

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

$$
\begin{aligned}
& B F \\
& 181 \\
& S_{73}
\end{aligned}
$$

$$
\frac{612060}{4.7 .55}
$$

By C. Spearman

CONTENTS.

	$g e$
Itroduction.	
rt I. Elemantary correlation, and "accidental deviations."	2
112. Requirements of a good method.	2
12. Standard methods explained.	6
3. Comparison by rank.	8
4. Auxiliary methods.	11
art II. Correction of "systematio deviations."	17
1. Systematic deviations generally.	17
, 2. "Attenuation" by errors.	18
(3. Limits of associative problems.	21
4. "Constriction" and "Dilation.	23
5. "Distortion."	24
6. Critioism of prevalent working methods.	25
7. llumber of cases desirable for an expor	ent. 28

INTRODUCTORY.

All knowledge - beyond that of bare isolated occurrencedeals with uniformities. Of the latter, some few have a olaim to be considered absoluto, such as mathematical implioations and meohanical laws. But the vast majority are only partial; medicine does not teach that smallpox is inevitably escaped by vacoination, but that it is so generally; biology has not shown that all animals require organic food, but that nearly all do so; in daily life, a dark sky is no proof that it will rain, but merely
a marning; even in morality, the sol categorical imperative alleged by Kant wae the sinfulness of telling a lie, and few thinkers since have admitted so much as this to be valid universally. In paychology, more perhaps than in any other science, it is hard to find absolutely inflexible coincidences; occasionally, indeed, there appear uniformities sufficiently regular to be practically treated as laws, but infinitely the greater part of the observations hitherto reoorded concern only more or less pronounced tendencies of one event or attribute to accompany enother.

Under these circumstances, one might well have expected that the evidential evaluation and precise mensuration of tendencies had long been the subject of exhaustive investigation

, צ5020

 - TMitrers verag

and now formed one of the earliest sections in a beginner's psyohologioal course. Instead, we find only a general naive ignorance that there is anything about it requiring to be learnt. One after another, laborious series of experiments are executed and published with the purpose of demonstrating some connection between two events, wherein the otherwise learned psychologist reveals that his art of proving and measuring correspondence has not advancea beyond that of lay persons. The eoneequence has been that the eignificanoe of the experiments is not at all rightly understood, nor have any definite facte been elicited that may be either confimed or refuted.

The present artiole is a commencement at attempting to remedy this deficiency of soientific correlation. With this view, it will be strictly confined to the needs of practical workers, and all theoretical mathemetical demonstratione will be ommitted; it may, however, be gaid that the relations stated have already received a large amount of empirical verification. Great thanks are due from me to Professor Haussdorff and to Dr. G. Lipps, each of whom have supplied a uaful theorem in polynomial probability; the former has also very kindly given valuable advice concerning the proof oi the important formulae for elimination of "systematio deviations."

At the same time, and for the same reason, the meaning and working of the various formulae have been explained sufficiently, it is hoped, to render them readily usable even by those whose knowledge of mathematios is elementary. The fundamental procedure is accompanied by simple imaginary examples, while the more advanced parts are illustrated by cases that have actually occurred in my personal experience. For more abundant and positive exemplification, the reader is requested to refer to the under oited research, whioh is entirely built upon the principles and mathematioal relations here laid down.

In conclusion, the general value of the methodics reoommended is emphasized by a brief critcism of the best correlational work hitherto made public, and also the important question is discussed as to the number of"osses"required for an experimental series.

Part 1.
ELEMENTARY CORRELATIOIV AND "ACCIDEITTAL DEVIATION."

1. Requirements of a Good Method of Correlation.
(a) Quantitative expression.

The most iundamental requisite is to be able to measure our observed oorrespondence by a plain numerical symbol. There

1. "General Intelligenoe" determined and measured, to appear in a subsequent number of this Journal.

 st:

- 7100b

is no reason whatever to be setisfied either with vague generalities such as "large," "medium,""small," or, on the other hand, with complioated tables and complletions.

The first person to see the possibility of this immense advance seems to have been Galton, who, in 1886, writes: "the length of the arm is said to be correlated with that of the leg, because a person with a long arm has usually a long leg and conversely."1 He then proceeds to devise the required symbol in such way that it conveniently ranges from l, for perfect correspondence, to 0 for entire independence, and on again to -1 for perfect correspondence inversely. By this means, correlations became comparable with other ones found either in different objects or by different observers; they were at last oapable of leading to further conclusions, speaulative and practical: in a word; they now assumed a saientific oharacter.

Mathematically, it is clear that innumerable other syetems of values are equally concievable, similarly ranging from 1 to 0. One such, for instanoe, has been worked out and extensively used by myself (secippilffi). It therefore becomes necessary to discuss their relative merits.
(b) The significance of the quantity.

Galton's partioular system is defined and most adivantageously distinguished from all the others by the important property, that if any number of arma, for instance, be collected which are all any amount, $x \sigma a$ qbove the mean, then the corresponding legs will average rx σ above the mean (with a middie or "quartile" deviation(α^{2}) of $\sigma_{1} \sqrt{1-r^{2}}$; where $\sigma_{a}=$ the quartile variation of the arms, $\sigma_{1}=$ that of the legs, and r is tho measure of the correlation.

But another- theoretically far more valuable - property may conceivable attach to one ong the possible systems of values expressing the correlation; this is, that a measuee might be afforded of the hidden underlying cause of the variations. Suppose, for example, that A and B both detive their money from variable dividends and each gets $1 / x$ th. of his total from some source common to both of them. Then evidently their respective incomes will have a oertain tendency to rise and fall simultaneously; this correspondence will in eny of the possible systems of values elways be some function $1 / x$, but in only one of them will it actually be itself $\epsilon l / x$; in such a favored case, if A and B get, say, 20% of their respective incomes from the common source, the correlation between these two imcomes will also show itself as 0.20; and conversely, if. A's inoome happens to be found oorrelated with that of B by 0.20 , then

1. "Prooeedings Royal Soaiety of London", Vols XL and XLV.
2. Commonly, but misleadingly, termed the "probable error."

 ま！

there is a likelihood that 0.20 of $A^{\prime} s$ income coincides with 0.20 of B , leaving to either 0.80 disposable independently. The observed correlation thus becomes the diredt expression of the relative amount of underlying influenoes tending for and against the eorrespondence.

In the above imagined instance, this desirable expresaiveness belongs to the same above aystem of values proposed by Galton (and elabotated by Pearson). But this instance is exoeptional and fundamentally different from the normal type. Evidently, A and B need not necessarily derive exactly the same proportion of their incomes from the common souree; A might get his 0.20 while B got some toqally different share; in whioh case, it will be found that the correlation is always the geometrical mean between the two shares. Let B be induced to put all his income into the common fund, then A need only put in $0.20=0.04$, to maintain the same correlation as before; since the geometrical mean betwoen 0.04 and 1 is equal to 0.20 .

Now, in psyohological, as in most other actual correspondedces, A and B are nct to be regarded as in the fixed bisection of our firgt case, but rather as in the labile inter-accommodation of our second case. Hence A, in order to be correlated with B by $1 / x$, must be considered to have only devoted $1 / x 2$ (instead of $1 / x$) of his arrangement to this purpose and therefore still have for further arrangement $1 \mathrm{c}-\mathrm{il} \% \mathrm{x}_{\mathrm{p}}^{2} \mathrm{mioh}$ will enable an independent correlation to arise of $\sqrt{1-1 / x \&}$ In short, not Galton's measure of correlation, but the square thereof, indicates the relative influence of the factors in A tending towards any observed correspondence as compared with the remaining coimponents of A tending in other directions.
(o) Accuracy.

From this plurality of poesible systern of values for the messure of the correlation must be carefully distinguished the varicty of waya of caloulating any one of them. These latter again, have various advantages and disadvantages, of which the principal is their respective degrees of liability to "accidentsi deviation."

For, though the correlation between two series of data is an absolute mathemation fact, yet its whole real value lies in our being able to assume a likelihood of futher cases taking a similar direction; we want tp cpnsider our results as a truly representative sample. Any one at all accistomed to original investigation must be avare how frequently phenomena will group themselves in such a manner as to convincingly suggest the existence of some lam - when still more prolonged experiment reveals that the observed unfformity was due to pure hazard and has no tendency whatever to further repeat itself.

Luckily, this one great source of fallacy oah be adequately

 ajalion -

eliminated, owing to the fact that such accidental deviations are different in every mdividual case (hence are often called the "variable errors") and occur quite impartially in every direction according to the known laws of probability. The consequence is that they eventually more or less completely compensete one another, and thus finally present an approximately true result. Such elimination, however, must always remain theoretically imcomplete, since no amount of chance coincidence is absolutely impossible; but beyond oertain limits it becomes so extromely unlikely that for practical purposes we can afford to neglect $1 t$. When a person loses 14 times running at pitch-and-toss, he oun reckon that such a series would not occur by mere accident one in 9,999 times, and oonsequently he will foel justifind in attributing the coincidence to some constant disturbing influence. Similarly, to estimate the evidential value of any other observed uniformity, we only require to know how nearly the odde against chance coincidence have approached to some such standard maximum as 9,999 to 1 . But, as eny standard must always be more or less arbitrarysome thinking it too lenient and others unnecessarily severeit is usual to emplos a formula giving nof the maximum but the middle deviation or "probable error". We may then easily find the probability of mere hazerd from the following comparetive table:

If the observed correlation divided by the probsile
error be. $\begin{array}{llllllll}1 & 2 & 23 & 4 & 3 & 5 & 6\end{array}$ then the frequency of ocour$\begin{array}{llllll}\text { ence by mere hazard } 二 \frac{1}{2} & 1 / 6 & 1 / 23 & 1 / 143 & 1 / 1250 & 1 / 19000\end{array}$

How, the amellness of this probable error depends principelly upon the number of cases observed, but also largely upon the mathematicel method of correlation. Though a faultiness in the latter respect can theoretioally be made good by increasing the range of the observatione, yet such increase is not always possible, and besides,has other grave disadvantages which will be disoussed later on. Other things being equal, therefore, the best methos is that one which gives the least probable error For the benefit of the reader, this probable error should always be plainly stated; nothing more is required than a rough approzimation; for while it is highly important to distinguish between a doduction worth, say, 0.9999 of perfect cortainty and one worth only 0.75 , it would be a mere splitting of straws to care whether a perticular experiment works out to a validity of 0.84 or to one of 0.85 .
(d) Ease of application.

1. In the proper use of this expression.


```
                                    3上0ッ: ロサ上す
```



```
                                    \therefore < { i-m . 30 rores
```


The most accurate ways of calculation are generally somewhat difficult and slow to apply; often, too there ocour circumstances under which they cannot bo used at all. Hence in addition to a standard method, which must be used for finally establishing the principal resalits, there is urgent need, also of auxiliary methocis capable of being employed under the most varied conditions and wh the utmost facility.

But here a word of warning appears not out of place. For such auxiliary methous are very numerous and their results, owing to accidnets, will diverge to some extent from one another; so that the unwary. "self-suggested" experimenter may often be led unoonsciously - but none the less unfairly - to piok out the one most favorable for his particular point, and thereby confer upon his aork an unequisocality to which it is by no means entitled. Any departure from the rocognized standard methods are only legitimate, either when absolutely necessary, or for mere preliminary work, or for incicating comperatively unimportant relations.
2. Standard Methods Explained.
(a) Correlations betweon variables that can be measured quantitatively.

This may be regarded as the normal type of correlation. fts standard method of caiculation is that disoovered by Bravais, in 1846, and shown by Pearson in 1896, to bo the best possible. Poarson terms this method that of "Product moments."

The formula appears most conveniently expressed as follows:

$$
r=\frac{3 x y}{\sqrt{s x^{2} \cdot 5 y^{2}}}
$$

where x and y are the devistions of any pair of chargcteristics from thoir respective medians,
xy is the product of the above two values for any single individual,
Sxy is the sum of such products for all the individuals,
Sx2 is the sum of the squares of all the various values of x,
Sy y^{2} is similarly for y
and r is the roquired oorrelation.
A simple example may make this method clearer. Suppose that it was desired to correlate acutoness of sight with that of hearing, end that for this puppose five persons were tested as to the greateat dostance at which they could read and hear a standard alphabet and sound respectively. Suppose the results to be;

1. "Memoires par divers savants" T, IX, Paris, pp255-332
2. "Phil. Trans., R.S., London" Vol.CLXXXVII, A, p.164.

- \because -

so that $r=\frac{+12-12}{\sqrt{-25}}=0$, and there, thus, is no correspondence, direot or inverse.
The "probable error". between any obtained correlation and the really existing correspondence has heen determined by pearson, as being "with suffieient accuracy"when a fairly large number of cases have been taken,

$$
=0.674506 \sqrt{\frac{1-r^{2}}{n\left(1+r^{2}\right)}}
$$

For disoussion of correlation between characteristics whose distribution differs considerably from the normal probability curve as regards elther "range" or "shewness," reference may be made to the works below. It may be remarked that the method of "produot moments" is valid, whether or not the distribution follow the hormal law of frequency, so long as the "regression" is linear.
(b) Correlation between characteristics that can not be messured quantitavely.

In the example quoted by Gelton, of correspondence between the lend th of arm and that of leg, it may be noted that the correspondence is proportional quantitatively; a long arm has a tendenoy to be accompanied by a leg not only long, but long to the same degroe. Ilow, in many cases, such proportionality is by the nature of things excluded; a printed work is possibly remembered better than one heard; but, hevertheless, we cannot in accordanoe with the precoding formula, ascertain whether degrees of visuality are correlatea to retentiveness of memory, seling that in the former case there do not exist any degrees, a word being simply either seen or not seen. Perhaps even

1. Uany Yule: "Proc. R.S. London," Vol. LX p477

Pearson: "Phil. Trans. R.S. London." Voi.CLXXXV, 1A, p7l;
Vol CLIXXVI, $1 \mathrm{~A}, \mathrm{p} 343$, and Vol. CXCI A, p. 229.
G. Lipps: "Die Theorie der Collectivgegenstande," Wundt's

Phil. Stuã., Vol. XVII.
LTE
> more numerous are those cases where proportionality does indeed exist, but practically will not admit of being meacured; for instance, it is probable that conscientiousness is to some extent a hereditary quality, fet we cannot well directly determine whether brothers tend to possess precisely the same amount of it, owing to the fact that we cannot exactly measure it.

In all such cases we mint confine ourselvee to counting the frequancies of coexistence. We can easily find out how often seen and spoken nords are respectively rememberod and forgotten. It has proved quite feasible to divide the ohilaren of a sohool generally into "conscientious" and"non-conecientious," and then to measure how much brothers tend to be in the same diviaion; then we have proved this simple association, we may provisionally assurne correlation of quantity also; that is to say, if the "consoientious," generally speaking, have a particular degreo of tendency to peesess brothers likewise "oon scientious," then boys with exoessively tender soruples will have the same degreo of tendenoy to possess brothers with similarly excessive tenderness, while those with only a moderate amount of pirtue will be thus correlated with brothers also of only moderate virtue; further, the ethical resemblance may be expected to repeat itself in cousins, etc. only reduced in proportion as the kinship is diminiahed.

For measurement of this non-proportional association, a standard method, which may be termed thaf of "cross multiples." has been elaborteed by Sheppard, Bramley-Moore, Filon, Lee, and Pearson. The formula is, unfortunately, too long and complicated to be usefully quoted in this place. It will be found in the under oited work ${ }^{2}$ together with its probable error as aetermined by Pearson. ${ }^{3}$ In practice, it will generally have to be replaced by one of the more convenient methods to be next deseribed.
3. Comparison by Rank.

This method of "oross multiples" ie not only difficult and tedious of application, but aleo it gives a probable error nearly double that of "Produat monents."

How, it can often be altogether escaped in the case of quantitiesnnot admitted absolute measurement, by substituting instead oomparison. This other way will be diecussed at some length, as it has beon largely used by myself and is believed chiefly responsible for some suocessful experinents. dil characteristioe may be collated from two quite distinct aspeots: either (as in example of visual and auditory acutenese) by aotual
1."Phil. Trans." Vol. CXCII, A, p.141.
2. "Phil. Trans." Vol. CXCV A, pp.2-7
3. Phil. Trana." Vol. CxCV A, 10-14.

mensumation, or else by order of merit: we might say that a student, A, obtained 8,000 marks in an examination, while B only got 6,000; or instead, we might sey that a was third out of 100 candidates, while B was only 20th. Precisely the seme method of calculation may be again used in the latter case, simply substituting the inverse ranks, 97, 80, etc., for the performanees; $8,000,6,000$, etc.
(a) Disadvantages of the"Rank" method.

In the first place, it may be objected that the observed correlation would then only hold good for persons of the same averago differences from one another. For assuming, sey, acute sight to be correlated with acute hearing; then the order of merit of A, B and C, as regards sight, is more likely to remain unaltered as tegards hearing also, when the diference in their respeotive powers of vision is extremely marked, then when they are practically equal on the latter head. But the more numerous the persons experimented on, the less will be the average difference of faculty; it might, therefora, be supposed that the correlation would become continually less perfect as the experiments were made more extensive. This, however, would be a fallacy: 100 experimental subjects compared together by "Rank" would on the ole actually show appreciably the same average cofrelation as 1,000 , provided, that in oither case the subjects are selected by chance; the amount of the oorrelation is not really dependent upon the difforence between the grades, out upon the relation of this differense to the mean diviation: and noth of these increase together with the number of subjeots; On the other hand, the correlation will undoubtediy diminish if the subjects be all chosen form a more homogeneous class; in a seleot training school for teschers, for example, eenergl intelligence will throughout show smaller corrslation wh other qualities, than wald be the case in a college for quite average young men of the some age; but this fact applies just as much to comparison by "Measuroment."

The next possinle objection is that oomparison by rank bases itself upon an assumption that all the subjocts differ form one another by the same amount, whervas A amy differ form B five times as much as B differe from C. But such an assumption would only take place, if correspondence by rank were considerad to be wholly aouivalent to that by measuroment; no such assumption is made; the two aspeots are recognized to be theoretically distinct. but advantage is taken of the faot that they give corrolationel ve子ues sencibly equivelent in amount. Even against the small existing discrepancy amy be set off a deviation of the same order of magnitude mich is incurred when uaing measurement itself, owing to the practical necessity of throwing the cases into a number of groups.

The thied and only solid objection is that rank affords a theoretically somewhat less full oriterion of correspondence than does measurement; and the force, even of this argument, disappears on considering that the two methods give apprecibaly the same correlational values.
(b) Advantages of the "Rank" method.

The chief of these is the lerge reduetion of the "accidental error." In normal frequeney curve, the outlying exceptional cases are much more spaoed apart than are those nearer to the average; hence, any accident disturbing the position of these exceptional casoe will have unduly great effect on the general reeult of the correlation; and owing to this inequality in the influence of the errors, the latter will not compengate one another with the same roadiness as usuel. Koreovor, it is just these hyper-influential extreme cesea where there is nost likelihood of accidentel errors and where there very frequently prevails a law quite different from that governing the great bulk of the cases. As regards the quantity of this gain by using renk (obstracting from the last mentioned point, which cannot well be estimated in any ε eneral manner) there should be no difficulty in calculating it methematically. From a considerable amount of empiriaal evidence, the probable error when using the method of "product mements" with rank appears to become less than two-thirds of that given by the same method with measuremont, and therefore only about one-third of that given by the method of "cross multiples."

The next advantage is thet rank eliminates any disparity between the two characteristics comparef, as regards their general system of distribution; such a disparity is often not intrinsic or in any way relevant, but merely an effect of the particular manner of geining the measurement. By means of rank, a saries presenting the normal frequency curve can be compared on even terms with another geriee mose curve is entirely different. This cannot well be done when using mesaurements. (See p.7).

Rank has also the useful propercy of allowing any two series to be easily and frisily aombinea into a third composiqe one.

(a) Conclusion.

From the practicel point op view, it is so ursently dosirable to obtain the smallest probuble error with a givon numbor of subjects, that the method of ranic must often have tho proference even when we are dealing vith two series of measuremente properly comparable with one unother.

Thooretioally, rank is at any rate preierable to wuch a hybrid and unmeaninf correlstion as that between essential measurements on the one eide and raere urbitrury clugsificution on the other. As the latter occur in most psychological corroiations,

the only other resource would be to avoid measurements altogether by using the method of "cross multiple." But this trebles the size of the probable error, and therefore renders it neceseary that the subjeots should be no less than nine, times as numerous; such an enormous increase, even if possible, would generally be accompanied by disadvantages infinitely outweighing the supposed theoretical superiority of method.

The ahove advantages are still further enhanced whonover doaline with one-eided frequency curves, such as are furnished by most mental teate. For in these cases the great bulk of infiuence upon, the resultine correlation is derived exclusively from the very worst performanoes and is consequently of a specially doubtful validity.

In, short, correlation by rank, in most cases a desirable procedure, is. for short series quite indispenable, rondering them of equal evidential value to much longer onoe treated by other ways. Luckily, it is precisely in short eeries that gradation by rank is pracicically attainable.
(4) Auxiliary Methods.

These, as has been soid, are only for use 敂en there is adequate rasan for iot employing the above "\&tandard" methods. Any number are devisable. rhoir resulting correlational velues do not quite coincide with those fomd by the standard says, but nearly enough so for most practical purposes.
(a) Auxiliary methods of Pearson

Soveral very ingonious und convenient ones are furnished by him, hut all of similar type and requiring the gume date as thet of "cross-multiple."2. They sere thorefore for use when the compared events तo not adalt of airect quantitative correlation. The following appears to comolne ficoility and precision to.. the greatest degree:

$$
r=\sin \frac{\pi}{2} \frac{a \sqrt{a d}-\sqrt{b c}}{\sqrt{a d}+\sqrt{b c}}
$$

where the two comparad series op charaoteristics, say P and Q are each divided into two (preferably about eunai) ciasses; if the case is one whore quantity exists hut cannot be ubsolutaly measurea, P. II will comprise the instances in which p is in manifest deficiency; hut if the omparad charaoteristics assentially exclude quantity. P IT becomes the instances where is

1. "Phia.Trans. R.S.I.," Vol. CXCV, A, pp 1 and 79.
2. They are all refinements of the original formula, $r=\frac{a d-b c}{\text { ad } b o}$ published by Yule, Proc. R. $3 . \mathrm{I}_{\mathrm{L}}$, , Vol.JXVI, D. 23.

absent; similazly \hat{Q}. Then,

If $a+b$ is not very unequal to $0+d$, the probable error may be taken at obout $1.1 / \sqrt{n}$, where $n=$ the number of instances in the whole of P or of Q. 1

Returning to our previous illustration, suppose that it was desired positively to ascertain the merite of instruotion by writing and by word of mouth respectively. Ten series, each oonsisting of ten printed words, have been successively shown to a $01 a 8 s$ of twenty childron, who sach time had to write down by memory as many as they could. The experiment was next repeated, but reading the words aloud ingtead of showing them. Of the 2,000 visual impressions 900 were corectly remembered, while of the same number of auditory ones only 700 were retained.

Call the visual impressions

then $\varepsilon=900, b=700, c=1,100, a=1,300$, and
$r=\sin \frac{\pi}{2} \frac{\sqrt{900} \times \sqrt{1,300}+\sqrt{700} \times \sqrt{1,100}}{\sqrt{900} \sqrt{1,300}+\sqrt{700} \sqrt{1,100}}=0.16$
the probable error then comes to 1.1/ 4,000 - nearly 0.02 , or about $1 / 8$ of the above correlation; 80 that The latter would not occur by mere chance once in 100,00 times.

We thus see that there is at any rate good prima facie evidence of some superiority on the part of the visual sense. Also, if the experiment has been fairly exscuted and adequately तescribed, any subsequent verification under sufficientiy similar conditions, by other experimentere, should resilt in a concordant correlation, probably between 0.04 and 0.28 .

Moreover, we have obtained a direct estimate of the importence of this appurent superiority of the visual senge; for the square of the correlation amounts to 0.025 : so that of the various causes here tending to make the children remember some words better then others, the difference of sence impressed comes to about one fortieth part (see p. 4).

1. More aocurately, sin $0.1686 \pi\left(1-r^{2}\right) \sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}$

(b) Method of proportionel changes.

This is very often convenient, being especially appifcable to a large number of psychological experiments, and so easy thet the result cin be approximately seen on inspection. Here,

$$
r=\frac{3}{2} \cdot \frac{a-b}{a-b}
$$

where a - the number of cases that have changed in accordance with the supposed correspondones, sind $b=$ the number thet have changed in contradiction of it. The probable error again coraes to 1.1

Suppose, for axample, we wers demonstreting that intellecttal fatigue may be satisfactorily investigated by the method of Griessbach. ${ }^{2}$ With this vism, wo have applied his test to 100 boys befora and after their lescons. "In the latter case 68 of them have mresented the expected duller sensitivity, but 32 , on the contrary, have shom a finor disorimination than before work.

How, olanrly, had the correanondence heen perfect, all the hundred mould hive beoome vorse. ${ }^{3}$ Thus,

$$
r=\frac{3}{2} \frac{68-32}{100}=0.54
$$

As the probable error comes to 0.11, our imaginary correlation is five times greater, and therefore wnuld not have occurred hJ mere accident more than once in 1.250 tines; so that we bocome practically certain that the sensitivity of the skin realiy does measure fatigue.

It now hecomes easy to compare the quantity of this fatigue at different staces of work. Let us say that further experiments, after leasons lasting one hour longer than before, showed the correlation had risen to 0.77 . Thereby wey see that the influence of fatigue swells from 0.54^{2} to 0.77 , $1 / 5$ to being $3 / 5$ of ell the sources of veriation in cutaneons sensitivity. Such eresult has a very different scientific significance from, say, any conclueion that the average sensory threshold had enlarged by so meny more millimetres.

[^0]

Moreover, our test can bo easily and ureeisely compered with any of the various other recommended procedures, being more reliable than all which prosent smeller correlations and vice versa.
(c) Mothod of class avorages.

It often happens that measuroments (or ranks) aro known but not in such a pey as to be able to use either the method of "product monents" or even eny of the methods of Poarson. Undor such ciroumstances, I have found it very useful to be able to apply the following relation:

$$
\mathbf{r}=\frac{\bar{a}}{D}
$$

whero α is the observed difference between the average measuremont (or rank) of the p's accompanied by Q I and that of those accompanied by Q II, and D is the greatest difference thet, pes possible (such as would have occurred, had the corresponcerce been perfect). If Q has been divided into two about cqual portions, D will be equal to twice the middle or "quartile" deviation from the average in the whole series P; while if Q has been divided after the usual fashion into three such portions, only the two outer ones can be used and then $D=2.87$ times the sbove middle deviation (again taken in the whole series P)

Suppose, for example, that we wish to aseertain whether the well known test of "reaction-time" gives any indication as to the person's general speed of moverant. he try a hundred persons both in resction-time and in speed of running 50 yards. Then we divide the reaction-time records into two classes, I oontaining all the ouickest performers and II al the slowest. We now gee how long these two classes of reacters took respoctively to run the fifty yards, and what was the midde deviation from the everage among all the runners taken together. Let us put the average of clase I at 6 seconds, that of class II at 6.5 eeconas, and the eenergl midde deviation at 1.1 seconds. Then

$$
r=\frac{6.5-6}{2 \times 1.1}=0.23
$$

The svidential value of the result is given approximately, evon Por gmall values of n, by the following relation:

Probeble error $=\frac{1.17}{\sqrt{n}}$

where n is the total number of cases considered. In the three-

" $\quad=\quad . \quad 2$

以

rnation

\%

fold instesd of twofold division, the probable error becomes nearly

In the above instance, we find that the observed correlation is little over double the probable error; as so much would turn up about once in six times by mere accident, the evidence is not at all conclusive. Therefore we must either observe many more cases - 600 would be necessary to reduce the probeble error to $1 / 5$ th of the correlation - or else we must find a better method of calanlation. If rank had been employed instead of measurement, the evidence would already have been fairly good, and could have been put beyond all reproach by the addition of another 150 observations. If rank had been emplojed in conjunction with the methof of "product mements" or that of "rank differences," the required smallness of probable error could have heen obtained by as few as 36 cases in all!

The method of "class averages" is especially valuable in deciphering the results of other investigetors, where the average performances and the middle deviations are usually given (in good work), but not the data required for any of the other methods.
(d) Method of rank differences.

This methof appears to deserve mention also, seeing that it seems to unite the facility of the auxiliary methods with a maximum accuracy like that given by "product moments". It depends upon noting how much eaoh individual's rank in the one faculty differs from his rank in the other one; evedently this will be nil when the correlation is perfect, and will incresse as the correlation diminishes.

1. This general idea seems to have been first due to Binet ahd Henri ("Ia fatigue intelleotuelle" p.252-261), who, however do not work it out far enough to obtain any definite measure of correlation. Accordingly, Binet mskes little further attempt in later reaearch (L'annee psychologique, Vol.IV) to render it of service, and soon appears to have altogether dropped it (L'annee psychologique, Vol. VI.).

The same isea occurred to myself and was developed as above, without being at the time acquainted with the previous work in this direction by Binet and Henri. In obtaining the above formulae I was greatly assisted by Dr. G. Lipps' showing generally that when an urn contains n balls numbered 1,2,3,..n, respectively; and when they are all drqwn
in turn (without being replaced); and when the difference is each time noted between the number on the ball and the order of its drawing; then the most probable (or middle) totel sum of such differences, added together without regard to sign, will be

$$
=\frac{n^{2}}{3}-1
$$

Previously I had only calculated this value for each particular gize of n required by myself. Prof.Hausdorff further showed, generally, that such sum of differences will present a mean square deviation (from the ebove most probable value)

$$
=\sqrt{\frac{(n+1)\left(2 n^{2}+7\right)}{45}}
$$

-ITand

The relation is as follows:

$$
R=1-n_{n^{\frac{3 S a}{2}-1}} 1
$$

Where $S d$ is the sum of the differences of rank for all the indivinuals,
n is the total number of individuals,
and R is the required correlation.
The probable error will then be approximately, even for small values of $n,=0.4 / \sqrt{n}$.

To take again the example from p.9, we number the five persons socording to their order of merit in hearing and seeing respectively.

so. that

$$
R=1-\frac{3}{25-1}=
$$

and again we find that there is no correlation, direst or inverse.
This method, though very accurate and pre-eminently quick
in application, has unfortunately four serious disadvantages.
It can be only used for ranks, and not immediately for measurements.

The probable error given is only that showing how great correlations may be expeoted from pure accident when there is no really existing corresponaince between the two characteristios. It does not (like Pearson's probable error for the method of "produot moments") direotly show how much the observed correlation may be expected to differ by accident from any correspondence.that does exist.

The various possible values of sd are found to eall into a frequency ouree of marked asymmetry; so that we cannot (as in all the other mothods here given) take the minus values of R as representing so much inverse correlation. This defect could be remedied mathematically: but there are also other respects in which this side of the frequency ouree appesrs unsuitable for our purpose, so that it is better to treat every oor-

1. This formula becomes slightly incorrect, whenever two or more individuals are bracketed as having precisely the same rank; but the consequent error is usually to be worth considering.

relation as positive (which can always be done by, if necessary, inverteng the order of one of the series).

Finally, this value R is not numerically equivalent to the "r" found by all the other methods, but for chance distributions appears $=\sqrt{r}$. So far, the proof of this relation is only empirical, but 14 rests on a large number of cases taken, however, only between 0.20 and 0.60 . If it be accepted r can at once be found from the following table;

$$
\begin{array}{lllllllllllllll}
R & 0.05 & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1 \\
\mathrm{r} & 0.13 & 0.22 & 0.34 & 0.44 & 0.54 & 0.63 & 0.71 & 0.79 & 0.86 & 0.93 & 1
\end{array}
$$

Part II.
Correction of "Systematic Deviations."

1. Systematic Deviations Generally.

In the first part, we have seen that any correlational experiments however extensive, can only be regarded as a"sample" out of the immense reality, and will consequently present a certain amount of accidental deviation from the real general tendency; we have further seen that this accidental deviation is measurable by the "probable error" whose determination, therefore becomes an indispensab;e requisite to all serious research.

But now we are th danger of falling from Scylla into Charybdis. For after laboriously compiling sufficient cases and conscientiously determining the probale error, there exists a very human tendency to cease from labor and inwardly rejol ce at having thus risen from common fallacious argunent tothe serene certainty of mathematics. But whether or not such complacency may be justifiable in pure statistical inquiry, it is at any rate altogether premature in the kind of research that re are at present contemplating; we are not dealing with statistics, but with a line of rork so fundamentally different that it may be aptly distinguished by the term of "statisticoids." Here the accidental deviation is not the sole one, nor even the most momentous; there are many other enemies who are unmoved by the most formidable arrap of figures. These consist in such deviations as, instead of merely being balanced imper perfectly, lie wholly pm the one side or the other. As in ordinary measurements, so too in correlation, we may speak, not only of "accidental" " variable" or "compensating" inaccuracies. but also of "systematic," "constant," or "non-compensating" ones.

These systematic deviations are of very varied nature, the nost insidious being as tisual self suggestion. To take, for instance, one of our recent examples, suppose that we have applied the Griessbach test to a number of children before and

after their lessons, and have found the desired correlation between fatigue and cutanuous insensitivity it still remains exceedingly difficult to convince ourselves that we executed our tests entirely without favor or affection; for it is almost imposifible to determine a series of sensory thresholds without some general tendency, either to bring them towards the desired shape, or else - endeavoring to escape such hias- to force them in the opposite direction. To convince others of our impartiallity may be harder still. Fven this sort of deviation is to be remedied by our proposed exact method of proo cedure for by it we obtain perfectly definite results which any impartial experimenters may positively corroborate or refute.
2. "Attenuation" by Errors.

Prom page 3 it will be obvious that a correlation does not simply depend on the amount of concording factors in the two compared series, but solely on the propertion between these boncording elements on the one hand and the discording ones on the other. In our examplem it did not matter whether A and Beach had one pmond or a thousand pounds in the common funds": but only whether the amount was a small or large fraction of their whole incomes. If the discordance, $1-x$, be nil, then the concordance x is thereby perfect, that is, $=1$; and if the influence of the discordant elements be sufficiently increased, then any concordance will eventually become inflnitely small.

To consider a still more concrete example suppose three balls to be rolled along a well-kept lawn; then the varlous distances they go will be almost perfectly correlated to the various forces with which they were impelled. But let these balls be cast with the skme inequalities of force down a rough mountain side; then the respective distances eventually attained Will heve but faint correspondence to the respective original momenta.

Thus it wlll be clear that here the acoldental deviations have a new consequence simultaneous with, put quite didtinct frigitly that discussed in the last chapter iation thereing in approlonged series to always more and more perfectly counterbalance one another; and in ordinary measurements, this is their sole result. But here in correlations, they also have this new effect which is alvays in the direction of "attenuating" the appabent correspondence and whose amount, depending solely on the size of the middle error, cannot be in the least ellminated by
I. This fact has already been mathematically expressed in the last chapter by the value of correlation between two series being proportional (inversely) to the value of the middle deviation inside the series (see p. 15).

- fram raj

any prolongation of the series．The deviation gas thus become general or＂systematic．＂

Now suposse that．we wish to ascertain the correspondence between a series of values，p ，and another series， 9 ．By pram－ teal observation we evidently do not obtain the true objective values，p and 1 ，but only approximations which we will call p and q^{\prime} ．Obviously，p^{\prime} 1． 1 iss closely connected with q^{\prime} than is P With for the first pair only correspond et ald by the inter－ mediation of the second prim；the real correspondence between p and q shortie $r_{p q}$ ，has been＂at tenuated＂into $r_{p}{ }_{0}$＂．

To ascertain the amount of this at，equation and thereby dis－ cover the true correlation it appears necessary to make two or more independent series of observation of Goth pard．Then

where $p^{\prime} q^{\prime}=$ the mean of the correlations between bach series of values obtained for p with erich series obtained for 9 ．

＇p＇$p^{\prime}=$ the average correlation between and another of there several independently obtained series of values for p．
$r_{q}^{\prime} q^{\prime}=$ the вале as regards q ．
and $r_{p q}=$ the required reel correletilom between the true objective values of p and q ．

Thus，If for each characteristic two such independent series of observations be jade，say $\sum 口 ⿱ ⿰ ㇒ 一 大 口_{2} q_{1}$ and q_{2} then tie true

$$
r_{p q=} \frac{-p l q 1+r_{p l q 2}+r^{p 2 q 1}+{ }^{r} p q q 2}{4 \sqrt{\left(r_{p l p 2} \times r_{q 1 q 2}\right)}}
$$

Should circumstances happen to render say pl much more accurate than pr e then the correlations involving pl will be considerably greater than those involving p？．In such carse，
the numerator of the above fraction must be formed by the geometrical Instead of by the arithmetical mean；her by the accidental error n of tho respective observations cease to ella－ ingate one another and therefore double their final influsnce；they also introduce an indue diminution of the fraction．

In some exceptional and principally very theorcibical cases it may happen that either of the rotund metrinements，av pilI is

[^1]

 $\frac{0, y^{2}}{\cdots-\cdots+m m}=$

- \boldsymbol{i}^{3} "e:

connected with $q^{\prime}\binom{$ or }{$q}$ quite independently of p or any other link common to p'2. Then, the correlation $r_{p \prime} q^{\prime}$ will be to that extent increased without any proportional increase in $r_{p}{ }^{\prime} p^{\prime}$; hence our above formula will fallaciously eresent too large a value.

A greater practical diffuculty is that of obtaining two series sufficiently independent of one another. For many errors are likely to repert themselves; even two separate observers are generally, to some extent warped by the same influences; we are all imposed on by, not only the "Idola specus," but alsothe "Idola Tribus" and the "Idola Fori." In such Sace, the above formula is still valid, only, its correction does not go quite far onough, - a fallacy at any rate on the right side.

An actual instance will best show the urgent necessity of correcting this attanuation. In a correlation between two events, say P and Q, I obtained three independent obcervations both of P and of 2 . The average correlation for those of P -1th those for 0 was $0.38\left(-r_{p} q^{\prime}\right)$; the average correlation of those for P with one another was 0.58 ($-r^{\prime} p^{\prime} p^{\prime}$) the same for Q was $0.22\left(=r_{q}^{\prime} q^{\prime}\right)$. Therefore, the correspondence
between the real events, P and Q, comes by recooning to - 0.38
0.58×0.22
$=$ approximately $1 ;$ so that the correpondence
instead or being merely 0.38 , appeared to be absolute and oomplete.

Attenuation by errors can a lsobe corrected in another manner, which has the great advantage of an independent ompirical basis, and therefore of not belng subject to either of the tuo above mentioned fallacies beseting the other method. Hence, when the results coincide both ways, the fallacies in question may thereby be considered as disproved, for it is very unlikely that they should noth be present and in such proportions as to exactly gapeel one another. In this rethod, instead of directiy employing the values $p_{1} p_{2} p_{3}$, etc, we analganate the into a single list; by this eans twe tcldanly of the individual observational errors, and thereby we cause any really existing correspondence to rezeal itself in greater completeness. Now, this increase in correlation from this partial eflmination of errors will furniah measure of the increase to be expected from an entire elimination of errors: Assuming the mean error to be inversely proportional both to this increase in the correlation and to the qquare root of the number of lists amalgamated, the relation will be:

$$
r_{p q}=
$$

 50 保

 －ダロ」と

oonnected with q^{\prime} (or q) quite independently of p or any other link cormon to p\& Then, the correlation $x_{p} q^{\prime}$ ' will be to that extent increased without any proportional inorease in rp'p'; hence our above formula will fallaciously present too large a value.

A greater pactioal difficulty is that of obtaining two serios sufficiently independent of one another. For many exrors are likely to repeat themselves; even two separate observers are generally, to some extent, warped by the same influences: we are all imposed on by, not only the "IdOla Specus," but also the "Idola Tribus" andthe "Idola Fori." In ach oases. the abobe formula is still valid, only its carrection does not go quite far enough, - fallacy at any rate on the right side.

An actual instance will best show the urgent necessity of correcting this attenuation. In a correlation between two events, say P and Q, I obteisd three independent observations both of P and of Q. The average correlation for those of P with those for a was 0.38 ($-r_{p} q^{\prime}$); the average correlation of those for P with one enother, was 0.58 ($-r_{p} p^{\prime}$!): the same for Q was $0.22\left(\mathcal{L}^{\prime} q^{\prime}\right)$. Therefore, the correspondence between the reai events, P and Q comes by reckoning to $\frac{0.38}{\sqrt{0.58} \times 0.22}=$ approximately $7:$ so the the correspondence Instead of being merely 0.38 . apyeared to be atsolute and complete.
Attenuation by errors can also be arrected in another manner, whimh has the great advantage of an independent erpirioal basis, and therefore of not being subject to either of the two above mentioned fallacies besetting the other method. Hence, when the results coincide both ways, the fallacies in question may thereby be considered as disproved, for'it is very unlike ky that they should both be present and in such proportions as to exactiy cancel ond another. In this method, instedd of directiy employing the values $p_{1} \mathrm{P}_{2} \mathrm{p}_{3}$, etc. we amalgamate thom into a single list; by tifis means we clearly eliminate some portion of the inditidual observational errors, and thereby we cause any really existing oorrespondence to reveal itself in greater completeness. Now, this increase in correlation from this pary tial elimination or errors will furnish a measure of the increase to be expected from an entire elimination of errors. Assuming the mean error to be inversely proportional both to this increase in the correlation and to the square root of the number of lists amalgamated, the relation will be:

就

Where m and $n=$ the number of independent grading for p and q respectively,
corm $r_{p^{\prime}} q^{\prime}=$ the mean correlation between the various grading for p and those for q,
and $r_{p "} q^{\prime \prime}=$ the correlation of the amalgamated series for p with the amalgamated series for q.

In the above quoted instance, the three observations for series P were amalgamated into a single list, and similarly those for series Q. Upon this being done, the two amalgamsted liste now presented a correlation with one another of no less than $0.66\left(=r_{p^{\prime \prime}}\right)$. Thus by this mode of reckoning, the real correspondence became
$=\frac{\sqrt[4]{3 X 3 X} 0.66-0.38}{\sqrt[4]{3 X 3}-1}=$ once more approximately 1,
so that this way also the correspondence advanced from 0.38 to absolute completeness.

If more than two independent series of observations are available, we may acquire additional evilence by trying the effect of partial amalgamation. Instead of throwing all our obtained values together, Fe may form a set of smaller combnations for each of the two compared characteristics, and then see the mean correlation between one set and the other. In our obove, instance instead of summarily considering $p^{\prime} 1^{\prime} p^{\prime} 2 p^{\prime} 3$. we can have pf pi pi p; and $p_{2}^{\prime} p \frac{1}{1}$ and find out their mean correlation with similar values for q. This works out actually to 0.55 . Hence

$$
\sqrt[4]{2 \times 2 \times 0.55-0.3^{8}}=
$$

Thus again, by this third may, where both terms are the mean of 9 observed correlational values, the correspondence once more rises from the apparent 0.38 to the real 1. (1)
3. Limits of Associative problems.

We have seen that "the length of the arm is said to be correlated with that of the leg, because a person with a long arm has usually a long leg and conversely;" also that this orelation is defined mathematically by any constant which deter-

[^2]

 :

$$
=\alpha_{0} \cdot 0-\mathbb{C} \cdot 0 \times 3 \times 0
$$

[^3]Hines the function of any derinite size of arm to the moan of the sizes of the corresponding legs. Theso terms, telken literally, are very aide reacing and express what we will call the "universal" correlation betwesn the two organs.

But svidently mot the most painstaking investigation can possibly secure any adequately remesentative sample for such univergal correlations, even in the simple case of arme aur legs. To begin with, they would have to be equally dorivedirm suery stage of growth, inelucing the prenatal period; since this the most influencial of all censes of variation in size. In the next place, they roula have to come from every historical opoch, containing their fair pronorition o: big Cro-Hagnons, little Futfoozers, etc. Fu'ther, they must impartirlly include every living race, from the great Patagonians to the diminutive MRabbas; also every social class, from the tall aristocrats to the uncormized s)ummers.

Practicaly, then, the universal correlation, even if desirables is quite inaccessible. We aro forced to successively introduce a ligrge number of restrictions: the sample is conimed to adults, to racderns, to some particular country, otc., otc. In a word, we are obliged to doal with a special correlation.

When me procead to more narrowly corsider these restrictions, it soon becomes. clear that they are iar iron being roally detrinental. Fo erery serious investigation inlll be found to be directed, however vaguely and unconsciousiy, by some liypotheais as to the causes both os the correeponience and of the digression therefrom. (see page 74). Thia hypothesis will determine a particular eysten oi rostriction, such as to sat tha corresponderce in the most significant relief.

But frcin these restrictions will at the seme fine proceed scveral kinas of grave errcrs. In the first plece, since the restrictions are not explicitly recognized, they often are not cerried out in a maner scientifically pofitabie; they then, the result, however true, nay nevertheless be trivisl and unsingestive. Not instance, a serics of experinents ras recently executed by one of our best know paychologists and ended - to his apparent satisfaction - in showing that sone chilcren's chool-cicer was largaly, comelated with their height, waight and strength. As, however, no step had be3n taken to exclude the variations due to differones of age, the only reasonable conclusion seonod to be that as children grow olier they turned out in fact to probably be the true ard sufficient one.

The next fanlt to be feared is oquivocality. For even if the controlling underthought be good, yet its indiativctweas is the mind of the experimenter caused the reatriction to be carried out so unsysteratically, thet the results inevitable nase becone arbiguous and fruitless.

The last is that, oven with the clearest purpose, this epecialization of the correlation is an exceedingly difficult matter to execute succosefully/ only by a profound knowlcdge of the many factors involved, can we at all adequately oxclucio these imelerant to out main intention.

Wow, all such eloments in a correlation as are foreigh to the ineastigetor's orplicit or innlicit purpese will, like the attuating errors, constituto imputities in it and will quantitatively falsify its appraent amount. This wil chicely happon in two ways.

4. "Constrintion"and"pilation."

Any correlation of aithor of the considerod cinaractoristics will have beon adratited irrelevaitly, if it has suporvened irrsspoctively of the original definition of tino correspondence to be investigated. The variations are thereby illegitimately sonstrained to rollow soms irrelevant airection so that (as in the cesc of Attonuation they no loncer possess tull amplityde of possible correlation in the investignted direction; the naximum instead of boing I will be only a fraction, and ail the lesscr degrees of correspondence will be similempy affectert; such a falsilication may bo called "constriction." kuch more rarely, the converse or "dilation" wil? occur, by compelations beine irrelevantly axcluded. The disturbance i measureable by the following relation:

Whould any further irrolevant correlation, bay $r_{p r}$, be adoitted, then

In tho reverse case of "dilation,"

$$
r_{p q}=r^{1} p q \quad \sqrt{1-r^{2} p v \quad-r^{2} p w}
$$

these formsae will be easily genn to bo at once derivable fran the rolations stated on pages $7 / 4$ end 75 . Small, ixpolevant variations evidently do not affect the result in any sensible degree, whilo large ones are capable of revolutionizing it.

Tro pollowing is an actual illustration of this constriction. I was invostigating the correscondence botwoen on the one hand intelligonce of schocl lesson and on tho other the faculty of discrimination of musical pitch. The comrelation proved to be 0.49. But, upon irquily, it turned out that more ihan half of the chiloren took lessons in masic and there fore onjoyed artificial, training as regards pitch; here, tion, was a powerful cause of variation additional and quito irrelevant t the research, which dealt with the correspondence between the two natural faculties. When this disturvact sad once boen ditectec, thore was no difficulty in ciminating it int luence by the above formula; the correscondence between pitch ant discrimination an music lessons was meosured at 0.61 ; so that the true required carrelation necame
$\frac{0.49}{\sqrt{1-0.612}} \quad+0.62$

\%-7 …cer

In this particular case, the more desirbble course wae opon of elimination tl constriction, practically, by confining the experiment to thonc children who were lemrning music and torefore were on a supficient equalloy as yenards the training The eorelation then emined in this puroly expiricel way exactly coincided with the Pormer resulte, being ayain 0.6%.

5. "Distortion."

Whoreas Attantion and Constriction have wholly tended to reduce the apperent correlation, and pilation to enlargo it, we now come to a third kind of impurity that may equaly wril reduce or enlarge. Its offects is thus amalogous to the first consequence of accidental errors cilscussed in the first part of this article, but unlire the lattery this Distortion does not in the least terd to aliminate itsolf in the longest series of observations.

Distorition occurs whenever the two sories to be compared togother both correspond to any appreciable degrer, with the same third irrovant variant. In this case, the relation is giver by
where $r^{1} p q=$ the apparont cormelation betreen p and q, the two charactie istics to be comparcd, r
$r_{\text {pr }}$ and $r_{q V}=$ the corrciations of pond q with some third and perturbing
and $r_{p q}=$ the required real correlation between p and q efter ccrpensating for the
illigitimeto influance of v.
Should the comion corresponience with v have been irrelevantly excluded instead of admitted, the relation becomes

$$
r_{i p q}=r^{1} p q \cdot \sqrt{\left(1-r^{2} p \pi\right)\left(1-r^{2} q v\right)+r_{p v} \cdot r_{q V}}
$$

In th course of tho eare inpostigation abore allatad to, but in another cchool, the correlation betweon school intelligence and discrinination of pitch turned out to $30-C .2 \pi$, so that apparantly not the cleverer byt the stupider childran coula discidzinato bestd but now it was obso ver that a superiobity in discrimination had been shown by the olde chilaren, amounting to a correjation of 0.55; while, for a then undown reason, the echoolnaster's eatimate of intalligence had shoen a very marked (chough unconscious) partiality for the younger ones, arounting to a corielation of 0.65. Fience the tiruo correlation reckoned cut to

$$
\frac{-0.25-0.55 \times(-0.65)}{\sqrt{\left(1-0.55^{2}\right)\left(1-1-0.65{ }^{2}\right)}}
$$

$=+0.17$. This latter Low but direct correlation was - under the particular I. This ame formular has alroady been arrived at, tramed though along a very
differont route, by Yulc. Seo Iroc. R.S.L. Vol. IX.

$\because \quad \because 8 \mathrm{~m} \frac{8}{3}$

circumatances of the expriment－unquestionably arout coraget；so that the one originally observed of $=-0.25$ would have been entirelis misloodrg．

6．Criticiam on Prevelent Working Mothods．

So e ear，cur illustration of systematic deriation has bsen coutinod to instancee taken foom perconal experience．3ut it minht perhaps be thought that other workers avoid such pervorsions of fact by the simpler methad of comon sense．Unforutnately， such doen not sem to have been at all the case；not once，to the bost of my knowledge， sas any partial association between two psychologicel events been determinod in such a way as to present any geod avidential value－these are strong terms，but I think，hardly axagenastad．

Pgyohologiste，with scarcely an exception，never seen to have bocome acquainted with the brilliant mork being carried on since liges by the galton－ Feerson school．The consequence has bren that they do not even attain to the first fundanental roquisito of comrelation，name $\sqrt[y]{ }$ ，a mesise quaritative expression．hany have，indeed，faken great pains in the matter and have construct－ ed amays of complicatod numorical tables；but wien we succeed in oricnting our－ selvos in the somewhat berildering asseniblage of figures，we gonerally find that they havo onittod precisely th．Pew pacts which are essential，so that we cannot even woris out the correlation for ourselv9日．

This lack of quantitaivo expression entaila fat more than merely dininished exactitude．For in consequence，the expreimenters have bosn unable to estimate their owm rosults at all carrectiy，bane have beiievod themselves to demonstrate an entive absence of corresmonderce，when the 杰atter has really been quite con－ sidurable；milereas otkers have presented to the public as e high correlation what has really been very small anc often well within the limits of mere accidental coincidence；thee $2 i n i t s$ thoy heve had no me ns of determining，and moreovor their daka wore usually ohtained in suci a way as to make it unnecessarily large．

Soeing，thus，that even the elomontary raquiraments of good correlation Wbrk described in the first pert of this articie have been so cencraliy deficient ษ๋e cannot be burprisod to find that the ！noroaduinced refinements of prosedure discussed in the second part havo been alnost wholly unrecender；so that the final results are seturated and falsiried with every deseription of impurity． In this respect，unfortunately，it 13 no longer possible to hold up oven the Galton－Persson school as a nodel．to he tritated．Tho lattor must now perform the vory difiesrent office of saving us from detailet criticism of inforior work，by enabling us to forman oninion as to hor fatfar the defoct permeates and vitiates even the best existent corrclational rosearch．

As exazple，ro will tate Pearson＇a chief line of investieation，Collateral He edity，at that point where it cores into closost cortact．with our cwa topic， Psycholog．Bince 1089 ho has，with ecorernment sanction and assistance，boon collecting a past number of data as to the omount of correspondence existing between brothors．A perliminary calculation，hased シn ash case upon gn to 1,000 pairs， led，in 1910 to the putication of the following nomentous results：

Coerficionis of collateral horodity.
 colvelaticn or Ming of
 130tiosie.

Inyshest charactorso
(rating Hocsurarente)

Stature	0.5307	Intelligaseo	0.11559
Foream	0.6812	Wivecsty	0.4702
Soan	0.5404	Goncoientiousness	0.5929
淔emeolour	0.5168	Fopulurity	0.5044
		Comper	0.5068
(3chool	(020)	Selimomecioumbes	0.5915
Copanjic index	0. 2361	Shyneas	0.5281
[5] Cointe	0.5152		
Health	0.51503		
	0.5172	Hoan	0.5124

Dualing vitis the mans for physicel and mental characters, wo aro forced

 fantors:

Por lot us onsicion how these ceorficients of comelation will be ofiected by mur "Bysteratie deviations." To begin with theic is tice "Attenuation" by errors; rince it evidentiy cennot be essumod that the schnolmasters' judgrants as to conscientiousness, terper, otce are absolutely irfelliblo. On wafe 90 , it bes boen ahown that deviation fran this source mey be ostimated by the rollconing domule:

 that found iv some amporimistic of if orn, thare tho ixdoncadout intollectual cradings for the sano soction or curbocte corrcinted whith ons ancther on an average to the draunt of -.6A. Ad an oriler ocacions yery competont parsons have ontimatod thrs to bo an mach es should bo arpectol, we as intollagence is

 the mistaicas in ontimating one hrotham ware incepondent of the mistakes in eatimating tho othor, thon the trie corrolation would be alout, not 0.5172,
out $\frac{0.5172}{}=0.81$, an oxtant on aiflorozeo that soriously $\sqrt{6.04} \times 0.64$
modifles our impereion of exactitule fran all these coerficionte to rour places of docimels. Then we further consicer thet oach of theso phycical and

$$
\begin{aligned}
& \therefore-1,0 x+1
\end{aligned}
$$

montal heredity can hardly be nore then mero accidental ctinciüore.
Let us next proceed to irrelevant correlation, and take for our theme postnatal accidents connected on the one side with brotheriood and on the other with the mental qualitits. Pearson's primory intention socns th have been to rake his correiations as "universal" as possible and in one place he expressly mentions that education is gmone the causes contributory to viriation. Hence, he is nore than consistent, in that he forms his correlation without reeare to the fact that the emariatiox correspondence between the brothers' "consciontiousness," "popularity," etc., mast be in greet measure due to their coming under the same hone influences. Fut such a correlation can scarcely be accoptod as sciontifically valuable. Fo we do not really know anything precise about the assimilating effects of heredity, when our observed correspondence is perhape chiefly due to the brothers heving the sare emount of handers and Focket-rioney. Still less can we, then, fairly compare such results with that obtained from physical measurements, where conmon home life has little or no effact. The factor of post-natal accidonts, therefore, cannot but be recarded as irrelevant, and consequently tho coefficients of correlation rust be taken as hopalessly "distorted."

But even consistence conrot be upiald throughout the matter. For though the effect of postnatal. Ife has thus been adritted with regard to education at home, it has perionce beor cauluden as rogards public education. For only those brothers have boen compered tagothor tho are at the samo achool; the cuafficionts of correlabion would certainly diminish if those also could be includad aho are Iivirg in totally diferent maner, habe goze to see, ete., The complations are therefore also illegitinately "diletcu."

If this pork of Pearson has thus been singled out for criticism, It 1.8 cartainly from no desire to undervalue it. The above and any other systmatic emrors are owentually capable or udequate elimination, and this urticle has itsalf, it is hopein been of some use torauds that parpesse. Such cormention will no doubt necessitato ar. irmonse amovit of further investication ane labour, but ith the ond his results will acouire all thoir proper validid. My present abject is only to gu rdarainst premature conclusions and to point out the urgent noed os still furthor improving the existine metkodics of correlation work, a mbincd of investigation which to mimself has so larioly jolped to create and by means of which he is carrying light into immense recions hitherto buired inthe obscurity cf irresponsible speculation. The fundenental difference hetween his prodedure and that here r3corrondod, is that he seeks large natural sumples of eny existing series sufficiently homogeneous to be treated mathenatically; whereas here sinaler samples ere deened sufficient, but they are required to he urifificially selectod, ordeen, and corrected into full scientilic bignificance. Fif hethods aro those of pure statistics those inculceted here may be nore aptly termed "statisticoids."
7. Number of Cases Desirable for an lexperimont.

Tuis leads us to the impor'ent question, 48 去 0 how many cases it It advisable to sollect for a sizcle sories or axperiments. In actual practice, the greatest; divonsity has been epparent in this zespect; inany havo thought to sufficiently establ.ith importent correlations inth less than ten experimental subjecta while others haie thought it necebsary to gathor together at least over a thousand.

Now, a sories of experiments is a very linited extract, whose disposition is, nevartreless, to bo uccepted as a iiar ajuple of the whole immens remainder. Other things equal, whon, tho 1 rgor the sample the grouter its ovicential valuo and the less chance of more occusajonal cofncidence being nistaken for the pomanont univarsal tondency.
mis danger of accidental dovintion has been disensied in the
 We thare saw, cloo, that tinis Nafger cian heror bo catirely ellunated by any sample however large, so that it is necesamy to accapt nomo ntandurd icns virgorous than absolute certainty as sufficient ticr 211 rractical puryozos; ubuilly, the danger of revo criance coincidonce is conoldoned to bo inapmociable whon a comelation is abserred as much as five timos erouter than the probable arror, sowing that moro chance would not procuce this ome in n thouscra times. Verse, eviâuntly, the accidontal devietion dopends, not oniy on the muther of eoses, but also on the largoness of the really existine corromponderce; the more perfoct the latter, the fever the cabes that will ko required to denorstate it conclusively; and this tendency is augnented by the fact tret the robable error, bosides varying intersely
 tho sax rent that the size of the probablo crror also varios accoraingly to the mothod 0 : culculation- and to wheh an stont thet twenty casos tioutod in one of the weys demeribod furnishes as nuch certitudc as 180 in anothor more usual wey. If the contion trisold classification be adontea, an cyon moter aumber is recuirca to eifect the some pryoso; and if the correlation bo not calculated quantitatively at all, but instead be pescnied in the customary fusion to the roader" s senoral impressica, tion no number cases whatevor appear sufticient to give roasonablo glamantce of prof.

Thile this the moner of sunjests is not by any mons the sole
 upon the far Hoze formidable syatematic ae istion oreapt that it indirectly lads to an arcmous augantation then or . When ino are teking great pains to be abla to show upon papor cir imposin\% number of casse sind a dirinutive probable orvor, we are in the self same movess most likely introducing o syatomatic dosiation twentry times greator.

From this we maj gather that tho numbor of casea should be detaminod by the oimplo principle, trat tho measurements to jo araregated togothor should have thetr cmor brought to tho same ceneral order of megaitude. An astronomical chroncraster, with apsinf-detont exceperent, is not the best travelling clock; nor is there sity zonl admantaze in mecine ynon \& milustone (as has actually been cona by an infanator matrowtjelen!) the distance to the nenrost jillage in metrus to thrze adcimal places. Now, the present stago of Ccrrelational Psychology is one of pioncerinc; and, instead of sem unteldy
 variod and vell considered conditions. At the sume tine, howeycr, tho probable exror
 irvestizatica to be proved. For such a propose arobabls arror way at present be adritter without mais hesitiation up to about 0.05 ; so thet, bir novtine the mathod of celoudati. on recomondod, two to three cozon subjocts showld bs surficiont lor nost purposes. The procision can thays bo augmented subsuquontly, By carrying our birilar experiments under similar concitions and then taking averages. Only after a long melizinairy exploration of this rougher sort, shall we by in a position to effectually utilize wxeriments designed and exocuted from the very

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY association between two things

[^0]: 1. Hence, when the correletion 18 very complete, sey over 0.75 the above formule gives approciobly too large values; as the amount reaches 0.90 and 1 , the first factor must be reduced from $3 / 2$ to $5 / 4$ and 1 rospoctively.
 2. This, es is well known, consists in deteraining the least distance apart at which two points of contact cen be aistinguished as being double and not single.
[^1]: 1 By an inversion of the above formula，the correlation be－ tween two series of oteravations will be found a liseful
 measure of the accuracy of the observation．

[^2]: (1) The exactness of the coincidence between the two methods of correction is in the above instance neither greater nor less than generlily sours in practice. It was singled out, in order to show that the formulae still hold perfectly good even for such an enormous rise as from 0.38 to 1 . The posibility of such a rise is due to the unusual conditions of the experiment in question, whereby the three observations of the same objective series presented the extraordinarily small intercorrelation of 0.22 .

[^3]:

