya et al., 2004). Chronic administration of CoQ10 in PD
patients delays the progression of PD (Shults et al., 2002; Shults,
2003) with no adverse effects (Galpern and Cudkowicz, 2007).
Additionally, CoQ10 supplements showed promising results in
a small group of de novo PD patients during phase II clinical
trials although no follow up study has been published (Shults
et al., 2002). More recently, another human trial found inconclu-
sive results from CoQ10 supplements in PD patients (Investiga-
tors, 2007). CoQ10 (2,400 mg/day) and vitamin E (1,200 IU/day)

together initially was thought to be beneficial for PD patients
(Shults et al., 2004), however, in Phase III trials it was deemed
futile (NINDS1).

Creatine is a guanidino compound found primarily in meat
products and is produced endogenously by the liver, kidney,
and pancreas (Tarnopolsky and Beal, 2001; Adhihetty and Beal,
2008). Creatine possesses antioxidant properties and can regulate
intracellular calcium, suppress extracellular glutamate levels, and
inhibit the opening of the mitochondrial permeability transition
pore (MPT; Figure 1) (Xu et al., 1996; Lawler et al., 2002; Dedeoglu
et al., 2003).

A combination of CoQ10 and creatine shows an additive neuro-
protective effect in chronic MPTP-treated mice (Yang et al., 2009).
Additionally, creatine has shown promising neuroprotective effects
in combination with CoQ10 in PD patients (Yang et al., 2009).
Alone, creatine protects against MPTP-induced DA depletion in
the SNpc (Matthews et al., 1999). Interestingly, in a stage II clini-
cal trial creatine showed a delay in the progression of PD by 50%
compared to controls that received a placebo (Investigators, 2006).
In a follow up study 18 months later, creatine continued to show
efficacy as a neuroprotective agent (Investigators, 2008) and it is
currently in Phase III trials (NET-PDLS2).

1http://www.ninds.nih.gov/disorders/clinical_trials/CoQ10-Trial-Update.htm
2http://clinicaltrials.gov/ct2/show/NCT00449865

FIGURE 1 |The mechanisms of action of neuroprotective agents that

are in clinical trials. Rasagiline shows neuroprotective properties by
suppressing mitochondrial apoptosis stopping the mitochondrial
permeability transition pore (MPT) opening by inhibiting caspase-3, nuclear
poly [ADP-ribose] polymerase 1 (PARP-1) activation, stopping the
translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and
halting nucleosomal DNA fragmentation. Rasagiline increases the
expression of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and
B-cell lymphoma-extra large (Bcl-xL) through the protein kinase C (PKC)
pathway, in addition to down-regulating the pro-apoptotic Bcl-2-associated
death promoter (Bad) and Bcl-2-associated X protein (Bax). Minocycline
inhibits the inflammatory response to prevent cell death and it chealates
metals. Creatine inhibits activation of the MPT and represses iron (Fe2+)
accumulation.
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Omega-3 polyunsaturated fatty acids appear to be neuropro-
tective for several diseases (Bousquet et al., 2011) including a
small study with PD patients (da Silva et al., 2008). Animal
studies have shown that the omega-3 fatty acid docosahexaenoic
acid (DHA) can replace the omega-6 fatty acids already present
in the brains of mice that had been given supplements after
MPTP treatment (Bousquet et al., 2008). DHA is an essential
factor in growth and development in the brain (Horrocks and
Yeo, 1999) and has anti-inflammatory capabilities due to its abil-
ity to inhibit cyclo-oxygenase-2 (COX-2) (Massaro et al., 2006).
DHA (5–50 μg/ml) protected neurons against cytotoxicity, inhib-
ited both nitrogen oxide (NO) production and Ca2+ influx, and
increased the activities of antioxidant enzymes of glutathione per-
oxidase and glutathione reductase (Wang et al., 2003) in cell cul-
tures. DHA does not alter the levels of glutathione (GSH) (Wang
et al., 2003). Animal studies showed that DHA decreased apop-
tosis of dopaminergic cells after MPTP treatment (Ozsoy et al.,
2011). Short-term administration of DHA (100 mg/kg) reduced
40% of the levodopa-induced dyskinesias in Parkinsonian pri-
mates (Samadi et al., 2006). DHA also preserved DA levels, tyrosine
hydroxylase (TH)-positive neurons and nuclear receptor related-
1 protein expression from MPTP-induced neurotoxicity in mice
(Bousquet et al., 2008). Chronic administration of uridine and
DHA increased the levels of neural phosphatides and proteins in
synaptic membranes (Wurtman et al., 2006) and dendritic spines
in rodents (Sakamoto et al., 2007). DHA and uridine administra-
tion also reduced parkinsonian related behaviors and elevated DA
levels in 6-OHDA rats (Cansev et al., 2008). Human studies on the
effects of DHA are now needed before recommendations may be
made to PD patients.

DHA’s proposed mechanisms of neuroprotection are linked to
its anti-oxidative activity in vivo (Hashimoto et al., 2002; Yavin
et al., 2002; Calon et al., 2004; Wu et al., 2004; Bazan, 2005), its
ability to increase glutathione reductase activity (Hashimoto et al.,
2002) and decrease the accumulation of oxidized proteins (Calon
et al., 2004; Wu et al., 2004) and levels of lipid peroxide and reactive
oxygen species (ROS) (Hashimoto et al., 2002, 2005). DHA also
triggered inactivation of cell-signaling pathways leading to caspase
activation (Calon et al., 2004, 2005) and hyperphosphorylation of
tau (Green et al., 2007). In addition, DHA regulates the PI3K/Akt
cascade (Akbar and Kim, 2002; Akbar et al., 2005; Kim, 2007).
DHA has no association with beta-secretase or gamma-secretase
complex, but it can down-regulate presenilin-1 in vitro and in vivo
(Lim et al., 2005; Green et al., 2007). Other potential mechanisms
of action of DHA include regulation of inflammation, gene tran-
scription, and cell membrane properties (de Urquiza et al., 2000;
Salem et al., 2001; Jump, 2002).

Melatonin has been associated with nigrostriatal protection,
reduced auto-oxidation of l-3,4-dihydroxyphenylalanine, and has
antioxidant properties (Fertl et al., 1993; Miller et al., 1996; Reiter
et al., 1997; Khaldy et al., 2000; Rocchitta et al., 2006). Decreased
levels of melatonin are present in PD patients compared to con-
trols (Sandyk, 1990). Melatonin’s free radical scavenging prop-
erties and its ability to easily pass the BBB suggest that it may be
neuroprotective (Antolin et al., 2002; see review Mayo et al., 2005).

Animal studies have shown that melatonin can prevent cell
death and damage induced by MPTP (Acuna-Castroviejo et al.,

1997), 6-OHDA (Kim et al., 1998), and iron (Maharaj et al., 2006a)
in neurons and astrocytes (Martin et al., 2002). Melatonin blocked
apoptosis and necrosis in 6-OHDA-treated undifferentiated and
nerve growth factor (NGF)-differentiated PC12 cells (Mayo et al.,
1998, 1999). Contrary to these results, striatal DA depletion and
DA neuron loss increased after melatonin treatment of rotenone-
induced Parkinsonism (Tapias et al., 2010). Melatonin given to PD
patients improved the duration of sleep and reduced sleep distur-
bances (Dowling et al., 2005). There are no clinical studies to date
that have investigated whether melatonin is neuroprotective for
PD patients.

The antioxidant GSH, which is involved in iron metabolism
and plays an ancillary role in thiol–redox control, is depleted in the
SNpc of PD patients (Perry et al., 1982; Riederer et al., 1989; Pearce
et al., 1997). When GSH was depleted in vitro and in vivo, there
was oxidative damage of complex I proteins (Chinta and Ander-
sen, 2006; Chinta et al., 2007; Kumar et al., 2011), defects in basal
ganglia formed (Sian et al., 1994), and the ubiquitin–proteasome
system functioned poorly (Martin and Teismann, 2009), but the
electron transport chain complex was unaffected (Heales et al.,
2011). Collectively these studies suggest that GSH may facilitate
cascading events leading to oxidative stress (Bharath et al., 2002;
Garrido et al., 2011).

Animal studies have also shown that excessive or reduced GSH
levels can initiate degeneration of DA neurons (Garrido et al.,
2011). However, chronically decreased GSH concentrations in the
brain did not directly correlate to a reduction in the viability of
DA neurons in the SNpc, nor decrease the number of striatal DA
terminals, but does make neurons more susceptible to neurotoxins
(Schulz et al., 2000). Treatment with MPTP in GSH peroxidase-
deficient mice resulted in depletion of DA (Klivenyi et al., 2000).
In nigral TH immune responsive cells similar results were seen
with a greater reduction of DA neurons when lower levels of GSH
were present prior to toxin administration (Pileblad et al., 1989;
Seaton et al., 1996; Wullner et al., 1996). These studies suggest that
the concentration of GSH is key to its neuroprotective capabilities.
It has been hypothesized that enhancement of GSH synthesis or
inhibition of its degradation may result in a decrease in disease
progression (Schulz et al., 2000).

Phytic acid (IP6) is a naturally occurring iron chelator in food
that acts by altering cell-signaling pathways and the activity or
expression of antioxidant enzymes (Shamsuddin et al., 1997; Xu
et al., 2011). IP6 is capable of inhibiting MPTP, 6-OHDA, and iron
toxicity in cell culture (Xu et al., 2008, 2011). IP6 increases cell sur-
vival in MPTP-treated cells and repressed caspase-3 activity and
DNA fragmentation (Xu et al., 2008). IP6 also suppressed hydroxyl
radical formation after 1-methyl-4-phenylpyridinium (MPP+)
treatment in rats (Obata,2003). Further animal and human studies
are needed to test IP6’s antioxidant’s properties.

SEVERAL COMMONLY PRESCRIBED DRUGS ARE EMERGING
AS THERAPEUTIC AGENTS FOR PD
Common household drugs such as aspirin and Ibuprofen protect
against neuro-inflammation, which can lead to neurodegeneration
in the brain (Hirsch and Hunot, 2009). The use of non-steroidal
anti-inflammatory drugs (NSAIDS) has been shown to lower the
risk of PD in epidemiological studies (Chen et al., 2003; Ton et al.,
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2006; Wahner et al., 2007; Gao et al., 2011) and protect against
neuronal death, ROS/peroxidation, and dopaminergic neurotoxi-
city by inhibiting cyclo-oxygenase enzymes in animals (Bilodeau
et al., 1995; Kaufmann et al., 1997; Aubin et al., 1998; Saini et al.,
1998; Casper et al., 2000; Sairam et al., 2003). Pretreatment with
NSAIDS is neuroprotective in MPTP and 6-OHDA-treated ani-
mals and in vitro (Esposito et al., 2007). In humans there was a
reduction in PD risk observed in individuals who use Ibuprofen,
but no reduction was found in individuals who use NSAIDS or
Acetaminophen (Chen et al., 2005; Ton et al., 2006; Driver et al.,
2011; Gao et al., 2011). A case-controlled study also concluded that
NSAID’s and aspirin show no association with altering the risk
of PD (Becker et al., 2011). In some studies there was a reported
increased risk of PD observed in individual who use aspirin (Bower
et al., 2006; Hernan et al., 2006). In contrast, other studies showed
that aspirin was protective and functioned by ROS scavenging
in vivo (Di Matteo et al., 2006; Maharaj et al., 2006b). Ibupro-
fen protects DA neurons against glutamate toxicity and decreases
MPTP toxicity in vitro (Casper et al., 2000; Morioka et al., 2004;
Carrasco et al., 2005). A meta-analysis determined that regular use
of Ibuprofen also reduced the risk of developing PD in humans
by 40% (Samii et al., 2009; Gao et al., 2011). The results from
these studies together suggest that Ibuprofen and aspirin may be
neuroprotective.

The dihydropyridine L-type calcium channel blocker Isradip-
ine has been reported to reduce hypoxia-induced activation of
Ca2+-dependent xanthine oxidases, monoamine oxidases, cytoso-
lic phospholipase A2, and cyclo-oxygenases (COX-2) along with
a decrease in free radical generation and cytochrome-c release
(Barhwal et al., 2009). Increased expression of calpain, caspase-3,
(Barhwal et al., 2009), and glutamate-induced neurotoxicity (Pizzi
et al., 1991) was also inhibited by Isradipine.

The use of L-type Ca2+ channel antagonists protects SNpc DA
neurons in MPTP-treated animals (Kupsch et al., 1995, 1996; Chan
et al., 2007), but the same was not true of 6-OHDA-treated ani-
mals (Sautter et al., 1997). This discrepancy may be the result of the
different mechanisms by which the two toxins act on mitochon-
dria (Bove et al., 2005a). Currently very few studies specifically
address Isradipine’s neuroprotective capabilities, however a dose-
dependent effect was observed in 6-OHDA-treated animals (Ilijic
et al., 2011). In a pilot study in which PD patients were treated
with Isradipine no negative side effects were noted thus paving the
way for further clinical testing (Simuni et al., 2010).

Because a mutation in the DJ-1 protein causes early onset
of autosomal PD (Bonifati et al., 2003; Ibanez et al., 2003) and
lower levels of DJ-1 are associated with PD, it is thought that
drugs that up-regulate DJ-1 may slow disease progression by
moderating oxidative stress and protein aggregation (Zhou et al.,
2011). DJ-1 acts through multiple pathways, and works in par-
allel with PINK1/parkin (Zhou et al., 2011). Phenylbutyrate, a
chaperone molecule and histone deacetylase inhibitor, increased
DJ-1 expression in DA cell cultures, rescued cells from oxida-
tive stress, and reduced α-synuclein aggregation (Zhou et al.,
2011). In MPTP-treated animals, phenylbutyrate protected DA
neurons in the SNpc and increase DJ-1 expression (Gardian
et al., 2004; Zhou et al., 2011). Long-term administration of
phenylbutyrate reduced deterioration in motor and cognitive

functions in mice (Zhou et al., 2011). Similar results were seen
with 4-phenylbutyrate in rotenone-treated mice (Inden et al.,
2007).

Type 2 diabetes has been correlated with an increase risk of
PD and a high prevalence of insulin resistance has been found
in PD patients, suggesting that the two chronic diseases may share
similar dysregulated pathways that play a role in cell death and dys-
function (Arvanitakis et al., 2004; Jeerakathil et al., 2007). Possible
shared pathways may be related to insulin regulation, suggest-
ing that diabetes drugs may possess neuroprotective effects (Holst
et al., 2011). Glucagon-like peptide-1 (GLP-1) is commonly used
to treat type 2 diabetes. GLP-1 also acts as a growth factor in
the brain, and can induce neurite outgrowth and protect against
oxidative injury in cultured neuronal cells (Perry et al., 2007).
The anti-apoptotic actions of GLP-1 is thought to be related to
the activation of the transcription factor cAMP response element-
binding protein by phosphorylation (Perry et al., 2002; Li et al.,
2009). Previous studies have also claimed that PDA, PI3K, and
MAPK may be involved in the mechanism of action of GLP-1,
in addition to MAPK-independent signaling and growth factor-
dependent Ser/Thr kinase AktPKB (Lazaroff et al., 1995; During
et al., 2003; Perry and Greig, 2005).

Exendin-4 (Ex-4), an analog of GLP-1, protected DA neurons
from degeneration, preserved DA levels, and improved motor
function in rodents (Li et al., 2009) by inhibiting microglial acti-
vation and matrix metalloproteinase-3 expression (Kim et al.,
2009). Ex-4 has also been shown to protect ventral mesencephalic
dopaminergic cells in culture, reverse nigral lesions, and pro-
tect against 6-OHDA toxicity (Harkavyi et al., 2008; Li et al.,
2009). Ex-4 receptors also show neuroprotection by mediating
and increasing neurogenesis in the subventricular zone in rodents
(Bertilsson et al., 2008). In addition to Ex-4, other analogs of GLP-
1 offer promising neurprotective effects (see review Harkavyi and
Whitton, 2010). One of these, Liraglutide, has been shown to be
neuroprotective in an Alzheimer’s disease model (McClean et al.,
2010, 2011).

RASAGILINE AND MINOCYCLINE ARE CURRENTLY IN
CLINICAL TRIALS AS NEUROPROTECTIVE AGENTS FOR PD
Rasagiline is a selective and potent propargylamine MAO-B
inhibitor (Tatton et al., 2003), that reduces MPTP and 6-OHDA
toxicity in PC12 and SH-SY5Y cells, (Maruyama et al., 2000) and
is neuroprotective in vivo (Heikkila et al., 1985; Huang et al., 1999;
Speiser et al., 1999; Sagi et al., 2001; Youdim et al., 2001a). Pre-
treatment with Rasagiline prevents nigrostriatal damage induced
by MPTP in primates (Kupsch et al., 2001; Sagi et al., 2001).
Chronic administration of Rasagiline increased DA neuron sur-
vival in lesioned SNpc and improved motor impairments (Blan-
dini et al., 2004). Rasagiline also increased the expression of the
neurotrophins BDNF, GDNF, and NGF (Murer et al., 2001). In
humans, Rasagiline reduced the long-term progression and symp-
toms in PD (Hauser et al., 2009; Olanow et al., 2009). In a promis-
ing recent study, Rasagiline delayed the need for antiparkinsonian
drugs and patients had lower scores on the PD rating scale in a
Phase III study (Rascol et al., 2011).

Rasagiline suppresses mitochondrial apoptosis by inhibit-
ing caspase-3 and nuclear poly [ADP-ribose] polymerase 1
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Table 1 | Neuroprotective agents in PD models.

Neuroprotective

agents

Cell culture and animal studies Human and epidemiological studies

Study Results Study Results

Caffeine A (van den Pol, 1986;

Kachroo et al., 2010)

Decreased dopaminergic neuron

toxicity in MPTP

E (Ross et al., 2000; Ascherio

et al., 2001)*, (Saaksjarvi et al.,

2008; Costa et al., 2010)*

Caffeinated beverages

decreased the risk of PD

A (Chen et al., 2001;

Joghataie et al., 2004;

Aguiar et al., 2006)

Decreased DA loss and restored

DA levels in MPTP and 6-OHDA

E (Xu et al., 2006) Caffeinated beverages have

no effect on PD risk

A (Joghataie et al., 2004;

Aguiar et al., 2006)

Decreased motor dysfunctions in

6-OHDA

H (Ascherio et al., 2003) A decrease in PD risk among

women consuming caffeine

and not taking hormone-

replacement therapyA (Xu et al., 2002, 2010) Caffeine increased metabolites

associated with prevention of DA

loss

A (Xu et al., 2006) Estrogen and caffeine prevented

neuroprotection

Caffeine +
nicotine

A (Trinh et al., 2010) Decaffeinated coffee and

nicotine-free tobacco were

neuroprotective in Drosophila

E (Tan et al., 2003) Caffeine and nicotine com-

bined reduced the rate of PD

Nicotine A (Ferger et al., 1998;

Costa et al., 2001)

Nicotine reduced DA depletion

resulting from MPTP and 6-OHDA

E (Quick, 2004; Simon et al.,

2009)

Nicotine lowered the risk of

developing PD

A (Meshul et al., 2002) Nicotine minimized parkinsonian

contralateral rotations in 6-OHDA

A (Quik et al., 2006) Non-human primates maintained

dopaminergic function and cell

loss in the SNpc was prevented

with nicotine administration

A (Carr and Rowell, 1990)* Tobacco smoke prior to MPTP

treatment reduced the loss of

striatal DA in mice

Urate and UA A/C (Jones et al., 2000;

Duan et al., 2002)

UA protects against DA-induced

apoptosis

E (de Lau et al., 2005; Alonso

et al., 2007; Annanmaki et al.,

2007; Chen et al., 2009)*,

(Schwarzschild et al., 2008)*,

(Andreadou et al., 2009)*

Decreased risk of PD with

UA and urate

H (Ascherio et al., 2009) Slower rates of clinical pro-

gression of PD were seen

with UA intake

H (de Lau et al., 2005;

Schwarzschild et al., 2008)

Serum UA correlates with a

decreased risk of PD

Vitamin E A (Odunze et al., 1990) Vitamin E deficiency increases

MPTP toxicity

E (Zhang et al., 2002; Etminan

et al., 2005)*

Protection from PD with

moderate vitamin E intake

A (Lan and Jiang, 1997;

Roghani and Behzadi,

2001)

Vitamin E supplementation

protected DA neurons in the SNpc

and reduced DA loss

H (Fernandez-Calle et al., 1992;

LeWitt, 1994; Morens et al.,

1996)

Clinical trials also show no

neuroprotective benefit of

taking vitamin E

A (Gong et al., 1991; Chi

et al., 1992)

Striatal DA was not attenuated by

pretreatment of vitamin E

C (Offen et al., 1996) Vitamin E has no protective effects

against DA-induced toxicity in

PC12 cells

A (Perry et al., 1987) Vitamin E partially protected DA

neurons in MPTP rodents

(Continued)
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Table 1 | Continued

Neuroprotective

agents

Cell culture and animal studies Human and epidemiological studies

Study Results Study Results

Vitamin E +
vitamin C

H (Fahn, 1992) Both vitamins combined

decreased PD progression

in early stage patients

Vitamin C H (Scheider et al., 1997; Zhang

et al., 2002; Etminan et al., 2005)

Few beneficial effects are

seen with vitamin C and even

an increased risk of PD

H (Perlmutter, 1988) Vitamin C intake reduced the

risk of PD by 40%

Vitamin D C (Butler et al., 2011) Disruption of Vitamin D’s Ca2+

homeostasis properties

accelerated SNpc dopaminergic

neuron loss

E (Anderson et al., 1999) An increased risk of PD is

associated with high con-

sumption of vitamin D

H/A (Gash et al., 1996;

Kordower et al., 2000), (Gill

et al., 2003)

GDNF stimulation by Vitamin D

can alleviated PD symptoms in

primates and PD patients

C/A (Wang et al., 2001;

Smith et al., 2006)

Vitamin D produced beneficial

effects against PD characteristics

A (Holick, 2007) Vitamin D increased

neuromuscular function in

parkinsonian rodents

Beta-carotene (Perry et al., 1985, 1987;

Yong et al., 1986)

Beta-carotene protected against

MPTP neurotoxicity in mice, but

not primates

E (Perlmutter, 1988) A decrease in the risk of

PD was seen with high B-

carotene intake

Riboflavin E (Perlmutter, 1988; Murakami

et al., 2010)

Reduced risk of PD, with high

riboflavin intake by 51%

E (Coimbra and Junqueira, 2003) Riboflavin supplementation

improved motor capacity of

PD patients

CoQ10 A (Shults et al., 1999) CoQ10 protected nigrostriatal

dopaminergic neurons in MPTP

H (Shults et al., 2002; Shults,

2003; Galpern and Cudkowicz,

2007)

Chronic administration of

CoQ10 delayed progression

of PD in patients with no

adverse affects in Phase II

A (Cleren et al., 2008) CoQ10 supplementation

diminished neural tissue damage

and prevented DA depletion in

SNpc

Investigators (2007) Inconclusive results of

CoQ10 supplement show-

ing neuroprotection in PD

patients

CoQ10 +
vitamin E

H (Shults et al., 2004) Combination showed bene-

ficial for PD patients, how-

ever, Phase III trials deemed

it futile (NINDS, see text

footnote 1)

Creatine A (Matthews et al., 1999) Creatine protected against

MPTP-induced DA depletion in the

SNpc

Investigators (2006) Creatine delayed the pro-

gression of PD by 50%
Investigators (2008) Creatine showed efficacy as

a neuroprotective agent in

PD and is currently in Phase

III trials (NET-PDLS, see text

footnote 2)

CoQ10 +
creatine

A/H (Yang et al., 2009) Combination showed a

neuroprotective effect in chronic

MPTP and humans

(Continued)
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Table 1 | Continued

Neuroprotective

agents

Cell culture and animal studies Human and epidemiological studies

Study Results Study Results

DHA A (Bousquet et al., 2008) DHA supplements replaced omega-6 fatty

acids after MPTP

C (Wang et al., 2003) Neurons were protected against

cytotoxicity with DHA intake

A (Ozsoy et al., 2011) DHA decreased apoptosis of dopaminergic

cells in MPTP

A (Samadi et al., 2006) DHA reduced 40% of the levodopa-induced

dyskinesias in Parkinsonian primates

A (Bousquet et al., 2008) DHA preserved DA levels from

MPTP-induced neurotoxicity in mice

DHA + uridine A (Wurtman et al., 2006;

Sakamoto et al., 2007)

This combination increased levels of neural

phosphatides, proteins in synaptic

membranes, and dendritic spines in rodents

A (Cansev et al., 2008) DHA and uridine administration also

reduced parkinsonian related behaviors and

elevated DA levels in 6-OHDA rats

Melatonin A (Acuna-Castroviejo et al.,

1997; Kim et al., 1998;

Maharaj et al., 2006a)

Neuronal cell death damage induced by

MPTP, 6-OHDA, and iron was protected

with Melatonin administration

H (Dowling et al., 2005) Melatonin improved duration

of sleep and reduced sleep

disturbances in PD patients

A (Mayo et al., 1998, 1999) Melatonin blocked apoptosis and necrosis

in 6-OHDA and PC12 cells

A (Tapias et al., 2010) Striatal DA depletion and DA neuron loss

increased after melatonin treatment of

rotenone-induced Parkinsonism

GSH A (Garrido et al., 2011) Excessive or reduced GSH levels initiated

degeneration of DA neurons

C (Schulz et al., 2000) Decreased GSH increased neuron

susceptibility to neurotoxins, but did not

correlate to DA viability or striatal terminals

A (Klivenyi et al., 2000) Depletion of DA was seen after MPTP

treatment in GSH peroxidase-deficient mice

A (Pileblad et al., 1989;

Seaton et al., 1996;

Wullner et al., 1996)

Low levels of GSH reduced DA neurons

after toxin administration

IP6 A/C (Xu et al., 2008, 2011) IP6 inhibited MPTP, 6-OHDA, and iron

toxicity in cell culture

A (Xu et al., 2008) IP6 increased cell survival in MPTP

A (Obata, 2003) IP6 suppressed hydroxyl radical formation

after MPP+ treatment in rats

NSAID (ibupro-

fen + aspirin)

A/C (Bilodeau et al., 1995;

Kaufmann et al., 1997;

Aubin et al., 1998; Saini

et al., 1998; Casper et al.,

2000; Sairam et al., 2003)

NSAID’s protected against neuronal death

and dopaminergic neurotoxicity

E (Chen et al., 2003; Ton

et al., 2006; Wahner

et al., 2007; Gao et al.,

2011)

NSAID’s lowered the risk of

PD

E (Chen et al., 2005; Ton

et al., 2006; Driver

et al., 2011; Gao et al.,

2011)

A reduction in PD risk was

observed with Ibuprofen,

but not NSAIDS or Aceta-

minophen

(Continued)
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Table 1 | Continued

Neuroprotective

agents

Cell culture and animal studies Human and epidemiological studies

Study Results Study Results

A/C (Esposito et al., 2007) NSAIDS showed neuroprotection

in MPTP, 6-OHDA, and in vitro

E (Becker et al., 2011) NSAID’s and aspirin showed

no association with altering

the risk of PD

A (Casper et al., 2000;

Morioka et al., 2004,

Carrasco et al., 2005)

Ibuprofen protected DA neurons

against glutamate toxicity and

decreased MPTP toxicity

E (Bower et al., 2006; Hernan

et al., 2006)

Increased risk of PD shown

with moderate aspirin intake

E (Samii et al., 2009; Gao et al.,

2011)

Ibuprofen reduced the risk of

developing PD in humans by

40%

Isradipine A (Ilijic et al., 2011) Isradipine showed

neuroprotection against 6-OHDA

H (Simuni et al., 2010) Isradipine was deemed futile

for human trials

Phenylbutyrate C (Gardian et al., 2004;

Zhou et al., 2011)

Phenylbutyrate protected DA

neurons in the SNpc

A (Zhou et al., 2011) Reduced deterioration in motor

and cognitive function in mice

Ex-4 A (Li et al., 2009) Protected DA neuron

degeneration, preserved DA

levels, and improved motor

function in rodents

A/C (Harkavyi et al., 2008;

Li et al., 2009)

Ex-4 protected ventral

mesencephalic dopaminergic cells

in culture, reverse nigral lesions,

and protected against 6-OHDA

toxicity

Rasagiline C:, (Heikkila et al., 1985;

Huang et al., 1999; Speiser

et al., 1999; Maruyama

et al., 2000; Sagi et al.,

2001; Youdim et al., 2001a)

Reduces MPTP and 6-OHDA

toxicity in PC12 and SH-SY5Y cells

H (Hauser et al., 2009; Olanow

et al., 2009)

Rasagiline reduced the long-

term progression and symp-

toms in PD

A (Kupsch et al., 2001; Sagi

et al., 2001).

Rasagiline prevented nigrostriatal

damage induced by MPTP in

primates

A (Blandini et al., 2004) Rasagiline increased DA neuron

survival in lesioned SNpc and

improved motor impairments

H (Rascol et al., 2011) Rasagiline in a Phase

III delayed the need for

antiparkinsonian drugs and

patients had lower scores

on the Parkinson’s disease

rating scale

C (Murer et al., 2001) Rasagiline increased expression of

neurotrophins

Minocycline A/C (Du et al., 2001). Minocycline blocked

MPTP-induced degeneration of DA

neurons in the SNpc∼ preventing

loss of striatal DA and its

metabolites. Minocycline

treatment also inhibited MPP+
mediated inducible NO synthase

expression in vivo and blocked

NO-induced neurotoxicity in vitro

H (Investigators, 2006) Minocycline was deemed

effective in Phase II slow-

ing the progression of PD in

patients. An 18-month follow

up study showed no safety

concerns with its use (Inves-

tigators, 2008), leading to

Phase III trials

(Continued)
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Table 1 | Continued

Neuroprotective

agents

Cell culture and animal studies Human and epidemiological studies

Study Results Study Results

A (Faust et al., 2009;

Radad et al., 2010)

DA neuroprotection by

Minocycline was seen in a

Drosophila model of PD and after

rotenone toxicity in rodents

A (Quintero et al., 2006). Reduced the number of

apomorphine-induced rotations in

6-OHDA-lesioned rats

A/C (Yang

et al., 2003)

Minocycline exacerbated MPTP

damage to DA neurons in vitro and

in vivo

A (Diguet et al., 2004) Minocycline treatment in primates

and mice produced more

severe/rapid parkinsonism,

behavior deficits, and greater loss

of nerve endings

Minocycline +
creatine

H (NET-PD, 2006) Reduced progression in PD

patients in Phase II

C, cell culture; A, animal; H, human; and E, epidemiological. Studies showing gender specificity, where males show favorable results are denoted (*).

(PARP-1) activation, translocation of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), the opening of the MPT and DNA frag-
mentation (Figure 1; Youdim and Weinstock, 2001; Youdim et al.,
2001b, 2003; Akao et al., 2002a; Bar Am et al., 2004; Bar-Am et al.,
2004; Weinreb et al., 2004). Rasagiline also increases the expres-
sion of the anti-apoptotic proteins Bcl-2 and B-cell lymphoma-
extra large (Bcl-XL) through the PKC pathway, in addition to
down-regulating the pro-apoptotic Bcl-2-associated death pro-
moter (Bad) and Bcl-2-associated X protein (BAX) (Youdim et al.,
2001a, 2003; Akao et al., 2002b; Yogev-Falach et al., 2003; Bar Am
et al., 2004; Bar-Am et al., 2004; Weinreb et al., 2004).

Minocycline is a semi-synthetic second-generation tetracycline
that exerts anti-inflammatory and antioxidant effects (Ryan and
Ashley, 1998; Ryan et al., 1998; Faust et al., 2009). Minocycline
works by inhibiting the activation of microglia and attenuating
the p38 MAPK cascade which reduces inflammatory cytokine syn-
thesis (Figure 1; Yrjanheikki et al., 1998; Tikka et al., 2001; Wu
et al., 2002). It is thought that Minocycline’s neuroprotective prop-
erties may result from inhibition of NO-mediated neurotoxicity
(Du et al., 2001). Additionally, Minocycline may be able to chelate
metal ions.

In rodents, Minocycline blocked MPTP-induced degeneration
of DA neurons in the SNpc, preventing loss of striatal DA, and its
metabolites (Du et al., 2001). Minocycline treatment also inhib-
ited MPP+ mediated inducible NO synthase expression in vivo
and potently blocked NO-induced neurotoxicity in vitro (Du
et al., 2001). Potent DA neuroprotection by Minocycline was
also observed in a Drosophila model of PD (Faust et al., 2009)
and after chronic rotenone toxicity in rodents (Radad et al.,
2010). In addition, Minocycline administration reduced the num-
ber of apomorphine-induced rotations in 6-OHDA-lesioned rats,

reduced TH-positive cell loss and increased the size and fiber
density of the remaining nigral cells (Quintero et al., 2006).

Although Minocycline inhibits microglial activation (Wu et al.,
2002), other studies have shown it to significantly exacerbate
MPTP-induced damage to DA neurons in vitro and in vivo (Yang
et al., 2003). Similarly, Minocycline treatment of monkeys and
mice produced more severe and rapid parkinsonism, behavior
deficits, and greater loss of nerve endings (Diguet et al., 2004).
Lack of neuroprotection was shown to be due to the inability of
Minocycline to abolish the activation of TNF-α and its receptors,
thereby failing to modulate TNF signaling after MPTP administra-
tion (Sriram et al., 2006). Minocycline administration in TNF-α
knockout MPTP-treated mice increased leakage of the BBB, but
these animals did not exhibit a greater loss of neurons (Zhao et al.,
2007). In a phase II clinical trial, Minocycline was deemed effective
in slowing the progression of PD in patients (Investigators, 2006)
and an 18-month follow up study showed no safety concerns, thus
paving the way to a phase III trial (Investigators, 2008). Addi-
tionally, neuroprotective effects of Minocycline combined with
creatine demonstrate additive benefits in reducing PD progression
in patients, and is currently in clinical trials (NET-PD, 2006).

CONCLUDING REMARKS
Some neuroprotective agents show promising results for slowing
the progression of PD and these are summarized in Table 1. In
general, these agents reduce oxidative stress, mitochondrial dys-
function, protein aggregation, inflammation, excitotoxicity, cell
death, iron accumulation, or stimulate neurotrophic factors. In
an earlier review, caffeine, CoQ10, creatine, Minocycline, and
Rasagiline were identified as the top candidates for preventing
neurodegenerative diseases (Ravina et al., 2003). However, current
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research suggests that Minocycline, creatine, and Rasagiline are the
most promising agents for neuroprotection in PD and all three are
now in Phase III trials. In addition, a combination of Minocycline
and creatine is in Phase III trials and CoQ10 and creatine is in
Phase II. Other promising neuroprotective agents for PD include
nicotine, caffeine, Ibuprofen, and DHA since they show strong
neuroprotection. More moderate protective effects are observed
with melatonin, vitamin D, and UA. In contrast, vitamin E, vit-
amin C, NSAIDs, aspirin, GSH, and CoQ10 alone show limited
and/or inconsistent results for slowing disease progression. Of the
remaining agents, IP6, riboflavin, beta-carotene, Liraglutide, Ex-4,
Phenylbutyrate, and Isradipine show promising results in reduc-
ing the risk of PD, but further studies are needed to determine if
they are neuroprotective in humans. Additionally, caffeine and UA
may be promising, but only in male PD patients. These sex-specific

effects are a reminder that it is important to assess each PD patient’s
response to neuroprotective agents clinically since other uniden-
tified variables, such as single nucleotide polymorphisms (SNPs)
and hormones, may also affect an individual’s response. Further
research addressing the mechanism of the sex differences and how
SNPs play a role in the response to neuroprotective agents is needed
to optimize a therapeutic approach for treating PD.
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