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1. INTRODUCTION

Sommerfeld [1, 2] and his student Zenneck [3] were the earliest inves-
tigators of surface waves phenomena as evidenced in their theories of
propagation of waves over imperfect conductors. The inhomogeneous
plane wave supported by a flat surface separating two infinite homoge-
neous media has since been known as Zenneck Wave. Initially, the in-
terest was limited to theoretical study until Goubau [4–6] demonstrated
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the feasibility of using a transmission wire as a surface waveguide. The
phenomena of open-boundary wave-guides that support surface waves
have since been studied extensively both experimentally and theoreti-
cally. The main characteristic of Zenneck wave is the evanescent (i.e.,
exponentially decaying) distribution of field structure over the wave
front in the transverse plane and the tilting of the equi-phase surfaces
due to the losses in the supporting surface which causes a progressive
decrease in the amplitude of the wave as it propagates along the in-
terface. This tilting of the wave front provides a component of power
to be directed into the surface. It has also been shown [7, 8] that the
Zenneck wave is excited by an inhomogeneous plane wave incident on
a flat surface at a complex Brewster angle without reflection. The
complex incident angle can arise for example from an ordinary, homo-
geneous plane wave limited by an aperture. The origin of the complex
incident angle can be explained by the concept of plane wave spectrum
introduced by Booker and Clemmow [9, 10], and Clemmow [11]. These
authors have called the inhomogeneous plane wave with complex in-
cident angles (or equivalently with propagation coefficients exceeding
that of free space) as an evanescent or a reactive wave [9]. Such waves
produce surface waves when incident upon an interface separating two
media.

Most theoretical studies on surface waves are concerned with nearly
perfect dielectric and non-magnetic media. Goubau [4] and Attwood
[12] have analyzed TM-type waves propagating over planar and cylin-
drical conductors of circular cross section and coated with a thin layer
of dielectric material. The surface waves in their studies are charac-
terized by exponentially decaying fields in the direction normal to and
away from the guiding structure. In Attwood’s treatment the coat-
ing material is assumed to be perfectly dielectric and non-magnetic so
that the resultant propagation constant of the surface wave and the
transverse wave number in the dielectric film are purely real while the
transverse wave number in the adjoining free space is purely imagi-
nary. The latter entails the existence of exponentially decaying fields
outside the guiding structure. Though Attwood computed dielectric
film loss due to Joule heating in terms of σE2 where σ is the electrical
conductivity and E is the electric field strength, the field quantities
were computed with the assumption of purely real dielectric constant.
The presence of finite conductivity in the dielectric film which would
necessitate a non-vanishing imaginary part in the dielectric constant
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Figure 1. Absorbing layer (0 ≤ y ≤ a) backed up by a perfectly
conducting plane (y = 0) .

was treated as a small perturbation and ignored in the solution of the
field quantities. This approximating perturbation technique is justified
when the imaginary part of the dielectric constant is small compared to
the real part. In Attwood’s treatment, the dielectric material has a loss
tangent of 0.001 , thus satisfying this condition. In the following, we
generalize Attwood’s treatment to lossy dielectric and magnetic media
without using the perturbation technique. Both the permittivity (or
dielectric constant) and permeability are assumed complex. The resul-
tant propagation constant and transverse wave numbers are therefore
complex.

For an aperture-limited plane wave incident on an interface, the
solution of the diffraction problem can be represented mathemati-
cally as a linear combination of plane waves with different incident
angles including complex ones. Those plane wave components with
complex incident angles can give rise to Zenneck waves type surface
waves. Booker and Clemmow [9, 10], and Cullen [13] have given rigor-
ous and mathematically equivalent solutions (as shown in Barlow and
Brown [8]) to the launching of Zenneck waves. In the following, we
extend their theories to more general cases involving transverse stand-
ing waves/longitudinal surface waves in the film excited by aperture-
limited plane waves on planes coated with lossy material. Note also
that the excitation of surface waves in stratified media is considered in
Reference [16].
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Figure 2. Constitutive properties of sample material (Constant rela-
tive permittivity: ε′ = 20.45, ε′′ = 0.73 ).

2. FIELD COMPONENTS AND THE DISPERSION
EQUATION FOR SURFACE WAVES

A perfect conductor is assumed to lie on the x - z plane (Fig. 1) over
which a thin lossy dielectric and magnetic film of thickness a and rela-
tive dielectric constant ε = ε′+iε′′ and relative magnetic permeability,
µ = µ′ + iµ′′ is coated. Outside of the thin film is the free space or
air (Region 1, ε = µ = 1 ). The absolute permittivity and permeability
in the lossy film (Region 2) are denoted by ε2 = ε0ε and µ2 = µ0µ
where ε0 and µ0 are the vacuum permittivity and permeability. All
the numerical data presented in this paper are obtained for realistic
lossy films with complex relative parameters measured in the frequency
band 2 to 18 GHz. The complex permittivity in this frequency range is
nearly constant, ε′ = 20.45 and ε′′ = 0.73 . The complex permeability
shown in Fig. 2 is frequency dependent. The measured data contained
in Fig. 2 are consistent with the Kramers-Kronig relations. A time
dependence exp(−iωt) is assumed and suppressed below.
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A TM-type surface wave propagating along the z -axis is investi-
gated. The field quantities are assumed to be independent of the coor-
dinate x . The non-vanishing field components which satisfy the Max-
well equations can be deduced as follows. In the free space (Region 1),
y ≥ a , they are given by

Hx = eik1(y−a)eiβz,

Ey = − β

k0
Z0Hx, Ez =

k1

k0
Z0Hx, (1)

and inside the layer (Region 2), 0 ≤ y ≤ a , by

Hx =
cos(k2y)
cos(k2a)

eiβz,

Ey = − β

k0ε
Z0Hx, Ez = i

k2

k0ε
Z0Hx tan(k2y). (2)

In these equations, k0 = ω
√
ε0µ0 and Z0 =

√
µ0/ε0 are the wave

number and impedance of the free space. The quantities k1 and k2

are the transverse wave numbers of the wave field outside and inside the
layer, respectively. The quantity β is the longitudinal wave number,
or the propagation constant. These wave numbers are connected by
the relations

k2
1 + β2 = k2

0, k2
2 + β2 = k2

0εµ (3)

through the Helmholtz wave equation. It follows that

k2
2 − k2

1 = k2
0(εµ− 1). (4)

The Hx -components from eqs. (1) and (2) are continuous on the layer
surface (y = a) . The Ez component satisfies the boundary condition
on the perfectly conducting plane (Ez = 0 at y = 0) and its continuity
at the layer surface, y = a , leads to a transcendental relationship

k1ε = ik2 tan(k2a). (5)

This transforms into the dispersion equation

D(k0, β) ≡
√

k2
0εµ− β2 tan

(
a
√

k2
0εµ− β2

)
+ iε

√
k2

0 − β2 = 0 (6)
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with the substitutions of k1 and k2 from eq. (3). Note that the ratio
of components Ez and Hx on the layer’s surface (y = a) can be
interpreted as the surface impedance

Zs = −Ez
Hx

= −Z0
k1

k0
(Ohm). (7)

For TM-surface waves this impedance must be inductive (Im(k1) > 0)
in order to provide the field concentration above the layer near its
surface.

For a given frequency and layer thickness, the dispersion equation
(6), and wave numbers equations (3) and (4) can be solved for the
unknowns β, k1, and k2 . Let β = β′ + iβ′′, k1 = k′1 + ik′′1 , and
k2 = k′2 + ik′′2 . The numerical solution involves a two step process.
Each step is an iterative procedure to arrive at a final set of solutions
from some initial trial values. In the first step, we aim at obtaining
an approximate solution by setting the imaginary parts ε′′ and µ′′

to zero. This is equivalent to assuming that the thin film is non-
absorbing. This is the same assumption made in Reference [12]. Under
this assumption, k2 becomes purely real, k2 = k′2 , and k1 purely
imaginary, k1 = ik′′1 . In this case, eqs. (4) and (5) reduce to

(k′2)
2 + (k′′1)2 = k2

0(ε
′µ′ − 1), (8)

k′′1ε
′ = k′2 tan(k′2a) (9)

corresponding to eqs. (31) and (33) in Reference [12].
Let k′2 and k′′1 be the x and y coordinates on a two dimensional

x - y plane. Then eq. (8) represents a circle with a radius given by the
square root of the right hand side. Equation (9) represents a tangent-
type curve. The intersection point of these two curves is a solution
of the coupled equations. If a point representing the trial values of
k′2 and the corresponding k′′1 ; computed from eq. (9) is found to lie
outside the circle according to eq. (8), a slightly smaller new trial value
is set at 0.99k′2 . If the point is found to lie inside the circle, a slightly
larger trial value is set at 1.01k′2 . The iterative process continues until
a sufficiently accurate intersection point is found.

These coordinates of the intersection point along with k′′2 = 0 and
k′1 = 0 are then used as the initial trial values in the second step of
the numerical solution using

kn+1
1 = i

kn2
ε

tan(kn2 a), (10)
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(kn+1
2 )2 = (kn+1

1 )2 + k2
0(εµ− 1) (11)

to advance the solution from nth to (n+1)th iteration repetively until
the solution sufficiently converges. Numerical calculations are carried
out for frequencies ranging from 2 to 18 GHz, and layer thickness
ranging from 0.05 to 0.09 inch. The transverse distribution of the
field inside the layer is determined by the wave number k2 . It is
shown by numerical computations that all values of k′2a are less than
π/2 . This implies that for these frequencies and layer thicknesses, only
the single (fundamental) mode solution exists.

3. ATTENUATION AND LOSSES OF SURFACE WAVES
INSIDE ABSORBING LAYERS

The imaginary part of the propagation constant β = β′ + iβ′′ de-
termines the attenuation factor | exp(iβz)| = exp(−β′′z) in eqs. (1)
and (2) for the surfaces waves. The complex quantity, β is obtained
numerically from the dispersion relations as described in the previous
Section. In principle, the attenuation constant β′′ should be equal to
the sum of two components αe and αm which account for the electric
and magnetic losses, respectively. They are defined by

αe =
Pe
2Pz

, αm =
Pm
2Pz

, (1/meter) (12)

where

Pe =
1
2
ωε0ε

′′
∫ a

0
(|Ey|2 + |Ez|2)dy, (Watt/meter2) (13)

Pm =
1
2
ωµ0µ

′′
∫ a

0
|Hx|2dy, (Watt/meter2) (14)

are the total power of electric and magnetic losses inside the layer per
unit length in the z - direction, and

Pz =
1
2
Re

(∫ ∞
0

EyH
∗
xdy

)
(Watt/meter) (15)

is the total power transferred by the surface wave. All these quantities
relate to the cross section of the guiding structure with the unit width
(0 ≤ x ≤ 1) , and they are averaged in time for the period of the field
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oscillations (0 ≤ t ≤ 2π/ω) . The substitution of the field components
(1), (2) into eqs. (13–15) ieads to the following explicit expressions

Pe =
1

2k0
Z0

ε′′

|ε|2
1

| cos(k2a)|2
.

[
|β|2

∫ a

0
| cos(k2y)|2dy + |k2|2

∫ a

o
| sin(k2y)|2dy

]
, (16)

Pm =
1
2
Z0k0µ

′′ 1
| cos(k2a)|2

.

∫ a

0
| cos(k2y)|2dy, (17)

Pz =
1

2k0
Z0

1
| cos(k2a)|2

.

[
β′

2k′′1
| cos(k2a)|2dy + Re

(
β

ε

) ∫ a

0
| cos(k2y)|2dy)

]
(18)

where ∫ a

0
| sin(k2y)|2dy =

1
4

[
sinh(2k′′2a)

k′′2
− sin(2k′2a)

k′2

]
, (19)

∫ a

0
| cos(k2y)|2dy =

1
4

[
sinh(2k′′2a)

k′′2
+

sin(2k′2a)
k′2

]
. (20)

It is shown numerically that the attenuation constant β′′ solved from
the dispersion equation satisfies the exact relation β′′ = αe+αm where
the right-hand side is computed from eqs. (12) to (20).

The quantities β′′, αe, and αm are shown in Figures 3, 4, and
5. The magnetic losses apparently dominate. This is in agreement
with the well known fact that thin layers with electric losses are not
efficient radar absorbing materials when they are placed on metallic
plates. This is because of the boundary condition which requires the
tangential component of the electric field to vanish on the layer-metal
surface.

From Figures 4 and 5, it is seen that electric and magnetic losses
(αe and αm) become maximal at the same frequencies. Figure 6
plots the attenuation constant β′′ as a function of the ratio of layer
thickness to wavelength in the medium of the layer, λd = λ0/Re(

√
εµ)

where λ0 = 2π/k0 is the wavelength in the free space. This figure
demonstrates the resonance behavior of surfaces waves in the absorbing
layer. The maximum absorption occurs when the ratio a/λd is in the
neighborhood of 0.19− 0.20 .
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Figure 3. Surface wave attenuation constant in absorbing layers.

One might expect that the maximum absorption of the field inside
the layer would be accompanied by the maximum concentration of the
external field (y > a) near the layer surface (y = a) . However, the
comparison of Figures 3 and 7 shows that the quantity k′′1 which deter-
mines the distribution of the field above the layer, reaches maximum
values at lower frequencies than the attenuation constant β′′ does.
The quantity k′1 is plotted on Fig. 8. Its negative values indicate that
the wave above the layer moves towards the layer boundary. Figure 9
shows the quantity β′ as a function of frequency.

From Figs. 3, 4, and 5, the attenuation constants β′′ , αe, and
αm reach their maxima and then decrease with further increase in
frequency. They reach the zero values and then becomes negative.
Negative values of β′′, αe, and αm result from non-physical solutions
of the dispersion equation. They imply the amplification of the field,
rather than energy absorption, and must be ignored. Physically these
negative values mean that surface waves cannot be excited and thus no
propagation occurs along the layers. This is also confirmed in Fig. 7
where the quantity k′′1 reaches the zero values at the same frequencies
as the quantities β′′, αe, and αm . As the frequency increases, the
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Figure 4. Surface wave attenuation factor (Electric loss) in absorbing
layers.

Figure 5. Surface wave attenuation factor (Magnetic loss) in absorbing
layers.
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Figure 6. Attenuation constant as a function a/λd in absorbing
layers.

Figure 7. Transverse wave numbers in free space (Imaginary part).
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Figure 8. Transverse wave numbers in free space (Real part).

Figure 9. Surface wave propagation constant in absorbing layers.
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quantity k′′1 , becomes negative. As a result, in accordance with eq.
(7), the surface impedance Zs becomes capacitive and does not allow
the excitation and propagation of TM-surface waves.

The frequency at which the quantities β′′, αe, and αm vanish can
be considered as the upper cutoff frequency. This is a special feature of
surface waves in absorbing layers. In lossless layers surface waves can
exist at any high frequency. It is interesting to observe from previous
figures that as the layers thicken the upper cutoff frequency decreases
and the frequency band widths of the surface wave become narrower.
The numerical results presented in this paper, with the exception of
Figs. 3 and 7, contain only the values for physical quantities up to
just beyond the upper cutoff frequency for each layer. Values further
beyond are not physically meaningful.

4. PHASE AND AMPLITUTDE FRONTS OF SURFACE
WAVES

Equation (1) describes a spatial distribution of the surface wave outside
the layer (y > a) with a factor

eiφp−φa where φp = β′z + k′1y, φa = β′′z + k′′1y. (21)

For physically allowed solutions below the upper cutoff frequency, the
dispersion equations provide the following values: β′ > 0, β′′ ≥ 0, and
k′1 ≤ 0, k′′1 > 0 . Therefore, the surface wave outside the absorbing
layer is an inhomogeneous plane wave incident on the layer without
reflection. Due to the losses inside the layer this wave undergoes the
exponential attenuation in the z -direction and its amplitude decreases
exponentially along the normal to the layer (in the y -direction).

Setting φp = const and φa = const determine the phase and am-
plitude fronts, respectively:

yp = zp tan γp + const, ya = za tan γa + const, (22)

where

tan γp = −β′

k′1
, tan γa = −β′′

k′′1
. (23)

According to eq. (3) the quantity k2
1 + β2 is purely real. It follows

that β′β′′ + k′k′′ = 0 and

tan γa = −β′′

k′′1
=

k′1
β′

= − cot γp. (24)
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Figure 10. Amplitude and phase fronts of the surface wave above the
layer.

Therefore, γa = π
2 +γp , i.e. outside the layer the phase and amplitude

fronts of the surface wave are perpendicular to each other (Fig. 10).
This is in agreement with the well known property of inhomogeneous
plane waves propagating in lossless media. The angles γp and γa
are shown in Figs. 11 and 12 as functions of frequency. They acquire
minimum values near the upper cutoff frequency.

It is interesting to note a close connection between the angle γp and
the complex Brewster angle γB = γ′B + iγ′′B . The latter is introduced
by the relation

ei(βz+k1y) = eik0(z sin γB−y cos γB) (25)

where
sin γB = β/k0, cos γB = −k1/k0 (26)

From these equations it follows that

sin γ′B cosh γ′′B = β′/k0, cos γ′b sinh γ′′B = β′′/k0,
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Figure 11. Phase front angles outside the layers.

Figure 12. Amplitude front angles outside the layers.
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Figure 13. Brewster angle (Imaginary part).

cos γ′B cosh γ′′B = −k′1/k0, sin γ′b sinh γ′′B = k′′1/k0,

and

tan γ′B =− β′/k′1 = k′′1/β
′′, (27)

tanh γ′′B =− β′′/k′1 = k′′1/β
′. (28)

The above mentioned relationship k′1k
′′
1 +β′β′′ = 0 leads to the equal-

ities on the right- hand sides of eqs. (27) and (28). Comparison of eqs.
(23) and (27) shows that γ′B = γp. Thus, the real part of the Brewster
angle exactly equals the angle γp (Fig. 11). The imaginary part of the
Brewster angle found from eq. (28) is plotted on Fig. 13.

Inside the layer, the surface wave is composed of two inhomogeneous
plane waves. When the function cos(k2y) in eq. (2) is decomposed into
exp(±ik2y) , we obtain Hx = H+

x + H−x where

H+
x = const · eiφ+

p −φ+
a , H−x = const · eiφ−p −φ−a , (29)

with
φ+
p = β′z + k′2y, φ+

a = β′′z + k′′2y,
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φ−p = β′z − k′2y, φ−a = β′′z − k′′2y, (30)

where k′2 > 0, k′′2 ≥ 0 from the solution of the dispersion equation.
The H−x -component represents an inhomogeneous plane wave moving
forward positively in the z -direction and negatively in the y -direction.
The H+

x component moves positively in both y - and z - directions.
Consequently the surface wave in the layer is a criss-cross pattern.
Such waves are often referred to as the Brillouin waves.

Equations for the phase and amplitude fronts φ±p = const, φ±a =
const can be written in the standard form y = z tan γ + const with

tan γ−p = − tan γ+
p =

β′

k′2
, tan γ−a = − tan γ+

a =
β′′

k′′2
(31)

where γ+
p = π − γ−p , γ+

a = π − γ−a .
The numerical values for the angles γ−p , γ

−
a are shown in Figs. 14

and 15. Inside the absorbing layer, the phase and amplitude fronts of
inhomogeneous plane waves are not perpendicular to each other. The
angle between them ( γ− = γ−p − γ−a ) is shown in Fig. 16 and does not
exceed 11◦ . The lowest value of this angle, about 2.6 degrees, occurs
in the layer with 0.09 inch thickness. With respect to the z -axis,
the slope of the phase and amplitude fronts of inhomogeneous plane
waves does not exceed 10.5◦ . A special feature of the fields inside the
layers consists of a non-monotonic behavior of the angles γ−p , γ

−
a , and

γ−p − γ−a as functions of frequency. The thicker the layers, the faster
these angles change.

5. PHASE AND ENERGY VELOCITIES OF SURFACE
WAVES

According to eq. (21) the phase front of the surface wave outside the
layer moves along the amplitude front in the direction

−→z p = ẑ sin γp − ŷ cos γp, (32)

as shown in Fig. 10. The phase factor of the surface wave is determined
by exp(iφp) where

φp = zp(β′ sin γp − k′1 cos γp) = zp

√
β′2 + k′21. (33)
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Figure 14. Phase front angles inside the layers.

Therefore, the phase velocity equals

−→V p = ẑp
ω√

β′2 + k′1
2
. (34)

One should emphasize that the phase velocity is oriented in the ẑp -
direction (not in the z -direction along the layer). Figure 17 shows
that the quantity is less than the light velocity (c = 1/

√
ε0µ0) in free

space. The z -component of the phase velocity

(
−→V p · ẑ) = Vp sin γp =

ωβ′

k′1
2 + β′2

(35)

is plotted on Fig. 18. In contrast to the total phase velocity defined by
eq. (34), its z -component as given by eq. (35) is nearly a monotonic de-
creasing function which reaches minimum values near the upper cutoff
frequency due to the multlpiler sin γp with the angle γp being shown
in Fig. 11.

Equations (34) and (35) are completely different from the conven-
tional definition of the phase velocity along the guiding structure,
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Figure 15. Amplitude front angles inside the layers.

Figure 16. Angles between phase front and amplitude front inside the
layers.
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Figure 17. Phase velocity of surface waves outside the layers.

−→V p
con

= (ω/β′)ẑ . The latter is not applicable in the case of lossy layers
considered here and gives values which can exceed the light velocity c
(Fig. 19). At the upper cutoff frequency when β = β′ , k1 = k′1 , and

k′21 + β′2 = k2
0 , eq. (35) reduces to (

−→V p · ẑ) = c2/V conp .
Inside the layer the surface wave consists of two inhomogeneous

plane waves (Eq. (29)). Their phase velocity in the direction of the
phase front propagation (not in the direction along the layer) is deter-
mined by the expression

V+
p = V−p =

ω√
β′2 + k′2

2
. (36)

similar to (34). Numerical values show that this quantity does not
depend on the layer thickness (Fig. 20) below the corresponding cut-
off frequency. One can see also that it differs from the ratio Vd/c =
1/Re(

√
εµ) shown in the same figure by less than 10%. The quan-

tity Vd can be interpreted as the light velocity in a medium with the
refractive index n = Re(

√
εµ) .

One notes an interesting behavior of surface waves near the up-
per cutoff frequency. As shown in Section 3 and mentioned above,
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Figure 18. The z -component of the phase velocity according to eq. (30).

Figure 19. Conventional phase velocity.
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Figure 20. Phase velocity and light velocity inside the layers.

at the upper cutoff frequency the propagation constant β and trans-
verse wave number k1 become purely real (β = β′, k1 = k′1) , and√

β′2 + k′1
2 = k0 . Therefore, the phase velocity (34) of the surface

wave outside the layer in the ẑp -direction (32) (not in the z -direction
along the layer) becomes equal to the light velocity, Vp = ω/k0 = c
This can be seen in Fig. 17. What actually happens at the upper cutoff
frequency is that the surface wave outside the layer transforms into an
ordinary plane wave incident on the layer at an oblique angle. For this
reason its phase front moves along the layer faster than light.

The time-averaged power density flux vector is given by the Poynt-
ing vector

−→
P =

1
2
Re[
−→
E ×−→H

∗
]. (37)

Outside the layer (Region 1) the surface wave is described by eq. (1).
Therefore its Poynting vector contains the components

Py =
k′1

2ωε0
e−2[k′′1 (y−a)+β′′z], Pz =

β′

2ωε0
e−2[k′′1 (y−a)+β′′z]. (38)
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Their ratio is equal to

Pz

(−Py)
= −β′

k′1
= tan γp. (39)

This implies that the Poynting vector is directed along the amplitude
front in the zp -direction which is normal to the phase front (Fig. 10).
In other words, the power flux vector of the surface wave outside the
layer is parallel to the phase velocity vector.

The streamlines of the Poynting vector are parallel to one another,
i.e., the power flux is laminar. Therefore, the energy velocity can be
defined as

−→V e =
P

w
ẑp, Vp =

P

w
, (40)

where

P =
√

P 2
y + P 2

z =

√
k′1

2 + β′2

2ωε0
e−2[k′′1 (y−a)+β′′z], (41)

is the magnitude of the flux vector and

w =
1
2
[ε0|
−→
E |2 + µ0|

−→
H |2] =

1
2

[ |k1|2 + |β|2
ω2ε0

+ µ0

]
e−2[k′′1 (y−a)+β′′z].

(42)
is the energy volume density. The substitution of eqs. (41) and (42)
into eq. (40) gives the following expression for the energy velocity

−→V e = ẑp
ω
√

k′1
2 + β′2

k2
0 + |k1|2 + |β|2 , (43)

or
−→V e
c

= ẑp
k0

√
k′1

2 + β′2

k2
0 + |k1|2 + |β|2 . (44)

The absolute values of this ratio are plotted on Fig. 21. At the upper

cutoff frequency,
√

k′1
2 + β′2 = k0, |k1|2+|β|2 = k2

0, and Ve = c/2 The
z -component of the energy velocity,

(
−→V e · ẑ) =

ωβ′

k2
0 + |k1|2 + |β|2 , (45)
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Figure 21. Energy velocity outside the layers.

Figure 22. The z -component of the energy velocity outside the layers.
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Figure 23. Conventional group velocity not applicable to lossy layers.

is plotted on Fig. 22 as a function of frequency. This is completely
different from the conventional expression for the group velocity

−→V g
con

= ẑ
∂ω

∂β′
= ẑ

1
∂β′/∂ω

(46)

which leads to absurd values exceeding the light velocity (Fig. 23).
Moreover, from Fig. 9, we see that for the thickest layer (a = 0.09′′) ,
the curve Re(β) = β′(ω) has the maximum at the frequency about
f = 3.8 GHz and the minimum near f = 4.5 GHz. At the maximum
and minimum the derivative ∂β′/∂ω equals zero and changes its sign.
This means that at these frequencies, the conventional group velocity
changes its value from +∞ to −∞ at the maximum of β′(ω) and
from +∞ to −∞ at the minimum of β′(ω) .

The scalar product of the phase and group velocities given by eqs.
(34) and (43) becomes

−→V p ·
−→V e = Vp · Ve =

ω2

k2
0 + |k1|2 + |β|2 =

c2

1 + |k1|2+|β|2
k2
0

. (47)
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Figure 24. Product of energy velocity and phase velocity outside the
layers.

The ratio (Vp · Ve)/c2 is plotted on Fig. 24. At the upper cutoff
frequency this quantity equals 0.5 because Ve = c/2 and Vp = c . It

is interesting to note that the scalar product of vector
−→V e (Eq. (43))

and
−→V p

con
= (ω/β′)ẑ is exactly equal to the right-hand side of the eq.

(47).
For lossless layers the following relationships hold

k′1 = 0, k1 = ik′′1 , β′′ = 0, β = β′, γp = π/2,
√

k′1
2 + β′2 = β, k2

1 + β2 = k2
0 = β2 − (k′′1)2,

|k1|2 + |β|2 = β2 + (k′′1)2 = 2β2 − k2
0,

k2
0 + |k1|2 + |β|2 = 2β2. (48)

As a result, in the case of lossless layers the above eqs. (34) and (43)
for the phase and energy velocities reduce to

−→V p = ẑ
ω

β
,

−→V e = ẑ
ω

2β
=

1
2
−→V p. (49)
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Figure 25. Streamlines of the power flux inside the layer. Layer thick-
ness a = 0.05′′ .

Thus in this particular case, the energy velocity is half of the phase
velocity.

Unfortunately, it is impossible to apply the above definition (40)
for the energy velocity inside the absorbing layers. There is no gen-
eral expression in electromagnetics for the energy volume density w in
absorbing and dispersive media [17, 18]. However, the pattern of the
power flux in the absorbing layers can be demonstrated by the stream-
lines of the Poynting vector. This is shown in Fig. 25. These lines are
determined by the equation (Fig. 26)

dz

dy
= − tanϕ(y) (50)

where

tanϕ(y) = −Pz
Py

=
2(β′ε′ + β′′ε′′){[cos(k′2y) cosh(k′′2y)]

2 + [sin(k′2y) sinh(k′′2y)]
2}

(k′2ε′ + k′′2ε
′′) sinh(2k′′2y) + (k′′2ε′ − k′2ε

′′) sin(2k′2y)
.

(51)
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Figure 26. Definition of the angle ϕ(y) .

The solution of eq. (50) is given by the integral

z = ζ +
∫ a

y
tanϕ(y)dy (52)

where (ζ, a) is an arbitrary point at the layer boundary y = a .
Because Py = 0 on the perfectly conducting substrate (y = 0) ,
the streamlines are tangential to the z axis. Note that in Fig. 25
only the streamlines passing through the point with initial coordinates
ζ = 0, y = a on the layer surface are shown. The streamlines passing
through any other point on the layer surface have exactly the same
shape.

6. THE SURFACE IMPEDACE OF THIN ABSORBING
LAYERS

In this Section we discuss the method of describing the scattering and
guiding properties of thin absorbing layers by using the concept of the
surface impedance. Suppose that the incident plane wave

H inc
x = eik0(z cos θ−y sin θ) (53)
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Figure 27. Reflection of the plane wave by the layer.

Figure 28. Reflection coefficient of plane wave incident on lossy layer.
The wave frequency is equal to 2 GHz.
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Figure 29. Surface impedance. Layer thickness 0.05′′ , 2 GHz.

is reflected from the homogeneous absorbing layer (Fig. 27) and trans-
forms into the wave

Href
x = ρ(θ)eik0(z cos θ+y sin θ)−i2k0a sin θ. (54)

The reflection coefficient ρ(θ) is given by

ρ(θ) =
ε sin θ + i

√
εµ− cos2 θ tan(k0a

√
εµ− cos2 θ)

ε sin θ − i
√

εµ− cos2 θ tan(k0a
√

εµ− cos2 θ)
(55)

where ε and µ are defined in Section 2. The moduli of this coefficient
are shown in Fig. 28. They reach minimum values at certain angles
θmin . Data for the angle γp (Fig. 11) show that the incidence angles
90◦−θmin are not far from the real part of the complex Brewster angle
(γ′B = γp) . For example for the layer with thickness of 0.05 inch, we
have θmin ≈ 8◦ , 90◦ − θmin ≈ 82◦ and γ′B ≈ 87◦ . What is surprising
is that the θmin values are close to the imaginary part of the Brewster
angle γ′′B (Fig. 13).
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The ratio

Zref
s = − Einc

z + Eref
z

H inc
z + Href

z

= Z0
1− ρ(θ)
1 + ρ(θ)

sin θ (Ohm) (56)

is plotted on Fig. 29. It is nearly constant for all angles of incidence
and practically identical to that defined in eq. (7) for surface waves.
Thus, we see that those particular layers with large refractive index
n =

√
εµ which are considered in the present paper can be described

in terms of the surface impedance Zs . This concept is used in the
next Section for the solution of the excitation problem.

One should note the connection between the reflection of plane
waves from the layers and the surface waves propagating along the
same layers. By setting cos θ = β/k0 and sin θ = −

√
1− (β/k0)2

with complex β determined by eq. (6), the incident plane wave given
by eq. (53) transforms into eq. (1) for the surface wave. The angle θ
here can be recognized as the complement of the Brewster angle γB
defined by eq. (26). The reflection coefficient changes into

ρs =
iε

√
k2

0 − β2 +
√

k2
0εµ− β2 tan(a

√
k2

0εµ− β2)
iε

√
k2

0 − β2 −
√

k2
0εµ− β2 tan(a

√
k2

0εµ− β2)
(57)

The numerator of this expression is exactly the left-hand side of the
dispersion equation (6) and, therefore, it is equal to zero. This confirms
the known results [7, 8], that the surface wave can be considered as
an inhomogeneous plane wave incident on the guiding structure under
the complex Brewster angle without reflection.

7. EXCITATION OF SURFACE WAVES ON THE
IMPEDANCE PLANE

In the previous Section it is shown that the absorbing layers, studied
in this paper, can be considered approximately as infinite planes with
the surface impedance Zs given by eq. (7). The excitation of surface
waves on an impedance plane was investigated in details by Cullen,
Booker and Clemmow for the Zenneck type surface waves. Their results
were summarized by Barlow and Brown in Reference 8. We extend
their theory below to the application to lossy layers. The problem is
formulated as follows. An external source is located somewhere in the
region −∞ ≤ x ≤ ∞ , 0 ≤ y ≤ ∞ , −∞ ≤ z ≤ 0 . This source creates



80 Ling et al.

Figure 30. Excitation of surface waves over an impedance surface
(y = 0) .

a field with the Eext
y -component in the half-plane z = 0 , 0 ≤ y ≤ ∞ ,

−∞ ≤ x ≤ ∞ above the impedance plane (Fig. 30). Note that in
Fig. 30 we placed the coordinate origin on the layer surface to make
the equations for the fields simpler. A two-dimensional problem is
considered where Eext

y is assumed to be independent of the coordinate
x and Zs is constant for all coordinates x and z . The fields excited
in the quadrant 0 ≤ y ≤ ∞ , 0 ≤ z ≤ ∞ satisfy the Maxwell equations
and the impedance boundary condition, eq. (7). They also satisfy the
radiation condition as r =

√
y2 + z2 → ∞ with y ≥ 0 , z > 0 . In

addition, the Ey -component of the excited field must be equal exactly
to the external field Ey = Eext

y in the half-plane z = 0 , 0 ≤ y ≤ ∞ .
The solution of the above problem is found by using the concept of

plane wave spectrum introduced by Booker and Clemmow [9]. The ba-
sic idea is that the solution can be represented as a linear combination
of all possible plane waves incident on the interface plane x - z includ-
ing those with complex incident angles. When the solution is special-
ized to the aperture plane (i.e., x - y plane at z = 0 ) where Eext

y (y)
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is specified, the spectrum of the aperture-limited plane wave acquires
components with the complex incident angles necessary for the excita-
tion of surface waves. Both Cullen [13] and Booker and Clemmow [9,
10] provide rigorous solutions to the boundary value problem based on
the plane-wave spectrum concept. The former solves the problem by
expanding the fields as plane-wave spectra in the region y ≥ 0 while
the latters do the same in the region z ≥ 0 . Barlow and Brown [8]
show that these two solutions are mathematically equivalent.

The final complete solution for the Hx component of the magnetic
field in the region 0 ≤ y ≤ ∞ , 0 ≤ z ≤ ∞ is given by

Hx = −ωε0
2π

∫ ∞
−∞

[
F (ζ) +

ζ + k1

ζ − k1
F (−ζ)

]
ei(yζ+z

√
k2
0−ζ2)√

k2
0 − ζ2

dζ

+
2iωε0k1

β
F (−k1)ei(k1y+βz), (58)

Ey =
i

ωε0

∂Hx

∂z
, Ez = − i

ωε0

∂Hx

∂z
, (59)

where
F (ζ) =

∫ ∞
0

Eext
y (y)e−iζydy (60)

is the Fourier transform of the external electric field component in the
aperture plane. Note that eq. (58) is opposite in sign to eq. (10.45) in
[8] because we use a different system of coordinates.

For the double valued function
√

k2
0 − ζ2 , the branch with

Im(
√

k2
0 − ζ2) ≥ 0 is chosen. This insures the convergence of the

integral in eq. (58). The branch cuts in the complex plane ζ = ζ ′+ iζ ′′

are semi-infinite curves (Fig. 31). The left branch cut extends from
the branch point ζ = −k0 to ζ = 0 and then to ζ = −i∞ . The right
branch cut extends from the branch point ζ = +k0 to the point ζ = 0
and then to ζ = +i∞ . In Fig. 31 these branch cuts are shown in a
slightly modified form to better illustrate the location of the integration
contour. The directions shown by arrows on the branch cuts allow one
to distinguish the left and right side. On the left side,

√
k2

0 − ζ2 > 0 ,
while on the right side,

√
k2

0 − ζ2 < 0 .
To elicit the physical meaning of each of the terms in eq. (58), we

apply it to the case where the prescribed aperture field is generated by
a line source located at y = y0 . In this case Eext

y = δ(y− y0), F (ζ) =
exp(−iy0ζ) , and eq. (58) become
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Figure 31. Branch cuts in the complex plane (ζ) and the integration
contour in eq. (58).

Hx =− ωε0
2π

H
(0)
1 [k0

√
z2 + (y − y0)2]

− ωε0
2π

∫ +∞

−∞

ζ + k1

ζ − k1
exp{i[ζ(y + y0) + z

√
k2

0 − ζ2]} dζ√
k2

0 − ζ2

+
2iωε0k1

β
exp{i[k1(y + y0) + βz]} (61)

where H
(0)
1 (x) is the zeroth order Hankel’s function of the first kind.

The first term on the right hand side of eq. (61) is the direct wave ar-
riving at the observation point from the line source. The second term
represents the field reflected by the impedance surface before reaching
the observation point. The third term represents the surface wave ex-
cited on the impedance surface by the line source. This interpretation
becomes obvious when we look at the asymptotic expressions of the
first two terms. Let rs =

√
z2 + (y − y0)2 be the distance between

the source point and the observation point. As k0r
s � 1 , the first

term in eq. (61) becomes
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H inc
x ≈ −ωε0

exp[i(k0r
s − π/4)]√

2πk0rs
. (62)

Similarly let r� =
√

z2 + (y + y0)2 be the distance between the im-
age of the source point as reflected by the impedance surface and the
observation point. As k0r

� � 1 , the second term in eq. (61) becomes

Href
s ≈ −ωε0

(
k0 sin θ + k1

k0 sin θ − k1

)
exp[i(k0r

� − π/4)]√
2πk0r�

(63)

where θ is the angle made by the reflected beam with the z -axis.
In eq. (63), the quantity (k0 sin θ + k1)/(k0 sin θ − k1) can thus be
recognized as the reflection coefficient. Its numerical values are nearly
identical to those computed from eq. (55) for layers with large refractive
indicies.

In view of eqs. (62) and (63), the integrand in eq. (58) can be inter-
preted as a composition of two spectral components. The one associ-
ated with amplitude F (ζ) corresponds to the incident wave while the
other associated with F (−ζ) corresponds to the reflected wave with
the factor (ζ+k1)/(ζ−k1) being the reflection coefficient of a spectral
component of the incident wave. The last term in eq. (58) accounts
for the surface wave excited on the impedance surface.

In Section 3 it is shown for the layers considered in this paper that
−k0 < k′1 < 0 (Fig. 8) and k′′1 → 0 when the frequency approaches
the upper cutoff frequency. In this case, the pole ζ = k1 reaches the
integration contour. With further frequency increase, it intersects the
integration contour, moves in the lower half-plane (Im(ζ) < 0) through
the branch cut, and appears in the next Riemann sheet. The residue,
which arises due to the intersection of the integration contour cancels
the last term in eq. (58) and the surface wave disappears. This is also
quite natural from the physical point of view. At the upper cutoff fre-
quency the surface wave transforms into the plane wave transmitting
an infinite energy. Finite power source cannot generate such a wave.
This is another confirmation of the upper cutoff phenomenon in ab-
sorbing layers. In the case of this phenomenon, the total excited field
is described by the integral

Hx = −ωε0
2π

∫ +∞

−∞

[
F (ζ) +

ζ + k1

ζ − k1
F (−ζ)

]
ei(yζ+z

√
k2
0−ζ2)√

k2
0 − ζ2

dζ (64)
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and consists of the radiation from the aperture and its reflection from
the layer. One should note that at above the cutoff frequency even
the cutoff surface wave Eext

y = exp(ik1y) impressed in the limited
aperture (z = 0, 0 ≤ y ≤ a < ∞) cannot excite the surface wave
and can create only the radiated and reflected fields. A special case of
the field excitation above a homogeneous conducting ground plane by
an aperture limited surface wave (below the upper cutoff frequency) is
considered in details by Hill and Wait [19].

8. LAUNCHING EFFICIENCY OF SURFACE WAVES
EXCITED BY APERTURE-LIMITED PLANE WAVES

In this Section we apply the above theory to the case when the absorb-
ing layer is excited by the plane wave

Hext
x = e−ik0y sin θ,

Eext
y = −Z0 cos θe−ik0y sin θ,

Eext
z = −Z0 sin θe−ik0y sin θ (65)

limited by the aperture 0 ≤ y ≤ h , z = 0 on the x - y plane (Fig.
32). Outside the aperture in the half-plane z = 0 , h ≤ y ≤ ∞ the
external field is zero, i.e., Eext

y = 0 . From the physical point of view
this means that the surface z = +0 , h ≤ y ≤ ∞ is assumed to be
perfectly conducting. The function F (ζ) in eq. (58) becomes

F (ζ) = iZ0
cos θ

k sin θ + ζ
[1− e−i(k sin θ+ζ)h]. (66)

The launching efficiency can be defined as the ratio

η =
P1 + P2

P inc
(67)

where P1 and P2 are the total power fluxes transmitted by the surface
wave, respectively, outside and inside the layer across the surface z =
0 . The quantity P inc is the power flux transmitted by the incident
plane wave across the aperture. These quantities are determined by
the following expressions

P inc =
1
2
Z0h cos θ , (68)
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Figure 32. Excitation of surface waves by an aperture-limited plane
wave.

P1 = ωε0
β′

k′′1

∣∣∣∣k1

β

∣∣∣∣
2

· |F (−k1)|2, (69)

P2 = 2ωε0Re
(
β

ε

) ∣∣∣∣k1

β

∣∣∣∣
2

· |F (−k1)|2
∫ a
0 | cos(k2y)|2dy
| cos(k2a)|2

. (70)

The integral in (70) is expressed through elementary functions by eq.
(20).

Numerical values for launching efficiency η are shown in Fig. 33.
They are at maximums for the grazing incidence (θ = 0◦) and mono-
tonically decrease, approaching zero for the normal incidence (θ =
90◦) . When the incidence angle θ exceeds 10◦ the launching effi-
ciency of the surface wave becomes less than 10% as it is the case
for all layers. The ratio P2/P1 , which is independent of launching
height and plotted on Fig. 34, shows that more than 99.5% of the to-
tal power transmitted by the surface wave is concentrated outside the
layer. Figure 35 allows one to compare these powers with the power
P ref = |ρ(θ)|2P inc which is reflected from the layer. The latter always
dominates. The total power transmitted by the surface wave does not
exceed 43% of the reflected power for the thinnest layer (a = 0.05′′)
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Figure 33. Launching efficiency at 2 GHz. Launching height 1 meter.

Figure 34. P2/P1 ratio.
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Figure 35. (P1+P2)/P ref ratio at 2 GHz. Launching height 1 meter.

and 23% for the thickest layer (a = 0.09′′) . This occurs in the interval
5◦ < θ < 10◦ . For angles θ > 10◦ , the ratio (P1 + P2)/P ref does not
exceed 20% and monotonically approaches zero at θ = 90◦ .

9. SUMMARY AND CONCLUSION

Surface waves propagating along thin absorbing layers with a perfectly
conducting substrate have been investigated in this paper. Complex
permittivity and permeability of layers measured in the frequency band
2 to 18 GHz and shown in Fig. 2 are used as the basis of computations.
Thickness of layers ranges from 0.05 to 0.09 inches. The layers and
substrate are infinite in length and width.

A main result is the discovery of an upper cutoff frequency for sur-
face waves (Sec. 3, Figs. 3-5). This phenomenon does not exist in
the case of isotropic lossless layers. It was known probably only for
magneto-static surface waves on lossless ferrite substrates [14]. How-
ever, a difference in principle exists between surface waves on an ab-
sorbing isotropic layer and magneto-static surface waves. The phase
velocity of surface waves tends to light speed (Fig. 17) while the phase
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velocity of magneto-static waves tends to zero when the wave frequency
approaches the upper cutoff frequency (Fig. 2 in [14]). The frequency
band of surface waves depends on the layer thickness. The thinner the
layer the wider this frequency band becomes (Figs. 3–5, 7). In this fre-
quency band the surface waves are fundamental modes. This follows
from the inequality k′2a < π/2 which was verified numerically.

Figure 7 deserves special attention. It is to be noted that the k′2a
values shown there are for the frequency at 18 GHz. The figure exhibits
that the negative (non-physical) wave numbers reach minimum values
and then increase with the tendency to become positive again. This
suggests that the second mode surface wave can propagate along the
layer at higher frequencies. Since the fundamental mode is cutoff at
these frequencies, the second mode will be a single mode. This is in
contrast with the case of lossless layers which allow the simultaneous
propagation of the second and fundamental modes.

One more interesting observation follows from Fig. 7 if we take into
account the connection between TM- and TE-surface waves. The sur-
face impedance of TM-waves is determined by eq. (7). We represent it
now as ZTM

s = −(kTM1 /k0)Z0 . The surface impedance for TE-surface
waves equals ZTE

s = −(k0/k
TE
1 )Z0 . For a truly isotropic impedance

surface, the equality ZTE
s = ZTM

s is valid which leads to the relation-
ship kTE1 kTM1 = k2

0 . Thus, the wave numbers kTE1 and kTM1 always
have imaginary parts with opposite signs. TM-waves can propagate
over the inductive surface [Im(kTM1 ) > 0] while TE-waves can prop-
agate over the capacitive surface [Im(kTE1 ) < 0] . Therefore the fre-
quency band forbidden for TM-surface waves is allowed for TE-waves
and vice versa. This means that the frequency band with negative
values k′′1 shown in Fig. 7 is allowed for TE-surface waves. In addition
the relationship kTE1 = k2

0/k
TM
1 together with eq. (3) rewritten for

TE-case allows one to find all wave numbers for TE-waves if the quan-
tity kTM1 is known. In other words all characteristics of TE-waves can
be found readily if those for TM-waves are known and vice versa. For
realistic layers, ZTE

s is equal to ZTM
s only approximately, so are kTE1

and k2
0/k

TM
1 .

More than 99% of the power transmitted by surface waves along
absorbing layers is concentrated outside the layer (Fig. 34). The energy
absorption inside the layers reveals a resonance behavior, approaching
maximum values for the layer thickness about 0.19λd - 0.20λd (Fig. 6)
where λd = λ0/Re(

√
εµ) and λ0 is the wavelength in free space.
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The energy velocity outside the layers is defined as the ratio
−→V e =

−→
P /w where

−→
P is the time-averaged Poynting vector and w is the

time-averaged energy volume density. The explicit expressions for
−→V e ,

are given by eqs. (43) and (44) in Section 5. This vector is perpendicu-
lar to the phase front and is directed into the layer. It makes an angle
γa = (π/2) + γp with the layer surface (Figs. 10, 12) where γp = γ′B
(Fig. 11) is the real part of the complex Brewster angle defined by eqs.
(27) and (28).

The quantity
−→V e is always less than the light speed (Fig. 21) while

the conventional group velocity V cong = ∂ω/∂β′ is greater than the

light speed (Fig. 23). The quantity
−→V g

con
can even acquire infinite

values and change sign when the real part of the propagation constant
β′(ω) as a function of frequency contains a maximum, minimum, or
inflection point (Fig. 9). The definition of conventional group velocity
is thus non-physical and cannot be applied to lossy and dispersive
layers. The product of the phase and energy velocities is determined
by the simple eq. (47) and illustrated in Fig. 24.

The excitation of surface waves in absorbing layers is considered
in the impedance surface approximation (Sec. 7). This approach is
justified by numerical calculations of the ratio Ez/Hx where Ez and
Hx are tangential components of the total field induced by the incident
plane wave on the layer surface. It is found that this ratio is practically
independent of the incidence angle (Fig. 29). Maximum launching
efficiency of surface waves by the aperture-limited plane wave occurs
near grazing incidence (Fig. 33). It is highest for the thinnest layer
and does not exceed 37%.

The results of this paper can be used in the study of scattering from
objects with planar facets coated by thin absorbing layers. Among
such objects, an interesting example is a cavity with flat coated walls.
The theory developed in the paper can be generalized to anisotropic
absorbing layers. As it is shown in [15], the inhomogeneous plane waves
in anisotropic conducting media reveal some interesting properties. In
particular they cannot propagate in certain directions. Because inho-
mogoneous plane waves are constituent components of surface waves,
one can also expect a special behavior of surface waves in anisotropic
absorbing layer with a frequency dispersion.
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