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Abstract

In the coastal ocean, large amplitude, horizontally propagating internal wave trains are
commonly observed. These are long nonlinear waves and can be modelled by equations of
the Korteweg-de Vries type. Typically they occur in regions of variable bottom topography
when the variable-coefficient Korteweg-de Vries equation is an appropriate model. Of spe-
cial interest is the situation when the coefficient of the quadratic nonlinear term changes
sign at a certain critical point. This case has been widely studied for a solitary wave,
which is extinguished at the critical point and replaced by a train of solitary waves of the
opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here
we examine the same situation for an undular bore, represented by a modulated periodic
wave train. Numerical simulations and some asymptotic analysis based on Whitham mod-
ulation equations show that the leading solitary waves in the undular bore are destroyed
and replaced by a developing rarefaction wave supporting emerging solitary waves of the
opposite polarity. In contrast the rear of the undular bore emerges with the same shape,
but with reduced wave amplitudes, a shorter overall length scale and moves more slowly.

1 Variable-coefficient Korteweg-de Vries equation

Large amplitude internal wave trains are commonly observed in the coastal ocean, see the reviews
by Grimshaw (2001), Holloway et al. (2001), Ostrovsky and Stepanyants (2005), Helfrich and
Melville (2006), Grimshaw (2007), Grimshaw et al. (2010) and the book by Vlasenko et al.
(2005). Since these are long nonlinear waves it is now widely accepted that the basic paradigm
for these waves is based on the Korteweg-de Vries (KdV) equation, first derived in this context by
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Benney (1966) and Benjamin (1966) and subsequently by many others, see the aforementioned
references. In the usual physical variables to describe internal waves in the coastal ocean the
KdV equation is, see the afore-mentioned references,

At + cAx + µAAx + λAxxx = 0 . (1)

Here A(x, t) is the amplitude of the modal function φ(z), defined by

{

ρ0(c− u0)
2φz

}

z
+ ρ0N

2φ = 0 , for − h < z < 0 , (2)

φ = 0 at z = −h , (c− u0)
2φz = gφ at z = 0 . (3)

This also serves to define the phase speed c. Here ρ0(z) is the background density field, stably
stratified so that ρN2 = −gρ0z > 0, u0(z) is a background horizontal current and h is the
undisturbed fluid depth. The coefficients µ, λ are given by

Iµ = 3

∫

0

−h

ρ0 (c− u0)
2 φ3

z dz , (4)

Iλ =

∫

0

−h

ρ0 (c− u0)
2 φ2 dz , (5)

I = 2

∫

0

−h

ρ0 (c− u0)φ
2

z dz . (6)

It is well-known that the KdV equation (1) is integrable, and its principal solution is the solitary
wave, as the outcome of a localised initial condition is a finite set of rank-ordered solitary waves
and some small-amplitude dispersing radiation, see Whitham (1974); Ablowitz and Segur (1981).
Here we are concerned with the undular bore solution, which can be found as the outcome of a
step initial condition by using the Whitham modulation equations, see Gurevich and Pitaevskii
(1974).

When the depth h, and background current u0 and density ρ0 vary slowly in the horizontal di-
rection with x, the KdV equation (1) is replaced by a variable-coefficient KdV (vKdV) equation.
first derived in the general case by Grimshaw (1981), see also Zhou and Grimshaw (1989) and
Grimshaw et al. (2007, 2010). It has the same form as (1) with an extra term,

At + cAx +
cQx

2Q
A+ µAAx + λAxxx = 0 , Q = c2I . (7)

Here the modal equation depends also on x parametrically, that is φ = φ(z : x), c = c(x), and
hence the coefficients µ, λ,Q also depend (slowly) on x. It is convenient to transform this to the
“spatial” evolution form,

X =

∫ x dx

c
− t , T =

∫ x dx

c
, (8)

AT +
QT

2Q
A+ νAAX + δAXXX = 0 , (9)

ν =
µ

c
, δ =

λ

c3
. (10)
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A further simplification is

U = Q1/2A , UT +
ν

Q1/2
UUX + δUXXX = 0 . (11)

A final transformation yields the canonical form relevant for a polarity change, that is the
coefficient α changes sign,

Uτ + αUUX + UXXX = 0 , (12)

where τ =

∫ T

δ dT , α =
ν

δQ1/2
. (13)

The coefficient α varies with τ , that is α = α(τ) in general. This equation has two important
conservation laws

Uτ + {αU
2

2
+ UXX}X = 0 (14)

{U
2

2
}τ + {αU

3

3
+ UUXX − U2

X

2
}X = 0 . (15)

corresponding to conservation of mass and wave action flux respectively. The first arises directly
from (12) expressed in flux form, while the second follows from multiplying (12) by U .

Our main interest here is when there is a change of polarity, that is the quadratic coefficient µ
in the KdV equation (1) changes sign at a critical point. Since Q, λ 6= 0 for internal waves, it
follows that then α in (12) will likewise change sign. This typically occurs when the pycnocline,
a thin layer where the density gradient is very strong, is near the surface in deep water, but near
the bottom in shallow water. For mode one waves, it is readily shown that µ is then negative in
deep water, but positive in shallow water, and so changes sign as the waves propagate shoreward.
The implication is that solitary waves are depression waves in deep water, but elevation waves
in shallow water. The behaviour of a solitary wave as it passes through this critical point is
now well understood, see the reviews by Grimshaw (2007); Grimshaw et al. (2007, 2010). As
a depression solitary wave approaches a critical point, its amplitude decreases but at the same
time a trailing shelf is generated, which grows in amplitude as the critical point is approached.
The combination passes through the critical point and then generates a depression rarefaction
wave on which rides an undular bore of elevation waves. The corresponding theory for a periodic
wave train has only recently been developed by Grimshaw (2015) and in contrast, the waves
pass through the critical point with only a very small change in amplitude but with a polarity
reversal. In this paper we examine how an undular bore behaves as it passes through a critical
point, noting that the leading waves in the undular bore are solitary waves while the waves in the
rear of the bore are periodic waves. Hence there is an expectation that on passage through the
critical point, the front of the undular bore will behave similarly to how a solitary wave behaves,
while the rear of the undular bore will behave similarly to how a periodic wave behaves.

In section 2 we present the Whitham modulation equations for a modulated periodic travelling
wave, and describe briefly how these may be used when waves propagate in a region where
α = α(τ) varies. Then in section 3 we discuss in detail how either a solitary wave, or a periodic
wave train, or an undular bore behave when there is a change of polarity. The analysis is
based on the Whitham modulation equations supplemented by some numerical simulations. We
conclude in section 4.
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2 Whitham modulation equations

When the coefficient α in (12) is a constant the KdV equation supports a periodic travelling
wave, U(X − V τ), which satisfies the ordinary differential equation,

U2

X = −αU3

3
+ V U2 + C1U + C2 , (16)

where C1,2 are constants of integration. This has the well-known cnoidal wave solution

U = a {b(m) + cn2(γθ;m)}+ d , θ = k(X − V τ) , (17)

where αa = 12mγ2k2 . b(m) =
1−m

m
− E(m)

mK(m)
, (18)

V − αd =
αa

3

{

2−m

m
− 3E(m)

mK(m)

}

= 4γ2k2

{

2−m− 3E(m)

K(m)

}

. (19)

Here cn(x;m) is the Jacobian elliptic function of modulus m, 0 < m < 1, and K(m) and E(m)
are the elliptic integrals of the first and second kind,

cn(x;m) = cos (φ) , x =

∫ φ

0

dφ′

(1−m sin2 φ′)1/2
, 0 ≤ φ ≤ π

2
, (20)

K(m) =

∫ π/2

0

dφ

(1−m sin2 φ)1/2
, E(m) =

∫ π/2

0

(1−m sin2 φ)1/2 dφ . (21)

The expression (17) has period 2π in θ so that γ = K(m)/π, while the spatial period is 2π/k The
(trough-to-crest) amplitude is a and the mean value over one period is d. It is a three-parameter
family with parameters k,m, d say. As the modulus m → 1, this becomes a solitary wave, since
then b → 0 and cn(x) → sech(x), while γ → ∞, k → 0 with γk = Γ fixed. As m → 0, b → −1/2,
γ → 1/2, cn(x) → cos (x), and it reduces to a sinusoidal wave (a/2) cos (θ) of small amplitude
a ∼ m and wavenumber k. The integration constants C1,2 can also be expressed in terms of
k,m, d but the explicit expressions are not needed here.

TheWhithammodulation theory allows this cnoidal wave to vary slowly with τ,X, that is the the
wavenumber k, modulus m and mean level d vary slowly with τ,X. The Whitham modulation
equations describing this variation can be obtained by averaging conservation laws, the original
Whitham method, see Whitham (1965, 1974) or by exploiting the integrability of the constant-
coefficient KdV equation, see Kamchatnov (2000) for instance. Because here we are concerned
with the case when α = α(τ) varies slowly with τ , and so the variable-coefficient KdV equation
(12) is not integrable, we will use the original Whitham method, readily adapted to this present
case. A similar strategy was used by Myint and Grimshaw (1995) for a frictionally perturbed
KdV equation. An alternative method developed by Kamchatnov (2004) for a perturbed KdV
equation is not available here because to use it one must make a change of variable in (12)
Ũ = αU to generate a KdV equation for Ũ with a perturbation term of the form ατ Ũ/α. But
as our main concern is with the situation when α passes through zero, this approach cannot be
used here.

As three modulation equations are needed, we supplement (14, 15) with the equation for con-
servation of waves,

kτ + (kV )X = 0 . (22)
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The remaining two modulation equations are obtained by inserting the cnoidal wave solution
into the conservation laws (14, 15) and averaging over the phase θ. The outcomes are

dτ + αMX = 0 , M =<
U2

2
> , (23)

Mτ + PX = 0 , P =<
αU3

3
− 3U2

X

2
> , (24)

where the < · · · > denotes a 2π-average over θ. The expression M is given by

M =
d2

2
+

a2

2
{C4 − b2} ,

C4 =
1

3m2K(m)
{3m2K(m)− 5mK(m) + 4mE(m) + 2K(m)− 2E(m)} ,

(25)

P = α{−2d3

3
+ 2dM + a3{−2b3

3
+

(1−m)b

2m
+ (b+

1− 2m

2m
)C4 +

5

6
C6} ,

C6 =
1

15m3K(m)
{15m3K(m)− 34m2K(m) + 23m2E(m)

+ 27mK(m)− 23mE(m)− 8K(m) + 8E(m)} .

(26)

Here the notation C4, C6 denote < cn4 >,< cn6 > respectively, and like b = −C2 = − < cn2 >
depend on the modulus m only.

It is useful to note that in the solitary wave limitm → 1 and then b ∼ −1/K(m), C4 ∼ 2/3K(m),
and C6 ∼ 8/15K(m). To leading order M ∼ d2/2 and P ∼ αd3/3 and then both equations (23,
24) reduce to the same equation for d alone,

dτ + αddX = 0 , (27)

and so d can be regarded as a known quantity. In more detail, the cnoidal wave expression (17)
becomes

U = a sech2(γθ;m)}+ d , θ = k(X − V τ) , V − αd =
αa

3
= 12γ2k2 , (28)

with two parameters to be determined. The equation for conservation of waves (22) provides
one equation for k and the second equation is

{ a
2

kγ
}τ + V { a

2

kγ
}X +

a2

kγ
αdX = 0 , (29)

This can be obtained by a more careful consideration of the limit m → 1 in the modulation
equations (23, 24) by retaining the terms in 1/K(m), or more directly by averaging the wave
action conservation law (15) directly for a solitary wave, see Grimshaw (1979) and the discussion
in El et al. (2012). The pair (22, 29) form a nonlinear hyperbolic system for a solitary wave
train, and can be solved explicitly. Indeed, using the expressions in (28), (30) can be written as

Aτ + (αd+
αa

3
)AX +AαdX = 0 , A = {a

3

α
}1/2 . (30)
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This is an equation for the amplitude a alone, and is readily solved using characteristics. Then,
with a and hence V known, the wavenumber k can be found from (22) which is a linear hyperbolic
equation for k.

In the general case for a modulated periodic wave train the set (22, 23, 24) form three nonlinear
hyperbolic equations for k,m, d. For the case of a periodic wave modulated only in τ , we obtain
the elementary solution that k, d,M are constants. But for an undular bore, the cnoidal wave
parameters will vary with both τ,X and so this elementary solution is not available. In that
case when α is a constant Whitham (1974) (see also Kamchatnov (2000) for a general approach)
showed that these equations can be cast into Riemann form. This was achieved by noting that
the ordinary differential equation (16) can be expressed as

U2

X = −α

3
(U − r1)(U − r2)(U − r3) , (31)

where C1,2 are integration “constants” which can be expressed in terms of k,m, d. When α is a
constant, then r1,2,3 are the Riemann variables enabling the nonlinear hyperbolic system to be
cast into a diagonal and hence integrable form. However, this reduction is not available here
when α = α(τ) as then the transformation from k,m, d to r1,2,3 contains an explicit dependence
on τ , which will generate extra terms and prevent a purely diagonal form being obtained. Hence
here instead we shall work directly with the set k,m, d.

The case of a periodic wave modulated only in τ was studied by Grimshaw (2007, 2015) and is
reproduced briefly here. In this case we can seek a solution of the set (22, 23, 24) which depends
on τ only, and we see that then k, d,M are constants. Using the expressions in (18) these yield
the formula

F (m) ≡ K(m)2{(4− 2m)E(m)K(m)− 3E(m)2 − (1−m)K(m)2} = Cα2 , (32)

where C is a constant proportional to M/k and is determined by the initial modulus m0 at
τ = τ0. The expression (32) can be written in the normalised form

F (m)

F (m0)
=

α2

α2

0

, (33)

where α0 = α(τ0). A plot of the normalised F (m) (the left-hand side of (33) when m0 =
0.98 (a strongly nonlinear wave) and m0 = 0.85 is shown in figure 1. We see that as |α|
increases/decreases, then so does the modulus m. Then substitution into the expression (18)
for the wave amplitude yields

a

a0
=

mK(m)2

m0K(m0)2

√

F (m0)

F (m)
, (34)

This expresses the normalized amplitude in terms of the modulus m, which in turn varies with
α according to (33). A plot of (34) is shown in figure 2 when m0 = 0.98, 0.85, and these show
that as |α| increases/decreases then so does the amplitude. In both cases there is a surprisingly
small variation of the amplitude a until m → 1.

Formally the solitary wave can be found by taking the limit m → 1 in (32), or more directly
from the solitary wave train equations (22, 30). When the modulation is only in τ these give the
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Figure 1: A plot of the normalised FN = F (m)/F (m0) (33) versus m when m0 = 0.98 (lower
curve, black, solid) and m0 = 0.85 (upper curve, blue, dash).

result that k,A are constants, the latter yielding the adiabatic expression a3 ∝ α. However, this
requires taking the limit k → 0 which is inconsistent with the assumption that the width scale of
the wave should be much less than that of the variable medium defined here by the variation in
α. Instead, as is now well-known, see the reviews by Grimshaw (2007); Grimshaw et al. (2007,
2010), a multi-scale asymptotic expansion for the solitary wave should be used, which confirms
the adiabatic expression a3 ∝ α due to conservation of wave action flux, but also reveals that
the deforming solitary wave is accompanied by a trailing shelf needed to conserve the total mass.
The essential difference between the solitary wave and the periodic wave is that in the latter, the
mass is represented by the independent parameter d which is a constant, whereas the solitary
wave has only one parameter, say the amplitude a whose variation is already determined, while
the solitary wave mass is 2a/γ and is not constant.

When α is a constant, a representation of an undular bore can be found by seeking a similarity
solution of the Whitham modulation equations (22, 23, 24), where the modulus m depends
only on X/αU0τ , see Gurevich and Pitaevskii (1974); Whitham (1974); Fornberg and Whitham
(1978) and the review by El (2007). This describes an expanding wave train connecting a zero
level at the front where m → 1 to a mean level U0 (αU0 > 0) at the rear where m → 0. At
the front the leading wave is a solitary wave of amplitude 2U0 and at the rear the waves are
linear sinusoidal waves. However, in a variable medium, when as here α = α(τ), although the
Whitham modulation equations are again available, it would seem that no such simple wave
solution is available to describe the evolution of an undular bore. A recent study by El et al.
(2012) of a water wave undular bore propagating up a slope (that is |α| increases) demonstrated
that the deformation at the front of the undular bore is essentially non-adiabatic. Briefly, it is
argued that if the undular bore retains its structure as a single-phase wave train, then the jump
U0 is preserved, and so then the leading solitary wave would have a constant amplitude 2U0.
But this is inconsistent with the result that the leading solitary wave amplitude should behave
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Figure 2: A plot of the normalised amplitude AMP = a/a0 (34) versus m when m0 = 0.98
(lower curve, black, solid) and m0 = 0.85 (upper curve, blue, dash).

as |α|1/3. The resolution of this inconsistency is the formation of a solitary wave train ahead of
the undular bore. This solitary wave train can be described by a reduced set of two modulation
equations, and there is a region where the rear of the solitary wave train interacts with the
undular bore, forming a two-phase wave interaction. The rear part of the undular bore retains
its shape, where pertinently we note that in the similarity solution for the constant coefficient
case, α occurs only in the variable x/αU0τ , implying that the effect of a variable α is in some
sense equivalent to adjusting the time scale.

3 Change of polarity for an undular bore

Our main interest here is in the case when the nonlinear coefficient α passes through zero at a
critical point, say τ = 0. Without loss of generality we suppose that α < 0, > 0 according as
τ < 0, > 0 corresponding to the usual oceanic situation when internal solitary waves propagate
shorewards. Then in τ < 0 the KdV equation (12) supports solitary waves and periodic waves
of depression, that is a < 0 in (18), but in τ > 0 this polarity is reversed, and instead a > 0.

To examine this situation we performed several simulations of the vKdV equation (12) using
a pseudo-spectral code. Here the pseudo-spectral method based on a Fourier interpolant is
implemented to solve equation (12), see Boyd (2001); Weideman and Reddy (2000). In general,
equation (12) is stiff, a common feature when solving partial differential equations with spectral
methods, and so the numerical solution requires special treatment if accurate solutions are to be
efficiently found. We used the recently developed time scheme, Exponential Time Differencing
(ETD), which was first proposed by Cox and Matthews (2002), but as partly recognised by
the originators, this method as originally proposed encounters certain problems associated with
eigenvalues equal to or close to zero, especially when the coefficient matrix in the numerical
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scheme is not diagonal. If these problems are not addressed, ETD schemes prove unsuccessful
for some applications. Kassam and Trefethen (2005) claims that this can be addressed by making
use of ideas of complex analysis. In this paper, we use ETD based on fourth-order Runge-Kutta
time-stepping, which is called ETDRK4 schemes in Kassam and Trefethen (2005).

In the simulations reported here the coefficient α is given by

α = tanh (Kτ) , (35)

where K is chosen so that α varies smoothly and slowly from −1 at τ = −τ0 to +1 at τ = τ0.
The initial condition is Uic = U(X, τ = −τ0) at τ = −τ0 where α = −1 are either (1) a solitary
wave, (2) a periodic wave or (3) an undular bore.

(1) : Uic = a0 sech
2(γ0X) , a0 = −12γ2

0
, (36)

(2) : Uic = ENV (X) a0 {b+ cn2(γ0X;m)} , a0 = −12mγ2

0
. b =

1−m

m
− E(m)

mK(m)
, (37)

(3) : Uic = U0 ENV (X) . (38)

In case (1) the evolving solitary wave has a time scale of (γ0V )−1 where the speed V = 4γ2

0
, and

so to be slowly varying we choose K ≪ γ0V = 4γ3

0
. In case (2) the periodic cnoidal wave (17)

is enclosed inside an envelope ENV (X), defined to be positive for all X, with a maximum of
1 at X = 0 and a width much greater than 2K(m)/γ0, the spatial period of the cnoidal wave.
Typically we choose m to be quite large, say m = 0.95 and then choose ENV (X) accordingly
A suitable choice is

ENV (X) =
1

2
{tanhΓ(X + L)− tanhΓ(X − L)} , (39)

Here L ≫ K(m)/γ0 and Γ < γ0, say Γ = 0.5γ0. Again the temporal variation of α should be
much slower than that of the individual waves, so that, since m ≈ 1, we choose K ≪ 4γ3

0
. In

case (3) ENV (X) is chosen to be very close to a box of height a, and of very long length 2L,
that is, choose K−1 ≪ 1 ≪ 2L. With α < 0, U0 < 0, the front end of the box is then expected
to generate an undular bore before there is a significant change in α. Since the leading wave in
the undular bore is a solitary wave of amplitude 2U0 we choose K so that K ≪ 4σ3 where here
U0 = −6σ2. The rear end of the box will generate a rarefaction wave.

The behaviour of a solitary wave as it passes through this critical point is now well understood,
see the reviews by Grimshaw (2007); Grimshaw et al. (2007, 2010). As the solitary wave ap-
proaches the critical point, its amplitude decreases as a = a0|α|1/3 but at the same time the
amplitude of the trailing shelf grows as |α|−8/3. Close to the critical point, when the solitary
wave and the trailing shelf have comparable amplitudes, the adiabatic behaviour breaks down.
The whole structure passes through the critical point and in τ > 0 generates a depression rar-
efaction wave connected to the original zero level by an undular bore of elevation waves. The
waves in the undular bore have a shorter length scale than the rarefaction wave, giving the
appearance of a wave train of elevation solitary waves riding on a depression pedestal. In this
region where α > 0, the solitary wave train equations (27, 30) have a similarity solution

d =
X −X0

η
, η =

∫ τ

0

α(τ ′) dτ ′ , X < X0 , (40)

9



A =
1

η
{−3(X −X0)

ηξ
}3/2 , ξ =

∫

∞

η

α(η′)1/3 dη′

(η′)5/3
, a = α1/3A2/3 . (41)

Note that the X0 is not known, and its determination requires a detailed matching with the
solution at the critical point, beyond the scope of this present article. Also the rarefaction wave
(40) can only extend to a point X −X0 = −Lr(η) where Lr(η) is likewise undetermined. But
the mass of the rarefaction wave is then −L2

r(η)/2η and this can be approximately equated
to the initial solitary wave mass M0 = 2a0/γ0 = −24(|a0/12|)1/2 (36), thus giving an upper
estimate for Lr(η). The expression (41) for the solitary wave amplitude a holds on the domain
−Lr(η) < X − X0 < −Ls(η) where the upper bound Ls(η) determines the amplitude of the
leading solitary wave, that is as = 3α1/3Ls/η

5/3ξ. The value of as and hence Ls is undetermined
and requires matching with the solution at the critical point, beyond the scope of this present
article. But an approximate estimate might be based on the assumption that since the emerging
solitary wave train is the leading edge of an undular bore resolving the jump at the rear of the
rarefaction wave, and then as = 2Lr/η, where in turn Lr is estimated from conservation of
mass, as above. When α is a constant, for instance when τ ≥ τ0, η ∼ ατ , ξ = 3α1/3/2η2/3

and then a ∼ −2(X − X0)/ατ . A numerical simulation of the vKdV equation (12) with the
initial condition (36) is shown in figure 3. The outcome shows qualitative agreement with all
the above features. For the parameters in this simulation M0 = −2.2, Lr ≈ 2.1η1/2 and then
as ≈ 4.2η−1/2; at τ = τ0 = 5000, η = 4307 (40), and then as ≈ 0.064, in good agreement with
the numerical simulation.
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Figure 3: A simulation of the vKdV equation (12) when α(τ) varies from −1 to 1 as specified
by (35) for the solitary wave initial condition (36) with a0 = −0.1. the left panel is at α = −1,
the right panel is at α = 1, and τ0 = 5000, K = 0.001.

In contrast, the corresponding theory for a periodic wave train has only recently been developed,
see Grimshaw (2015). The periodic wave train deforms adiabatically according to the expression
(32). As α → 0 it can be shown that m ∼ α and so m → 0, see figure 1. But from (34) it can
be shown that the amplitude a tends to a finite value, see figure 2. The wave train then passes
through the critical point as a linear wave of finite amplitude, but in τ > 0 reverses polarity
according to (18), this being achieved by a phase change in the linear wave around τ = 0. A
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numerical simulation of the vKdV equation (12) with the initial condition (37) is shown in figure
4, and there is very good agreement with the asymptotic theory.
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1

0

1

2
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40 30 20 10 0 10 20 30 40
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2
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1

2
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4
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Figure 4: A simulation of the vKdV equation (12) when α(τ) varies from −1 to 1 as specified
by (35) for the cnoidal wave initial condition (37) with modulus m = 0.95 and a0 = −5. The
left panel is at α = −1, the right panel is at α = 1, and τ0 = 9, K = 1.

These two contrasting scenarios raise the issue of how an undular bore will behave as it passes
through a critical point. The leading waves are close to solitary waves, and might be expected,
as in the study by El et al. (2012) to form a solitary wave train ahead of the undular bore. But
here each solitary wave in that wave train is expected to decrease in amplitude and after passage
through the critical point to be replaced by a train of elevation waves, riding on a depression
pedestal formed by a depression rarefaction wave. On the other hand, the trailing waves are
almost linear periodic waves and might be expected to pass through the critical point as linear
periodic waves of finite amplitude, with a reversed polarity as α increases. In the lack of a
complete analytical theory obtained from the Whitham modulation equations (22, 23, 24), we
have resorted here to numerical simulations of the vKdV equation (12). A typical example is
shown in figure 5 where U0 = −12 and we set K = 5, whereas σ =

√
2 and so K < 4σ3 = 11.31.

Simulations with a smaller value of K are similar, but allow the undular bore to develop a finer
structure before reaching the critical point, see figure 7. Comparison of the initial structure
at α = −1 with that at α = 0 and finally at α = 1 indicate that the leading solitary waves
decrease in amplitude and then after the critical point, there is an indication that a depression
rarefaction wave is forming at the front of the undular bore, with elevation solitary waves riding
on this pedestal. In contrast the rear of the undular bore retains its shape and passes through
the critical point. Subsequent evolution into the region where α = 1 will lead to a dispersing
nonlinear wave train, since the whole structure is negative in a region where α > 0. In particular
note that the decrease in the undular bore amplitude indicates non-adiabatic behaviour, as it was
shown by El et al. (2012) that if an undular bore were to deform adiabatically as a single-phase
structure, then the jump across the bore is preserved.
In more detail, for comparison figure 6 shows a simulation with the same initial condition, but
with α = −1 constant. The leading edge now develops as an undular bore. The top panels of
figures 5, 6 when α = −1 in figure 5 are identical. In the middle panel when α = 0 in figure 5
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we see that the effect of variable α has caused the leading solitary wave to decrease markedly
in amplitude and consequently slow down; the remainder of the undular bore has retained its
shape, with an overall slight decrease in the wave amplitudes. In the region where τ > 0, α > 0,
the leading part consists of a depression rarefaction wave and a solitary wave train riding on it.
This may be described by the same asymptotic solutions (40, 41) developed above for a single
solitary wave, except importantly that the variables X0, Lr, as are now different although again
determined by matching with the solution near the critical point. This is beyond the scope of
the present article, but as a rather rough estimate, we again equate the mass −L2

r(η)/2η of the
rarefaction wave to M0 where now M0 is the mass carried by the leading solitary wave in the
developing undular bore; as this has an amplitude 2U0, M0 = −24(|U0/6|)1/2. Then we again
estimate that as = 2Lr/η. For the simulation shown in figure 5, M0 = −33.9, Lr ≈ 5.8η1/2 and
then as ≈ 11.6η−1/2; at τ = τ0 = 4, η = 2.86 (40), and then as ≈ 6.9, in rather good agreement
with the numerical simulation.

On the other hand the rear of the undular bore would seem to be changing adiabatically. Hence
we examine the structure of the modulation equations as α → 0. Assuming that in this limit the
amplitude remains finite, then the expression αa = 12mγ2k2 in (17) indicates that the modulus
must decrease with m ∼ |α|; this is the case for the periodic wave train discussed above. Then,
as α → 0, it follows that M remains finite but P → 0, see (25, 26). The modulation equations
(23, 24) then imply that M, d become steady, that is Mτ , dτ → 0. In this limit there will remain
an X-dependence, and figure 5 shows that a has a straight-line dependence on X as in the initial
undular bore. Otherwise, the situation is similar to that for a periodic wave train, and the rear
of the undular bore will pass through the critical point as a linear wave. Essentially, as α → 0
the vKdV equation (12) becomes a linear equation with constant coefficients and can support
linear periodic waves, but this cannot be the case for the leading solitary waves which require a
balance between the nonlinear and dispersive terms even when α → 0.

4 Discussion

Our focus in this paper is on how an undular bore behaves when it passes through a change
of polarity. The main outcome is in the numerical simulation shown in figure 5 where the
parameters have been chosen to be typical of those which might occur in the coastal ocean. The
front of the undular bore is a depression solitary wave whose amplitude decreases as the critical
point is approached and emerges after the critical point as a depression rarefaction wave with
several elevation solitary waves emerging from this pedestal. The rear of the undular bore retains
its shape, but the wave amplitude decreases and the bore moves more slowly. The deformation
of the undular bore is a non-adiabatic process due mainly to the inconsistency between the
preservation of the jump and hence the leading solitary wave amplitude if it were adiabatic,
and the adiabatic change in the amplitude of a solitary wave as α varies, see El et al. (2012).
Consequently, the Whitham modulation equations (22, 23, 24) cannot be used quantitatively
here, even if explicit solutions could be found, but nevertheless do provide some useful qualitative
insights. In the case studied by El et al. (2012), |α| increased, and consequently the solitary
waves at the front of the undular bore grow in amplitude and are emitted ahead of the undular
bore as a solitary wave train satisfying (30); the rear of this solitary wave train interacts with
the undular bore forming a two-phase wave interaction region. In contrast, in the present study,
|α| initially decreases and so the solitary waves at the front of the undular bore are immediately
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absorbed into the undular bore in a two-phase interaction region. But after passage through the
critical point, |α| increases, and the leading solitary waves move ahead but are now riding on
a negative pedestal which has the form of depression rarefaction wave. This last feature would
seem to be adiabatic and can be modelled the solitary wave train reduction (27, 30) of the full
Whitham modulation equations.

In the internal wave context, quite often a cubic nonlinear term is added to the KdV equation
(1), and hence also to the vKdV equation (12), especially when there is a change of polarity.
The consequences for a solitary wave have been examined in detail, see the reviews by Grimshaw
(2007); Grimshaw et al. (2010), and depend inter alia on the magnitude and sign of the coefficient
of the cubic term. However, the analogous theory for an undular bore in such an extended KdV
equation has yet to be developed, and indeed would appear to be much more complicated. In
particular only recently has the Whitham modulation theory for an undular bore in the constant-
coefficient extended KdV equation been developed by Kamchatnov et al. (2012), and it emerges
that there are sixteen different cases to be considered. Although these Whitham modulation
equations could be readily extended to allow for variable coefficients in the same manner as was
done here, the detailed analysis and necessary numerical simulations will be a topic for future
study.
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Figure 5: A simulation of the vKdV equation (12) when α(τ) varies from −1 to 1 as specified
by (35) for the undular bore initial condition (38) with U0 = −12 and K = 5, τ0 = 4 ; the top
panel is at α = −1 , the middle panel is at α = 0 and the bottom panel is at α = 1. Note the
slight variation in the horizontal and vertical axes.
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Figure 6: A simulation of the vKdV equation (12) when α = −1 is constant, for the undular
bore initial condition (38) with U0 = −12 and τ0 = 4 ; the top panel, middle panel and the
bottom panel are at the same times as the corresponding panels in figure 5. Note the slight
variation in the horizontal and vertical axes.
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Figure 7: A simulation of the vKdV equation (12) for the undular bore initial condition (38)
with U0 = −12 and K = 1, τ0 = 5 ; Both panels are at the final stage; the top panel is when
α(τ) varies from −1 to 1 and shows the outcome when α = 1; the bottom panel is when α = −1
is constant. Note the slight variation in the horizontal and vertical axes.
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