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Introduction 

W h e n  the s t ress -deformat ion  re la t ion govern ing  static, one d imens iona l  elas- 

t ici ty is not  mono tone ,  cer ta in  s ta t ic  so lu t ions  may  conta in  s t a t iona ry  shock 

waves, or  phase boundaries. These s ta t ic  so lu t ions  have been s tudied  in [1].  One 

would  expect  tha t  the co r r e spond ing  d y n a m i c  theory  would  a d m i t  so lu t ions  

con ta in ing  p r o p a g a t i n g  phase  boundar ies .  In  this pape r  I invest igate  the exis- 

tence and p roper t i e s  of  such phase  bounda r i e s  in dynamic ,  one d imens iona l  

elasticity.  A phase  b o u n d a r y  is conce ived  as k inemat i ca l ly  l ike a shock wave, 

bu t  the n o n - m o n o t o n i c i t y  of  the s t ress -deformat ion  re la t ion  permi t s  the phase  

b o u n d a r y  to come to rest. 

The  mo t iva t i on  for this s tudy arises from exper iments  on phase  t rans i t ions  in 

sol id  bars,  though  the famil iar  van der  Waa l s  equa t ion  of  s ta te  in the context  o f  
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one dimensional gas dynamics yields essentially the same theory. A host of 

materials, including various polymers [-2], natural rubbers [3, chapter 7], and 

metals [4] undergo first order phase transitions in which sharply defined phase 

boundaries travel through the body. In a uniaxial tensile experiment on a bar in 

a dead loading device the specimen appears to deform more or less homo- 

geneously until a certain value of the applied load is reached. Then, typically, a 

phase boundary appears at the end of the bar, or a pair of phase boundaries 
separate at some interior point of the bar. These phase boundaries travel 

through the specimen at much lower speeds than the shock or sound speeds of 

either of the homogeneous phases. Studies of static elastic bar theory have 

indicated that the main features of these transitions are predicted by use of a 

non-convex stored energy, or, equivalently, a non-monotone stress-deformation 
relation. 

Here, I establish the existence of a family of solutions in which a moving 

phase boundary separates two classical solutions (Theorem 1). Solutions can be 

found whereby the moving phase boundary comes to rest and a static solution 

results; or, a stationary phase boundary in a static solution may begin to move. 

I investigate in Section 2 the possibility that a global solution containing a phase 

boundary may exist. The interaction of a sound wave and a phase boundary is 

explored in Section 4, where two kinds of problems are formulated, In the first a 

sound wave moves down the bar and strikes a moving phase boundary; 

generally, a reflected and a transmitted wave will emerge, but it is found that 

either one or the other, but not both, can be suppressed. In the second problem 

I ask whether a phase boundary can spontaneously emit sound waves. This 

turns out to be possible only if the motion of the phase boundary itself 

experiences a weak singularity. Two kinds of solutions to the Riemann problem 

are found in Section 5. The first is a one parameter family of solutions each 

containing a single phase boundary. The second is a two parameter family 

containing two phase boundaries which emerge from constant initial data. The 

admissibility of these solutions according to the static theory, a criterion of 
viscosity, and the entropy rate criterion are investigated. 

1. Dynamic Elastic Bar Theory 

An elastic bar is described by a single material co-ordinate 

Xe[-L,L]. 

A transplacement of the bar is a function 

(1.1) 

y=y(X,t), X~[-L,L], to[0, T], (1.2) 

which assigns the position y(X,O to the point X at time t. A prime and 

superimposed dot will represent derivatives with respect to X and t, respectively. 

Whenever y is continuously differentiable, we call u=y'(X,t) the deformation 
and v =~)(X, t) the velocity at point X and time t. 

The constitutive function or(u) delivers the stress corresponding to the 
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deformat ion u. The  function a ( ' )  will be defined on a closed interval [c~, fi]. Let  

~ and fit be assigned constants consistent with the requirements  

We assume that 
O < ~ < ~ * < p ' < / ~ < ~ o .  (1.3) 

(i) a ( ' ) ~  2 C[~, Pl' 

(ii) a , > 0  on [~ ,~ l )~ ( f l l ,  flJ, (1.4) 

(iii) a,, < 0  on (c~ 1, ill). 

The  consti tutive function restricted to the interval [~, a l ]  will be called the a- 

branch;  the restriction of the consti tut ive function to the interval Eft I, flJ will be 

called the fl-branch. If at some pair  (X, t) the value of y'(X, t) lies in the interval 

[~, ~ ] ,  (or in the interval Eft ~, flJ), then we shall say that the point  X is in the :c- 

phase (fl-phase) at t ime t. The  function (a~) ~, for u in the domain  of  the a- and fl- 
branch, will be denoted by c(u). 

The classical equat ions of mot ion  for dynamic  elastic bar theory are writ ten 

j~ =(a(y '))  t = a,,(y') y". (1.5) 

A transplacement  will be a solution if it satisfies the balance of  momentum on 

each subinterval of the bar. That  is, y(X,t) is a solution if its distr ibutional  
derivatives exist and are measurable,  and i f*  

X 2  t2  

~ ( x ,  t , )  - i~(x, t~) d x  = ~ o (y' i x  ~, t)) - ~ (y' (x~, t)) d t 
x, ,~ (1.6) 

V - L < X  1 < X 2 ~ L  , O<t~ <t2~T. 

If y(X, t) is a solution which is twice cont inuously  differentiable except on a 

finite number  of  smooth  curves S~: X=Z~(t), i=1 ,  2 . . . . .  N, then it follows from 
N 

(1.6) that  y(X, t) is a classical solution of il.5) on { ( - L ,  L ) x  ( 0, T ) } -  U si, and 

y(X, t) satisfies the Rank ine -Hugon io t  condit ions on each curve: ~= 

In (I.7) 

�9 I 2t �9 ) Z~(yi+(t)-)i_(t))+(y~+it)-3i (t)) =0 ,  

(yl + (0)  - ~, (yl _ it)) + k (Yl + it) - k -  (t)) = 0, 

y; + (t) =- y' (z, i0 + 0, t), 

s'i_ i t)-= y ' ( z , ( t ) -  o, t), 

etc. 

(1.7) 

(1.8) 

Conversely, if y(X, t)  satisfies (1.5) in the classical sense, except on a finite 

number  of smooth curves, and the Rank ine -Hugon io t  condit ions are satisfied on 
those curves, then y(X, t) is a solution. 

* It is known that if y satisfies (1.6), then necessarily ~' and y' are of bounded 
variation, and for such functions (1.6) is equivalent to the standard definition of a weak 
solution of (1.5). Implicit in the definition (1.6) is the requirement that ~ <y'< fl a.e. 
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A curve S: X = X ( t )  will be called a phase boundary if the Rankine-Hugoniot 

conditions hold on S, if the limiting values y'~, y' , 3:'§ 3~ exist, and if y'+ is 

contained in the domain of the a-branch (fi-branch) and y" is contained in the 
domain of the fl-branch (~-branch). 

Equation (1.5) can be decomposed into a system of two first order equations 

in several ways. One formulation, which is useful for calculations involving the 

Rankine-Hugoniot conditions, follows by changing to the variables deformation 
and velocity, 

u(X, t)=y'(X, t), v(X, t)=29(X, t). (1.9) 

A statement equivalent to (1.5) is 

t = a,,(u) u', (1.10) 

in which u and v belong to C t The system (1.10) is well defined 
[ - L ,  L] • [0 ,  T]"  

whenever ~ < u < 3, that is, whenever u belongs to the domain of the constitutive 

function. When dealing with characteristics, it is more convenient to diagonalize 

the operator on the right hand side of (1.10) by defining the Riemann invariants, 

r=R(u, v )=ic (w)dw+v  , 
(1.11) 

u 

s=S(u, v) ==- -~c(w)  dw+v. 

Whenever u is restricted to an open subset of either the ~-branch or the fi- 

branch, the mapping (u, v)--*(r, s) is a diffeomeorphism. We denote the inverse of 

this map by u=U(r,s), v=V(r,s). We invoke (1.11) only when c(u) is well 

defined. It is evident from (1.11) that u can be expressed as a strictly monotone 

function of ( r - s ) ,  and v can be expressed as a strictly monotone function of (r 
+ s), viz., 

u = ~ ( r  - s) ,  

v=~(r + s). (1.12) 

Let 

?( r -  s) = c(~(r-  s)). (1.13) 

When u belongs to the domain of the ~- and fl-branch, the Riemann invariants 

satisfy a system of equations equivalent to the system (1.10), or equivalent to the 

single equation (1.5). From the definition (1.11), this system may be written 

i~=~(r-s) r ', 

= - ~ ( r - s )  s'. (1.14) 

Let X = z ( t )  be a phase boundary contained in the domain of a solution 

u(X, t), v(X,t), it will be necessary in the following treatment to impose the 

restriction that the speed of the phase boundary be less than the acoustic speed on 
at least one side of the phase boundary. It will be shown in Section 4 that the 
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acoustic velocities are given by 

+_c(u+(t)) (1.15) 

on the (+) side of the phase boundary, and by 

+_c(u (t)) (1.16) 

on the ( - )  side. Here, as before, 

u+ (t) = u(z(t) + 0, t), 
(1.17) 

u ( t )  = u ( z ( 0 - 0 ,  t). 

By assuming v.( t ):~v(t) ,  and then eliminating v + ( t ) - v ( t )  from the Rankine- 
Hugoniot conditions (1.7), we obtain the squared velocity of the phase bound- 
ary, 

~2 =a(u + (t))--a(u_ (t)) . (lAg) 
u+(t)--u (t) 

Suppose u(t) equals either u+(t) or u(t ) .  The condition we seek is 

1~1 < c(u(t)), (1.19) 

which, according to (1.19) and the definition of c(u), can be written 

(u + (t)) - ~ ( u  (t)) < a,, (u (t)). (1.20) 
u+(t)-u_(t) 

Viewed in this way, the condition (1.19) expresses the fact that in the graph of a 

vs. u, the slope of the line connecting (u+, a(u+)) to ( u ,  a ( u ) ) i s  less than the 
slope of the tangent at u+ or u . 

2. Existence of Solutions with Phase Boundaries 

In this section an existence theorem will be proved for a solution which 
contains a single phase boundary. The path of the phase boundary, X=g(t), 

t~(-ov,  or), will be prescribed, and a solution y(X,t)  will be found in the 
neighborhood 

{ ( x ,  t)~IR-~ I z(t) - ~ < X < Z(t) + d ,  (2.1) 

for some e>0. This solution will be a classical solution of (1.5) except on the 

phase boundary, where the Rankine-Hugoniot conditions (1.7) will hold. There- 
fore, y(X, t) will satisfy the balance of momentum (cf equation (1.6)). 

We begin with the simplest case. A static solution is prescribed on the ( - )  side 
of a given phase boundary, and the Rankine-Hugoniot conditions yield Cau- 
chy data for the (+) side. We construct a smooth solution having this Cauchy 
data which covers the region {(X, t)[Z(t ) < X  < Z(t) + ~}. 
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Let u = ~  be a constant deformation contained in the domain of the ~- 
branch, and let X=Z(t)  be an assigned curve in (X, t) space, which fulfills the 

requirements 

(i) Z ( ' ) e C ~  ...... i' Z(" ) is Lipschitz continuous and bounded: 

l)((t2)--Z(t OI <:/.It2 - t , I ,  

[;~(t)[ ~ m. (2.2) 

(ii) For some sufficiently small r > 0, 

a(fi' + z)-a(:~ ) .2<a(fi-r)-a_(c<_) (2.3) 
(fl, + ~ ) _ ~  <z  ( / ~ _ ~ ) _ 7  �9 

(iii) For the same constant r, and some positive constant k, 

c(B+)-121>k, whenever fll +'r ~fl+ N/~--r. (2.4) 

The assumption of smoothness Z( ' )e  C~ . . . .  ~ is equivalent to the assertion that 

shock and acceleration waves do not impinge on the phase boundary, as will be 

made evident in Section 4. The Lipschitz condition implies that the amplitudes 

of third order waves are bounded (cf Section 4), the bounding constant being 

dependent only upon ). and the constitutive equation. Conditions (2.3) and (2.4) 

insure that 2 takes on values in the range of all possible velocities, and that the 
acoustic speed evaluated on the (+)  side of the phase boundary is uniformly 
greater than the speed of the phase boundary. 

The inequalities (2.3) and the assumption that a(u) is strictly increasing on 
the fl-branch imply that 

~ ( u + ) - , r ( ~  ) = 2(t)~ (2.5) 
U+ - - ~  

has a unique solution u+(t)eQ . . . .  ~, which lies in the domain of the fi-branch. 
Let 

v+(t)=_ -2(0 (u+(t)-= ). (2.6) 

Then the Rankine-Hugoniot conditions are satisfied for )~(t), u+(t), v+(t), u (t) 
= ~ ,  v_(t)=0. 

We assign the static solution 

u(X, t )=~ , v(X, t)=0, (2.7) 

for X<Z(t).  The functions u+(t), v+(t) represent Cauchy data for a solution 
extending on the (+)  side of the phase boundary. 

The corresponding Cauchy data for the Riemann invariants is calculated 
through the mapping (1.11): 

%(0 =-R(u+(t), v+(t)), 

s + (t) -~ S (u + (t), v + (t)). (2.8) 

Lemma 1. Suppose Z(t) satisfies (2.2), (2.3) and (2.4). Then Ik+(t)] and ]&+(t)[ are 
bounded and uniformly Lipschitz continuous on ( -  oo, oo). 
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Proof. By differentiation of (2.5), 

~i+ u + - ~ _  (u+_~_)2 j - - 2 2 ~ ,  (2.9) 

which immediately implies that Ifi+(t)[ is bounded. Equations (2.6) and (2.3) show 
that [b+(t)l is bounded. By differentiating (2.8) and using the definition (1.12), it 
follows that I~_1 and t~+l are bounded on ( - o o ,  oo). 

Equations (2.9) and (2.2) show that /l+ is Lipschitz constant, say, 2,. It 
follows from (2.6) that g is Lipschitz continuous with constant, say, 2~. It is easy 
to derive from (1.12) that /+ and s'+ are Lipschitz continuous. [] 

Let the bounds of I~_1 and I~§ be ~ .  and 6,.,  and let )~ be a Lipschitz 
constant for both i;§ and i+. 

Theorem 1. Suppose X=;g(t) is assigned consistent with (2.2), (2.3), and (2.4). Let 

u§ and v+(t) be the unique solutions of (2.5) and (2.6). Then, there is a 

continuously differentiable solution u(X, t), v(X, t) defined on 

~ :  -- oo < t <  oo, 

which satisfies the Cauchy data, 

u(z(t), t) = u+(t) 

)~(t) =< X < Z(t) + e, (2.10) 

v(z(t), t) = v+ (t). (2.11) 

The combined solution consisting of u, v defined on ~ and the static solution (2.7) 
defined for X <Z(t) satisfies the balance of momentum (1.6). For X >)~(t) the bar 

is in the fl-phase; for X <z(t) the bar is in the e-phase. 

Proof. We shall use the Riemann invariants as dependent variables, instead of 
deformation-velocity variables. Let r+(t) and s+(t) be defined by (2.8). The 
appropriate equations are 

t:= ~(r--s) r', r(z(t), t)=r+(t), 
(2.12) 

~ = - ~ ( r - s )  s', s(z(t) ,t)=s+(t) .  

To ease the analysis, it is profitable to straighten the path of the phase boundary 
by changing variables according to the prescription, 

.~ = x -  z(t),  
i'=t. (2.13) 

Upon substitution of (2.13) into (2.12), (2.12) becomes 

= (e(r - s) + 2) r', 

~ = ( - e ( r - s ) + 2 ) s ' ,  

r(0, t) = r+ (t), 
(2.14) 

s(0, t)=s+(t).  

In (2.14) and until the end of the proof, dot and prime denote derivatives with 
respect t o / ' a nd  )~, respectively; by (2.13) the region ~ of (2.10) is mapped onto 
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()~: - ac < t <  ar 0<X<_~ (2.16) 

For  the remainder of the proof the superimposed hats will be omitted from t 
and X. 

As a preface to the quasilinear problem (2.14), I shall treat the corresponding 
linear problem, 

~ = ( a ( x ,  t )+  z~(t))r', r(0, t) = r+(t), 
(2.17) 

~=(-e(X,t)+~(t))s', s(O,t)=s§ 

in which ~(X, t)-121 > k on ~ .  We assume O(X, t) is continuously differentiable 

on ~ .  The problem (2.17) can be solved by the method of characteristics. Here, 

X is the natural choice of parameter along the characteristic. Let t =zr(X, 7) be 
the solution of 

dt -1  
dS -6(X,  t) +)~(t)' t(0) = 7, (2.18) 

and let t = zs(X, 7) be the solution of 

dt 1 
d ~  - ~(X, t) - );(t) ' t(0) = 7- (2.19) 

At fixed 7, t = z,(X, 3') is the equation of the r-characteristic, and t = rs(X, ~,) is the 

equation of the s-characteristic. The r- and s-characteristics can be used as co- 

ordinate curves on c~,. That is, from the theory of ordinary differential equations 

[5, Theorem 3.1], z, and z, belong to class C~ .  Moreover, the assumption 

-121 > k >0  implies that r~(X,-) and r , (X, .  ) are strictly monotone. Hence, there 
are continuously differentiable inverses, 

,; = t ; ( x ,  t), 
(x, t)c~,:. (2.20) 

v=~(x,t), 

A straightforward calculation shows that a solution of the system (2.17) is 

," = ~+ (Z(x, t)), 
s = s+ (F~ ( x ,  t)). (2.21) 

According to the classical theory of such equations, this solution is unique 

within the class of C t solutions of (2.17). It follows directly from (2.21) that r is 

constant along r-characteristics, and s is constant along s-characteristics. 

We shall find the solution of the nonlinear problem to be the fixed point of a 

certain mapping S. To construct ~, we let {r(X,t), s(X,t)} be a pair of 

continuously differentiable functions defined on ~ , ,  which satisfy the data 

r(O, t) = r+(t),  

s(0, t) = s+ (t). (2.22) 

We also assume that r, ~, s, g are sufficiently close (uniformly) to r+, ?+, s+, ~+, 
respectively. We define 
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t)= e(r(x, t )-  s(X, t)), (2.23) 

and solve the linear problem (2.17) to obtain functions 

p(X, t), a(X, t). (2.24) 

Let ~ be the mapping (r, s) ~(p, a) obtained in this manner. We regard ~ as 

defined on a metric space of pairs of continuously differentiable functions (r, s) 

endowed with the supremum norm on r, s, i, g, r', s'. It is a straightforward but 

routine calculation to show that E is a contraction mapping for e sufficiently 

small. The estimate makes use of Lemma 1, equations (2.2) and (2.4). The fixed 
point of Z is a solution of (2.14). [] 

3. Extensions of  Theorem 1 

A. Data prescribed on both sides of the phase boundary 

The restriction that the solution on one side of the phase boundary be a 

static solution was unnecessary. The proof of Theorem 1 can be carried out for 

the Cauchy problem on each side of the phase boundary as long as the Cauchy 

data {u+(t), v+(t), u( t ) ,  v( t )}  are consistent with Lemma 1. This consistency 
can be insured in many ways. 

One way to do so is to prescribe a phase boundary which satisfies (2.2), (2.3) 

and (2.4), and to assign Cauchy data u (t), v (t) on one side of the phase 

boundary that have bounded, uniformly Lipschitz continuous derivatives, and 

for which u (t) belongs to the domain of the a-branch. The condition (2.4) that 

the acoustic speed on the fi-branch be greater than the speed of the phase 

boundary permits the Rankine-Hugoniot conditions to be solved for u+(t), v+(t). 
It can easily be shown that the data u+(t), v+(t) obtained in this way satisfy 
Lemma 1. 

B. Global solutions 

Theorem 1 established the existence of solutions on a region ~ , :  X(t)<X 
<Z(t)+e, - o o < t < o o ,  for some e>0.  It is well known [6] that solutions of 

the equations of dynamic elastic bar theory are not globally smooth, in general. 

Except for a certain class of Cauchy data, the values of the first derivatives of u 

and v blow up after a finite distance along a characteristic. This result does not 
contradict Theorem 1, because, there, each point in ~ ,  could be connected to the 

phase boundary by a short characteristic. Here, "short"  refers to the comparison 

of ~ with the other constants introduced in the proof of Theorem 1. However, 
under some special conditions on r+(t) and s+(t), globally smooth solutions 
exist. 

To investigate this probability within the context of Theorem 1, we imagine 

that a solution has been proved to exist on ~ ,  for some e >0. This solution 

provides Cauchy data r()~(t)+e,t)=f+(t), s(g]t)+e,t)=~+(t), on the curve X 
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=:Z(t)+e. In the following theorem, we prove that under special conditions on 
the original Cauchy data r+(t), s+(t) the procedure of Theorem 1 delivers a 

global solution by continuation. 

Theorem 2. Suppose that, in addition to the hypotheses of  Theorem 1, r+(t) and 
2 s+(t) belong to the class C( . . . .  ). Assume that either 

7:+ >0, ~+ <=0 and a..(u+(t))>=O (3.1) 

o r  

,:+ <0, ~+ > 0  and a=~(u+(t))<O. (3.2) 

Then there is a smooth solution r(X, t), s(X,  t) on ~ ~" - c~ < t <  00, X>Z( t ) .  

Proof. For this proof it is convenient not to make the change of variables (2.13). 

Let r(X,  t), s(X, t) be the solutions of the system 

= e(r -- s) r', r(z(t), t) = r+ (t), 
(3.3) 

= --e(r --s) s', s(z(t), t)=s+(t),  

which have been proved to exist in Theorem 1. Suppose r, s are defined on ~=. 

To carry out the proof along standard lines, first we must show that r, seC2~=. 
The equations for the characteristics of (3.3) are 

d'gr - -  1 
- ~,(x('e), ~) = ' / ,  

d X  e ( r - s ) '  

dz= 1 

d X  - a ( r - s ) '  z=(X(~), ~) = Y. 

(3.4) 

By the theory of ordinary differential equations [5], z~ 
and the partial derivatives 

~,2 ",2 ~2 
~ 2 T  r 0 "~r (7 Ts $s 

~ 7 0 X '  ON 2' 0 7 0 X '  OX 2 

and z= belong to C* 

(3.5) 

exist and are continuous. We shall show that the assumption r+, s+eC{_ ~ . ~  

Ors t 
implies that ~ ,  ~77 eC~.. This result will in turn imply that r r, z=eC e~ and that 

r, seC2 . The function aT,/a7 satisfies the linear equation which follows from 
(3.4) 1 by differentiation, 

dX \ o 7 1  e ~ dTZ~-s) f f -~)  ~7 '  

and the side condition 

8z~ (Z(?), 7) = 1 q Z(7) (3.7) 
~7 a(r+(~')-s+e,,))" 
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Since 

d (1 r X t-~21 d(r-s)d? d x l ~ l o g g (  ( ,r ,(X,?))-s(X, rr(X, 7)) ) g, (3.8) 

then (3.6) may be written 

d [~r,~ 1 d~ dr+ ~z, (3.9) 
dX \07]=~2d(r - s )  d7 (�89176 

To derive (3.9), the relation ~: 0rr d r +  has been used. The solution of (3.9) with 
the side condition (3.7) is 07 d7 

[ 

av,07 (x, te(r(X,   T2T, ?))) (3.10) 

{ 2(?) i, 1 1 d5 dr+. dz}. 
�9 1-~ c(r+(7)-s+(';)) + ~ ) 0(r+(?)-s+(y)) ~ e ~ d(r-s) d7 {~,,) 

Hence ~z~ 1 It follows that z, eC2  and that F~eC~ . Since 

r(X, t) = r+ (F,(X, t)), (3.11) 

and by assumption r+sC{_~.~), then re C2o. By similar reasoning as above, 
carried out for the s-characteristic, se C ~ .  

The assumptions (3.1) and (3.2) now permit the application of a standard 
theorem [6] on the growth of the derivatives of r and s. That theorem implies 
that 

t , - -  

', c /[(z(t)+~,t) 
(3.12) 

8, t)=~ \ c /l(z(,+~,0 

are bounded by constants which only depend upon the constitutive function, 
;g(t), r+(t), s+(t), but not upon e. Also, the curve X=z(t )+e satisfies the 
hypotheses (2.2), (2.3), and (2.4), with the same constants s m, z, and k as with X 
=Z(t). Therefore the solution can be extended to @~+~,, for some e~ >0. At Z(t) 

+e  the solution is C 2. At (X(t)+g+e~, t), d ~r(i~(t)+e+81, t), etc. can be bounded 

by the same bounds given in this proof, so the solution can be extended to 
~ + 2 ~ .  Continuing in this fashion the solution can be extended to ~ .  [] 

Clearly, it is possible to have globally smooth solutions on both sides of the 
phase boundary�9 This can be accomplished if, in addition to (3.1) and (3.2), the 
data ( r ,  s )  satisfy the analogues of (3.1) and (3.2), i.e. 

r >_0, s _<0 and a,,(u (t))<O, (3.13) 

r <0, s > 0  and a,,(u (t))>O. (3.14) 
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C. I n v a r i a n c e  groups  

The equations (1.20) or (1.14) generally admit four invariance groups aside 

from the trivial change of origin. If we take proper account of the change of the 

domain induced by the transformation, the balance of momentum (1.6) is also 

invariant under these transformations. 

1. Quasilinearity. 

Deformation-velocity variables: 

Riemann invariants: 

2. Time reversal. 

Deformation-velocity variables: 

Riemann invariants: 

3. Space reversal 

Deformation-velocity variables: 

Riemann invariants: 

t - - ~ v t  X - ~ v X ,  v=const .  

t - - * v t  X ~ v X .  

t ---* - -  t ,  l) --* - -  V.  

t ~ - - t ,  r - ~ - - s ,  s - * - - r .  

X - * - X ,  u--~u,  

v--~ - v .  

X - - - ~ - X ,  r - - - ~ - s ,  

s ----~ - r .  

4. Galilean transformation. 

Deformation-velocity variables: u ~ u, v --, v + k, k = const. 

Riemann invariants: r - *  r + k, s --* s + k. 

These transformations can be used to produce a class of solutions from any 

single solution delivered by Theorem 1. Specific use will be made of the first 
group in Section 5. 

4. Interaction of  Sound Waves with a Phase Boundary 

Within the framework of elastic bar theory, a sound  wave  is a smooth curve 

in the domain of a solution across which i or ~, or higher derivatives of r and s, 

experience a finite jump, while r and s themselves remain continuous. So that 

the jump is well defined, it is also required that the limiting values of i or ~, or 

the higher derivatives, exist as the curve is approached from either side. If ~ or 

experience jumps, which, of course, entails that r' and s' experience jumps, the 

wave is called an acce l e ra t ion  wave.  If some of the derivatives of ( n -  1) st order of 

r or s jump, but the derivatives of ( n - 2 )  "d order remain continuous, the sound 

wave is said to be of n th order.  In elasticity theory it is known that the behavior 

of acceleration waves is analogous to the behavior of higher order waves; that is, 

the waves lie on curves determined by the same equations, and the jumps satisfy 
analogous compability conditions. 

Solutions obtained from Theorem 1 cannot propagate acceleration waves 

since t:, ~, r', s' are continuous in those solutions. We shall therefore be concerned 
with the propagation of third and higher order waves. 

I shall formulate two kinds of problems. Imagine an elastic bar containing a 

single, generally moving, phase boundary. In the first problem, I assume that 

one end of the bar has been hit, so a sound wave moves toward the phase 

boundary. I investigate the possibility that no wave is reflected from, or that no 
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wave is transmitted through the phase boundary, or that neither reflected nor 

transmitted waves emerge. That is, I find conditions under which a bar contain- 

ing a phase boundary can be used as a damping device for sound waves. In the 

second problem, I consider the possibility that a phase boundary spontaneously 
emit sound waves. 

To begin the analysis, we recall the theory of third order waves. Let X = ~(t) 

be a curve in the domain ~ of a solution taken from Theorem 1. Suppose that 

across X=~(t) ,  f (X,t)  experiences a jump, but the limiting values f(~(t)+0, t) 
and f (~( t ) -0 ,  t) exist. I shall use the notation 

[ f ]  _/z(~ (t) + O, t) - k'(~ (t) - O, t) (4.1) 

for jumps across third order waves. Let 

[i ' ]  = a (4.2) 

and assume a+O. Since i is continuous across X=~(t ) ,  

d~ 
[ q  = - a - - .  

dt 

By differentiating the equation r = c ( r - s ) r '  and subtracting across X=~(t) ,  we 

arrive at the relation 
d~ 

- -  ~ ( r - s ) .  (4.4) 
dt 

By comparison with (3.4), (4.4) implies that third order waves in which [i '] + 0  

travel along r-characteristics. It follows by a similar argument that third order 

waves in which [g'] ~ 0  travel along s-characteristics. Furthermore, only second 

and higher derivatives of r can experience a jump across an r-characteristic 

which is a third order wave, and only second and higher derivatives of s can 

experience a jump across an s-characteristic which is a third order wave. That is, 

the equations for the characteristics (3.4) show that the r-and s-characteristics 

meet non-tangentially. Also, s is constant along an s-characteristic and r is 

constant along an r-characteristic. Therefore, [~'] = [~'] = 0 across an r-character- 

istic which is a third order wave, and [/"] = [~'] = 0 across an s-characteristic which 

is a third order wave. 

Let r(X, t), s(X, t) be a piecewise C 2 solution taken from Theorem 1. Suppose 

a third order sound wave travels down an r-characteristic X = (r(t) and impinges 

at t = 0  on the phase boundary X =Z(t). Let the Cauchy data for the solution on 
the (+ )  side of the phase boundary be r+(t), s+(t). Then 

d 2 r+ d 2 

dt 2 =aS~ r(Z(t), t) 

=r '22  + r ' ~ + 2 i . ' 2 + f  

d~ (4.5) 

c d ( r _ s ) ( r ' - s ' ) r '  +r '~+2~ '2  

/~. ,  dg . r,]. + 

J 
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Hence 

,46  

But (2.4) shows that 1(2 + c)> 0. By assumption [i'] ,t= O. Therefore a third order 
c 

sound wave on an r-characteristic impinges on the phase boundary at t =0 /f and 

only if  [f§ By similar reasoning, a third order sound wave on an s- 

characteristic impinges on the phase boundary at t = 0 if and only if [~'+] (0)+ 0. 
The results just stated presume the existence of a piecewise twice con- 

tinuously differentiable solution. Suppose Cauchy data r+(t), s+(t) is prescribed 

consistent with the hypotheses of Theorem 1. Suppose r§ s+(t) are twice 
continuously differentiable except at t=O, where the limits f§ and f+(0-)  

exist and are unequal. Let r(X, t), s (X,  t) be the corresponding solution. Then the 

argument leading to (3.11) shows that the r(X, t) is twice differentiable on its 
domain of existence, except for points lying on the r-characteristic X=~r(t) 

issuing from (X(0), 0). Moreover, the limiting values f(r 0, t) and / : (~( t ) -0 ,  t) 

exist. Therefore, if r§ is assigned in the class C 2t_ ~.o)~10.~)~ C 1,~ ~,~),  and the 

limits ?+(0+) and ?'+(0-) exist, and s+(t) is assigned in the class C{_ ~,~), then 

there is a solution 2 r, s~C~  _R c~ C~, containing a third order sound wave on the r- 

characteristic R, which impinges on the phase boundary at (Z(0),0). A similar 

statement holds for the s-characteristic. 

In the first problem we imagine that we strike the end of the bar which is 

near the (+)  side of the phase boundary. The equations (3.4) for the characteris- 
tics show that the wave must travel down an r-characteristic, in order that it 
move toward the phase boundary as time increases. Hence, we assume [?+] =1=0 at, 

say, t=0 .  A wave will be reflected if [~'+] (0)=1:0, and a wave will be transmitted 

if I F ]  (0) =t=0. We stipulate that we hit only one end of the bar; therefore, [~ ' ]  (0) 
= 0. That is, the only wave which can travel backward in time as it recedes from 
(Z(0),0) lies on the r-characteristic on the (+)  side of the phase boundary. In 
summary, for 

P r o b l e m l :  [/;+](0)=t=0, [~" ](0)=0. (4.7) 

In the second problem we investigate the conditions which imply that a 
phase boundary spontaneously generate sound waves. These conditions ex- 
pressed in terms of the Cauchy data are, for 

eroblem2: if+l(0)=0, [~'](0)=0. (4.8) 

We now analyze the jump conditions on the phase boundary. The Rankine- 
Hugoniot conditions, 

F(t) = ~ ( t )  (u  + ( t )  - u _  ( t ) )  -I- (v  + ( t )  - v _  ( t ) )  = O, 

(t) - o (u + ( t))  - ~ (u_ (t))  + (v+ (t) - v_ (t))  ,t ( t) = O, 
(4.9) 
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must be satisfied across the phase boundary. Let the Cauchy data r+, s+ belong 

to the class Cg_oo,)uto.o~)nC~_oo.oo) and have limiting values at t = 0  from the 
right and left. By the assumptions of smoothness on a(-),  u+ and v+ also belong 
to the same class, and have limiting values. Let (4.9) be differentiated twice and 
the limiting values subtracted across t=0 .  The first differentiation shows that 
[4] (0)= 0. The second may be written 

[2"] (u+ - u_) + 2[//+ - / /_1 +[~+ -~_1 =0, 
(4.10) 

~.(u+) [ / / + ] - ~ , ( u  )[// ] +[~+ -/~ ] 2+(v+  - v  )[21 =0.  

The following theorem reduces the study of the interaction of sound waves with 
the phase boundary to a study of the conditions (4.10). 

Theorem 3. Let r(X, t), s(X, t) be a solution containing a phase boundary X =Z(t), 
defined in a neighborhood of the point (;~(0), 0). Suppose the data 

r + ( t ) = r ( z ( t  ) +0, t), r ( t )= rO( ( t ) - -O  , t), 
(4.11) 

s+(t)=s(z(t)+o,t), s ( t )=s(z(t)-o, t )  

belongs to the class C~_ ~, o)~ (o, ~)n C~_ ~, ~) for some (5 > 0 and has limiting values as 

t = 0  is approached from either side. Then the jump conditions (4.10) are satisfied. 

Conversely, suppose finite values are assigned for 

)~(0), u+(0), u (0 ) ,  v+(0), v ( 0 )  (4.12) 

such that the Rankine-Hugoniot conditions (4.9) and the conditions 

c(u +(o))-I~(O)1 > o, 
(4.13) 

c(u_ (o))-12(0)1 > o 

are satisfied. Suppose finite values are assigned for 

[2], [a+], Fi_], [v+], [/5_] (4.14) 

so that the jump conditions (4.10) hold for the set (4.12) and (4.14). Then, for some 

6 > O, there is a phase boundary 

x = z(t)e C~_ ~, o)u(o, ~) n C(: ~, ~) 

and Cauchy data 

u+(t), u_(t), v+(t), v (t)ec~_~,o~(o,~ c '  ( -&6)~ 

both consistent with (4.9) and (4.10). Furthermore, there is a solution u(X, t), v(X, t) 

defined in a neighborhood of (Z(0), 0) having this Cauchy data on the phase 

boundary X = Z(t). 

Proof. The first part of the theorem has been proved by the derivation of (4.10). 
To prove the converse, we begin with the once differentiated form of the jump 
conditions, evaluated at t = 0, 
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P(o)=Si(u+ - u  )+;~(6+ - 6_) +if+ -~5 )=0, 
(4.15) 

6(o)=au(u+)6+ -c~.(u_)6 +2if+ -~_)+5~(v+ -v_)=0.  

Let 6+(0), 6_(0), tS+(0), ~5 (0), 5~(0) be prescribed so that F~(0)=G(0)=0. This is 
always possible because (4.15) can be solved explicitly for 6+, 6_. The twice 
differentiated form of the jump conditions are 

F(t) = ~'(u+ - u  )+2~(6+ - vi_) + 7[(//+ -//_)+(/5+ - / 5 ) = 0 ,  

G(t)=a,,(u+)//+ -a . , (u_) / / .  +a,,(u+)62+ - a , , ( u  )62 - (4.16) 

+7[(/5+-/5_)+25~(/5+-/5 )+(v+ - v  )~ '=0 

The condition (4.13) permits (4.16) to be solved for ii+(t) and/ /  (t). Let / /+(0+),  

// (0+), //+(0+), b" (0+), ~'(0+) be assigned so that f i ( 0 + ) = G ( 0 + ) = 0 .  Since 
the jump conditions (4.10) are fulfilled for the set (4.14), F ( 0 - ) = G ( 0 - ) = 0 .  Let 

2 1 v+(t), v_(t)eC~_~,o~(o.~lc~C(_~.~ and Z(t)~C~_~,o~(o,~c~C~_~,~l be prescribed 
consistent with the assignments of v+(0), v (0), 6+(0), 15 (0), ~(0), 7[(0), made 

above. If (4.16) is formally solved for //+(t), // (t), there results a second order 
ordinary differential system for u+(t), u (t), with initial values u+(0), u (0), 6+(0), 

6_(0), This equation is solved for functions u+(t), u(t), t>O, and for functions 
u+(t), u(t),  t<O. All of the functions involved having been determined on a 
sufficiently small neighborhood of t=0 ,  it is clear that by the construction 

fi(t)= (~(t) =0, te(-b,O)w(O, 6), 

F(0) = (~(0) = 0, (4.17) 

F(0)=~(0)=0. 

Also, u+(t), u_(t)eC{_6, o)~(o.6)~C tl_6,o). Therefore, F(t)=G(t)=O, t~(-6,6). 
With this collection of Cauchy data and the hypothesis (4.13), a solution r(X, t), 
s(X,t) can be found by the method of Theoreml  in a neighborhood of 
(X(0), 0). []  

It is evident from the theorem that the resulting Cauchy data are not 
unique, since v+(t), v( t )  and ;~(t) were chosen arbitrarily, except at t=0 .  

The two problems set forth in (4.7) and (4.8) are now laid open for 
investigation. Those problems have been formulated in terms of the Riemann 
invariants r, s because the geometry of the characteristics is immediately plain 
for that choice of dependent variables. However, the Rankine-Hugoniot con- 
ditions are formulated naturally for the variables u and v. The relation between 
the two sets of variables is the equation (1.11). We shall need the implied 
relations between the jumps ofF+, s+, r ,  s , and the jumps o f / /+ , /5+ , / / , /5 ' .  By 
differentiation of (1.11) 

V+ ] = c(u+) [//+ ] + [/~'+ ], 

[+'§ = -c(u+) [ / /§  + [/5§ 

The analogous equations hold for ( - ) .  

(4.18) 
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Problem 1. In this problem it is necessary to solve (4.10) under the restriction 
(4.7). All functions below will be evaluated at t=0 .  We assume that the basic 

inequalities (4.13) hold. Let 
p = [~'+ ]. (4.19) 

By assumption, p#0 .  In terms of the deformation-velocity variables, (4.7) 
becomes 

p=c(u+)[ii+]+[~'+], 
(4.20) 

c(u)[/ /_]-[/~ ] =0. 

As in Theorem 3, we assume that )~, u+, u ,  v+, v have been assigned consistent 
with the Rankine-Hugoniot conditions. Equations (4.20) are introduced into the 
equation (4.10); by elimination of [/J+] and [/3 ], and by the use of(4.9) evaluated 

at t = 0, the result may be written 

[ a + ] ( 2 - c ( u + ) ) + [ a  ] ( - c ( u _ ) - 2 ) + [ 2 l ( u +  - u  ) + p = o ,  

[//+ ] (c(u+) 2 - 2 c(u+)) + [ / / ]  ( -  2 c(u ) - c(u) z) (4.21) 

+ [ • ] ( u + - u  ) 2 + p 2 = 0 .  

These are the basic equations for problem 1. Viewed as a system of equations for 
the vector ([//+], [// ]), (4.21) has determinant 

(c(u+) + c(u ))(c(u+) -2 ) (c (u_)  + 2) (4.22) 

which can never vanish. Therefore, let arbitrary values be assigned to [~'] and p. 

Then there is a solution [//+], [ii ] so that (4.21) is satisfied. Combining this result 

with Theorem 3 and (4.6), we deduce that for arbitrary assignment of [~], and 
for arbitrary amplitude of the incoming wave, there is a solution. Generally a 

wave is reflected and a wave is transmitted. 

Suppose, in addition, we assume that no wave is transmitted. Then 

[ ~ ]  = 0 ~  [//_] = [ / ~ ]  =0. (4.23) 

In this case (4.21) becomes, 

[//+] (2-c(~+))+ [2"] (u+ - u ) + #  =0, 
(4.24) 

[//+] (c(u+) 2 - 2  e(u+))+ [2] (u+ - u  ) 2+P 2 =0. 

Viewed as a system of equations for the vector ([//+], [2']), this system of 
equations has determinant equal to 

(u+ - u  ) (2-c(u+)(2+c(u+))+O.  (4.25) 

Therefore, if p is assigned an arbitrary value, there are unique values of [//+ ] and 

[2"] so that no wave is transmitted across the phase boundary at (X(0), 0). It might 
be interesting for some applications to determine if (4.24) can be solved without 
inducing a weak singularity in the motion of the phase boundary, that is, if (4.24) 

can be solved when [2"] =0. It is easy to show that it cannot. Therefore, if [2"] 
= O, a third order wave must be transmitted. 
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Now assume that no wave is reflected at 0~(0),0), but that a wave may be 
transmitted. Then 

[~'+] =0 ~ [C] =c(u+) [//+] 
p =2  c(u+) [f/+ ]. (4.26) 

After substitution of (4.26), (4.21) becomes, 

2c(u+) ) P + [//-1 ( - c (u_ ) - ;~ )  + [2'1 (u+ - u _ ) = 0 ,  

(4.27) 

{c(u~ + 2}p+[ C ](_2c(u)_c(u_)2)+[2.](u + - u ) 2 = o .  

Viewed as an equation for the vector ([// ], [2"]), the system (4.27) has de- 
terminant 

(u+ - u )(2 + c(u+)) (2 - c(u_))=t= 0. (4.28) 

Therefore, if p is assigned an arbitrary value, there are unique values of [ii ] and 

[2"] so that no wave is reflected at 0~(0), 0). However, if [2"] =0  there is a solution 

[ii ] of (4.27) for every value of p if and only if c(u+)=c(u_). When this latter 
condition holds, there is said to be an impedance match across the phase 
boundary. 

Finally, assume that third order waves are neither transmitted nor reflected. 
In that case, the jump conditions (4.21) become 

2+c(u+)) 
~ j' p + [21 (u+ - u ) = 0, 

(4.29) 

This system has no solutions [2] under the basic restriction (4.13). Therefore, 
every incident third order sound wave must be either reflected or transmitted, or 

both reflected and transmitted. 

Problem2. Problem 2 can be analyzed in the same way as problem 1. The 
defining equations, 

[k+ ] = [ g  ] = O, (4.30) 

are equivalent to the conditions 

c(u+) [//+] = - [/;+1, c(u ) [// ] =[b'_]. (4.31) 

Therefore, we begin with (4.21) and put p =0. The result follows immediately. I f  

[2"] =0, no third order waves can be spontaneously emitted from the phase 

boundary. I f  [2"] =t = 0, there is always a spontaneous emission of at least one third 

order sound wave. The word spontaneous here means (4.30) holds, i.e. there are 
no incident waves. 

This completes the analysis of problems 1 and 2. For waves of higher order, 

the results are analogous, at every stage, to the results derived here. 
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5. The Riemann Problem and Admissibility 

A. The Riemann problem. Single phase boundary 

The problem of admissibility of solutions for dynamic elastic bar theory has 

received widespread attention only for the initial value problem. Particular 

emphasis has been expended on the initial value problem known as the Riemann 
problem, in which the data are 

v _ ) X < 0 ,  (5.1) 

u+, u_, v+, and v_ being constants. In order to apply the various concepts of 

admissibility that have been formulated to the propagation of a phase boundary, 

it is necessary first to solve the Riemann problem when the initial data contain a 

phase boundary. This can be accomplished by assigning u+ on the fl-branch and 
u on the s-branch, for example. 

I shall present a kind of local solution to" the Riemann problem, based upon 

the original treatment of LAX [7]. Initial values u+, u_, v+, v will be assigned 

consistent with the Rankine-Hugoniot conditions. Under certain assumptions 

on the constitutive relation and initial data, which amount to the requirements 

that the initial speed of the phase boundary be less than the acoustic speeds at 

u+ and u_, and that the constitutive function be genuinely nonlinear at u+ and 

u ,  there will exist a one parameter family of solutions to the Riemann problem. 

Recalling the basic definition (1.4), we let u+ and u be assigned constants 
satisfying 

c ~ < u  < a  1, 

fll <u+ <fl, a(u+)>a(u). (5.2) 

Let the velocity of the phase boundary ~0 be defined by 

% 

and let constants v+ and v be chosen so that 

(v+ -v_)= -%(u+ - u ) .  (5.4) 

Then the Rankine-Hugoniot conditions are satisfied for u+, u_, v+, v and ~o. 

Evidently, one of the values v+ or v ,  and the sign of %, can be arbitrarily 
prescribed. 

We shall assume that 

(i) c ( u + ) - I % l > 0 ,  c ( u _ ) - [ % l > 0 ,  (5.5) 

(ii) r r , . (u+) .  0, rr,,(u )~0.  (5.6) 

The first condition is familiar by now; the second requires genuine nonlinearity 

at u+ and u .  We shall also assume that LAX'S criterion for admissible shocks 
[-7] holds for shock waves connecting values of u on the s-branch, or connecting 
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values of u on the fl-branch, that is, the usual kinds of shock waves. To express 

this condition, let X =7(0  be a shock wave, and let 

u , -  u(7(t) + 0, t), (5.7) 

ui =~(~,(t)-o, t). 

Then we assume, according to LAX, that 

(iii) either c(u,) < );(t) < c(u 1), 
(5 .8 )  

o r  - c (u , )  < ~(t )  < - c ( u , ) .  

We shall piece together the solution from two other solutions, defined on 

overlapping intervals. The first kind of solution will be either a simple wave or a 

shock solution connecting ( u ,  v ) to a one parameter family of values (u (e), 

v_(e)), (u (0), v_(O))=(u,v_),  -p<e<,u ,  for some constant p>0 .  In the same 

way, the constant solution (u+, v+) will be connected to a one parameter family 

of values (u+(6), v+(6)), - / ~ < f i < / l  by shock or simple wave solutions. The two 

X 
families (u (e), v(c))  and (u+(3), v+(6)) will then be connected at - - =  ~ by a phase 

boundary, t 

We suppose, without loss of generality, that a,,,(u )<0.  The genuine non- 

linearity condition then implies that the equation 

a(w) - a(u_) _ _ c(u_) +-~ (5.9) 
W - -  H ._ 

has a solution w=u_(e), u_(0)=u , defined in a neighborhood of e=0.  In order 

that LAX's criterion for admissible shocks (5.8) be satisfied, e <0. Let 

v _ ( e ) - v _ - ( - c ( u _  )+ 2)(u_(e)-u_ ), (5.10) 

so that v_(0)=v_.  Equations (5.9) and (5.10) imply that the Rankine-Hugoniot 

conditions are satisfied for a shock connecting ( u ,  v_) to (u_(c), v (e)). Hence, 

there is a one parameter family of values 

(u_(e), v (e)), e < 0 ,  
(5.11) 

( u  (0), v_ (0)) = ( ~ _ ,  v_), 

that can be connected to ( u ,  v ) by shocks. The corresponding shock speeds are 

(-c(u )+~/2). 
For ~>0, ( u ,  v_) can be connected to a one parameter family of values 

(u (e,), v( r  by simple waves. A simple wave is a solution of the form 

u(X, t) = a(X/t), 

v(X, t) = ~(X/t). (5.12) 

The choice (5.12) is a natural choice for the Riemann problem, in view of the 
fact that the equation (cf Section 3C.) and initial data are invariant under the 
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transformation t-~a t, X~aX,  a=const .  By introducing (5.12) into the basic 
equations (1.10), we derive that either 

o r  

0(~) = a = const. 
(5.13) 

~3(~) = O = const., 

dO dfi 
a,(a(~))=~ 2, - ~ (5.14) 

d~ d~" 

Let ~(~), 0(~) be the unique local solutions of (5.14) having data f i ( -c (u_) )=  u_, 
O(-c(u))=v_. The functions ~(~), 0(~) will be considered only for 4 > - c ( u _ )  

and ~ sufficient close to -c(u) .  From (5.14)~, 

Let 

d~ d~ 
a,,,(a(~)) ~ = 2 r ~ ~ > 0. (5.15) 

a~ ag  

u (~)=a(-c(u_)+e), 
(5.16) 

v (e)=e(-c(u)+e), 

so that (u (e), v(e)) are defined for sufficiently small e>0.  Let (u (e), v(e)), 
-p_-<e_-<# be the composite of (5.16) and (5.11). 

It is not difficult to prove that (u (e), v(e)) - p < e < / ~  is continuously 
differentiable. The proof for u (e) follows immediately by differentiating (5.9) 

twice, taking the limit at e = 0 - ,  and comparing the result with (5.15) evaluated 

at -c(u_). The proof for v_(e) follows by comparison of (5.14)2 with the 

derivative of (5.10) at e = 0. 
If a,,,(u )>0,  a similar procedure can be used to connect ( u , v )  to a one 

parameter family of values ( u  (e), v (e)), -lt__<e___/~. In that case the admissible 
shock solutions are defined for e > 0, and the simple wave solutions are defined 

for e<O. 
The domain of the solutions so far constructed is the neighborhood 

X 
-c(u )-f(e)<=t<= -c(u )+f(e) (5.17) 

for some continuous function f (e)>0,  s=#0, f (0)=0.  
The same procedure yields a continuously differentiable one parameter 

family of values (u+(6), v+(6)), -/~<6__<#, (u+(0), v+(O))=(u+,v+), that can be 
connected to (u+, v+) by shock or simple wave solutions. These solutions are 

defined in a neighborhood, 

<X<c(u+)+g(& 
c(u+)-g(6)= t 

g(O) =0,  (5.18) 

g(6)>0, 6,0,  

g~C t. 
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The functions (u+(8), v+(8)) and (u(e), v_(e)) are now inserted into the 

Rankine-Hugoniot conditions for the phase boundary, 

4u+(6)-u (~))+(v+(6)-v (~,))=o, 
(5.19) 

(u + (6)) - ~ (u_ (~)) + ~ (~ + (6) - ~ (~)) = o. 

being the velocity of the phase boundary. The equations (5.19) are satisfied 

when 8 =e  =0, and ~ =.%. We view them as conditions on (6, e). The determinant 

of (5.19), evaluated at 8 = c = 0 ,  ~ = % ,  is 

du+ du 
d6 (O)~f(O)(c(u+)+c(u_))(c(u+)-%)(c(u_)+%), (5.20) 

which, according to (5.5), (5.6), and (5.15), is unequal to zero. Therefore, there is 

a solution 

6(o), 6(%) =c(%)=0 ,  (5.21) 
e(~), 

defined for ~ near %. 

We construct the solution to the Riemann problem in the following way. 

The half plane t >_0, - ~  < X  < oo is partitioned into two parts by the phase 
X 

boundary, which occurs on the line - - =  6. Each part is further subdivided by the 
t 

two solutions which connect u_ to u_(~(o)) and u+ to u+(6(o)), respectively. 

When o is sufficiently close to %, the two solutions and the phase boundary lie 

on mutually exclusive domains. To complete the construction of the solution, 

constant solutions are prescribed consistent with the Rankine-Hugoniot con- 

ditions on the included regions. 

This solution differs drastically from the corresponding solution for a 

monotone, genuinely nonlinear constitutive relation. The latter is composed of 

three constant solutions separated from one another by shock or simple wave 

solutions, and it is locally unique under the restrictions imposed by LAX's 

criterion for admissible shocks. The solutions exhibited here are composed of 

four constant solutions separated by conventional shock or simple waves and a 

phase boundary, and there is a one parameter family of such solutions. 

Recall that the sign in (5.3) was arbitrarily prescribed. Hence, for given 

values of u+ and u there are actually two one parameter families of solutions 

corresponding to the choices _+ ~o- (They coincide when % =0.) In part C of this 

section we explore the consequences of dynamic conditions which may serve to 
single out one solution, or perhaps a subfamily, from these two families. 

To conclude this section, we record some results which may be helpful for 

the interpretation of these solutions. Let u+(~) and u ( o )  denote the functions 

u+(6(~)), u_(~(~)). By differentiation of the system (5.19) with respect to ~, we 
deduce the simple relations, 

du+ 
do (~0) 

du_ 

d~ (%) 

(U+ --U ) 
- & (c(~)+~o)  ~= 

(u+ - u _ )  
- de/ ( c ( < ) - ~ ~  

( u + - u ) ( c ( u _ ) + o 0 )  

(c(u+) + c(u ))(c(u+)- ~0)' 

(u+ - u ) ( c ( u + ) - ~ 0 )  

(c(u+)+c(u ))(c(u_)+~o)" 

(5.22) 
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Here 

det = (c(u + ) + c(u_ )) (c(u + ) - Jo) (e(u ) + ~o). (5.23) 

Therefore, regardless of the sign of ou,, u+(6) and u ( ~ )  are both either 

increasing or decreasing functions of 6. 

B. The Riemann problem. Double phase boundary 

A similar method to the one used in the preceding section may be used to 

establish the existence of a two parameter family of double phase boundary 

solutions. These solutions are more naturally associated with experiments 
involving "necking". All of the solutions will contain two phase boundaries 

which separate at some point in the bar and travel toward the ends. At the point 

where the phase boundaries separate in the bar a pair of ordinary shocks or 

rarefaction waves will emerge and will propagate out ahead of the phase 

boundaries. 

We shall begin with a "basic solution" and seek a two parameter family of 

solutions close to the basic solution. Following the procedure of the preceding 

section, we do not want the basic solution to contain any rarefaction waves or 

ordinary shock waves. Also, the initial data shall be assigned as a homogeneous, 

static solution: 

(u, v) (X, 0) = (Uo, 0), u o = const. ~(~, ~1). (5.24) 

By accounting for Galilean invariance (cf Section 3 C), we have chosen the initial 

velocity to be zero, without loss of generality. We shall also assume that a(Uo) is 

in the range of the interior of the fl-branch, e.g. that there ig a value a~(fll,/~) 

such that ~r(a)=a(u0). 

Suppose that the basic solution consists of a phase boundary moving 

forward with velocity o+ and a phase boundary moving backward with velocity 

6 ,  the included region being a constant solution (~o, 9o). The region between 

each phase boundary and the X-axis is assigned as the constant solution (u0,0). 

Necessary and sufficient conditions that the Rankine-Hugoniot conditions hold 

across the phase boundaries are that 

130=0, o+ =0, 6 =0, a(~o)=a(Uo). (5.25) 

Equations (5.25) define the basic solution. It is actually just the static solution 

(u0, 0) because 6+ = 6 ,  so that the region included by the phase boundaries is 

null. 
In the manner of the preceding section, the value (u0, 0) can be connected for 

X < 0  to a one parameter family of values (u(e), v(~)), (u(0), v(0))=(u 0, 0), on 

the right by a one parameter family of solutions. This one parameter family of 

solutions consists either of shock waves or simple wave solutions bounded by 

acoustic waves, and both of these waves move nearly at the acoustic speed C(Uo). 
For X > 0  the value (u o, 0) can be connected to a one parameter family of values 

(u+(6), v+(6)), (u+(0), v+(0))=(uo,0 ) on the left by shock or simple wave so- 

lutions. Here, as always, left and right refer to the X -  t plane with the t-axis 

drawn vertical. These sets of solutions are defined for ~ and 6 near zero. We wish 
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to connect the constant solution u+(6), v+(6) to a constant solution (fi, ~) by a 

phase boundary moving forward with velocity ~+. Similarly, we wish to 

connect u (e ) ,  v_(c) to the constant solution (t/, ~) by a phase boundary moving 

with velocity o backward. In order that this construction deliver a solution, we 

must check that the Rankine-Hugoniot conditions be satisfied across the two 
phase boundaries: 

+ (u + (6) - a) + (v + (6) - ~) = 0, 

(u + (6)) - ~ (4) + ~ + (~ + (6) - ~) = o, 
(5.26) 

_ ( 4  - u _  + = 0 ,  

These equations are satisfied at the basic solution (5.25). We view them as 

restrictions on {~, ~, ~, e, with ~+ and J acting as parameters. The determinant 

of the gradient of (5.26) with respect to ~, ~, 6, c, evaluated at the basic solution, 
is 

du_ du+ 0 
dc (0) - d r  ( ) c(u0) 3 c(t/o) 3 (5.27) 

which, according to (1.4), (5.15), (5.16) and the definition of c(u), is never zero. 
Hence, there is a two parameter family of solutions 

t/(~_, j+), t~(~_, o+), 5(~ , ~+), c(.,_, ~+). (5.28) 

These solutions reduce to the basic solution when ~ = o+ =0, and, otherwise, in 
order that the solutions be meaningful, o <0_<o+. 

In order to describe these solutions, imagine an infinite bar as the abscissa, 

and the time axis as the vertical ordinate, of a rectangular co-ordinate system. 

For t < 0  the bar is homogeneously deformed in the cz-phase. At t =0  an ordinary 

shock wave moves forward and an ordinary shock wave moves backward, or a 

rarefaction wave moves foreward and another backward. Simultaneous to the 

emergence of these fast moving waves, two slow moving phase boundaries 

emerge from the origin, one moving foreward and the other moving backward. 

The region included between the phase boundaries is homogeneously deformed 
in the//-phase. 

It has been assumed merely for definiteness that the bar was initially in the 
:~-phase. It could have been assumed that the bar was in the//-phase; then, the ~- 
phase would have emerged between the phase boundaries. 

C. Admissibility 

The problem of admissibility of solutions is a deep and difficult one, 
especially when the constitutive equation permits the co-existence of phases. 

The need for an admissibility criterion seems to have arisen from two 
sources. One school of thought, systematically and critically presented by 

RAYLEIGH r8], demands that the solutions of the equations of elastic bar theory 

be consistent with thermoelastic, viscoelastic, or thermoviscoelastic bar theory. 
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"Consistency" means that elastic bar theory is embedded as a special case of the 

broader theory, so the broader theory places additional restrictions on solutions 

of the special one. Typically, the mechanical equations are obtained from the 

thermoviscoelastic ones by setting the temperature equal to a constant, by 
setting the heat flux equal to zero, or by allowing the viscosity to approach zero. 

RAYLEIGH compares the earlier work by RANKINE [9], who develops an 

elegant and general thermodynamic theory, to that of HUGONIOT r l0]  ; both of 

these earlier authors considered the embedding into thermodynamic theories 

(without viscosity), HUGONIOT employing the adiabatic law of LAPLACE- 

POISSON throughout, and RANKINE developing a thermodynamic theory for 

transition layers including the conduction of heat. RAYLEIGH adjoins to these 

thermodynamic theories a theory of viscosity, and seems to be the first to show 

concretely that some of the solutions may not be dissipative. He regards '~ it "a  

question of great interest to inquire what is the influence of viscosity and 

especially whether alone, or in co-operation with heat-conduction, it allows a 
wave of condensation to acquire a permanent regime"; since here the nature of 

an underlying thermodynamic theory is obscure, the use of a viscoelastic theory 

alone appears most fruitful. 

Ever since LAPLACE [11] predicted to correct speed of sound for forbidding 

the conduction of heat, there has been a recurring belief that for most materials 

the disturbances which propagate at the speed of sound, or nearly the speed of 

sound, undergo adiabatic processes. Though weak shock waves fall into this 

category, the slow moving phase boundaries probably do not. The solutions 

constructed in parts A and B of this section may simultaneously contain a phase 

boundary which moves as slowly as desired, and a shock wave which moves as 

close to the acoustic speed as desired. This situation may be realized in part A 

by assigning the data u+, u so that a (u+)=a(u  ); all of the solutions con- 

structed in part B have this property. It is not inconceivable that shock waves 

ought to be regarded as adiabatic and phase boundaries as isothermal. Not  all 

contemporary workers agree; DUNWOODY presents evidence based upon the 

theory of infinitesimal deformation superimposed on finite deformation that the 

temperature is continuous across weak shock waves [12]. DAFERMOS [13] has 

put forth a general scheme which is consistent with the isothermal hypothesis. 

The second line of thought which has promoted the need for an admissibility 

criterion has been the desire to prove uniqueness for the initial value problem 

on the infinite bar. This view was promoted by LAX [7] in his influential paper 

on the subject, and mathematicians developing the theory of hyperbolic con- 

servation laws have adopted it without question since then. Casual observation 

casts doubt on this prejudice, especially for constitutive relations allowing a 

change of phase. When a long, thin polyethylene bar of uniform cross section is 

loaded by a sufficiently large weight, a new phase forms; two distinct phase 

boundaries separate at some point in the bar, converting regions of low stretch 

into regions of high stretch. It is observed that for very long, very thin bars of 

uniform cross section the point of initiation of the new phase is quite variable. 

Experiments of this kind are not generally reproducible. The caution should be 

~r RAYLEIGH [8, p. 269]. 
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extended to shock wave problems for ordinary stress-deformation relations as 

well. 

Another touchstone for the dynamic theory which seems not to have been 

brought to bear on the problem of admissibility is static stability theory. The 

reason is plain. Static stability theory is trivial for strictly monotone stress- 

deformation functions, all solutions being absolutely stable according to the 

energy criterion for stability. On the other hand, for a non-invertible stress- 

deformation function some solutions are unstable, others metastable, others 

absolutely stable, still others neutrally stable. I refer to [1] for the complete 

story. Let us suppose that the two theories yield consistent predictions. The 

Riemann problem provides a basis of comparison for the two theories. That is, if 

the initial data for the Riemann problem is assigned so that a(u+)=a(u ), u+ 

lying on the fl-branch and u_ lying on the a-branch, then the initial data is a 
static solution. For the double phase boundary solutions the initial data is 

always a static solution. If that static solution is stable according to the static 

theory, then the admissibility criterion for the dynamic theory should imply that 

the solution persists. If the static solution is unstable, it should not persist. If it is 

metastable or neutrally stable the question is moot. Observations suggest that 

when a new phase appears in a supercooled liquid or gas, it will pass quickly 

through the body, so that a metastable static solution containing two phases will 

not be sustained. For transitions between solid phases, however, metastable 

solutions containing several phases seem likely to persist. 

In spite of these difficulties some progress can be made toward classifying 

solutions if we return to the suggestions of RAYLEIGH. The most commonly 

quoted criteria of admissibility, LAX's entropy* criterion [7] and OLEINIK'S E- 

condition [15] and their generalizations are inapplicable to non-monotone 

stress-deformation relations because they presume monotonicity in their de- 

rivations. We fail to understand, however, why the "entropy" of the entropy 

criterion is required to be convex by definition. The equations used here admit 
u 

an additional conservation law for the total energy (�89 v2+ ~ a(u)du), but it is not 

convex. On the other hand, DAFERMOS' criterion [16], which allows solutions 

only if they maximize the rate of decrease of entropy, is meaningful in this 

context, and the evaluation of it for the equations of elastic bar theory [16, 

equn. (4.5)] is valid for a non-convex total energy. In the succeeding paragraphs 

we shall explore the entropy rate criterion and others which can be applied to 
the present situation. For the lack of a clear conceptual framework for a 

thermodynamic argument of admissibility, I shall omit it. 

1. Consistency with static stability theory. We shall first focus attention on the 

solutions of the Riemann problem containing a single phase boundary. 

As mentioned above, the initial data for those solutions is a static solution 
containing a stationary phase boundary if a(u+)=a(u ), wherein u e(a, el) and 

u+ e(fl 1, fi). The Rankine-Hugoniot conditions (5.3) and (5.4) then imply that 6 o 

= 0  and v+ = v ,  which, by accounting for Galilean invariance (of section 3C), 

can be replaced by v+ = v  =0. The theory of such solutions is presented in [1], 

* I adhere to the perhaps misleading choice of the word "entropy" in this context. 
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so we only recall the requisite facts here. To establish a full correspondence 

between the results there and the solution obtained in part A of this section, the 
bar must be placed in a certain loading device and must have finite length. It 

is possible to restrict the solutions of the Riemann problem to the interval 
I - L ,  L] x [0, T], in which T is chosen smaller than L/(max {c(u+), c(u )}). In 

that case, when o is sufficiently close to o 0, the shock and acoustic waves do not 
interact with the ends of the bar. Then an appropriate loading device for the 

Riemann problem is the dead loading device; that is, a neighboorhood of each 
end of the bar remains static with a constant stress o(u+). Therefore, the 

dynamic solutions of the Riemann problem, restricted to the interval [0, T], can 
be conceived as solutions for a finite bar [ - L , L ]  loaded by a dead loading 

device. The particular solution defined by o = o 0 = 0  is a static solution for the 
dead loading device. 

In [1] the stability of such solutions has been investigated. Suppose 

Xe(0, L-I, (5.29) 

a ( u + )  = ~ ( u _ ) .  

In this relatively simple situation, the stability of y(X) according to the energy 

criterion for stability is determined completely by the Weierstrass excess func- 
tion, which is defined as 

g (v, u) = ~ ~ (s) ~/s - (v - u) ~ (u). (5 .30)  
u 

Static stability theory implies that y is absolutely stable if g(v ,y ' (X))>0 for al- 
most all X e [ - L , L ]  and all v~y ' (X)  in the domain of a; y is neutrally stable if 
g(v, y'(X))~O, X e E - L ,  L], for all v in the domain of a, and if g(v(X), y'(X)) =0, 
v(X) Sey'(X) holds for X ~  5 p being a set of positive measure in [ - L ,  L];  y is 
metastable if for some e > 0, 8 (v, y' (X)) > 0 a.e. whenever I v - y' (X)[ < e. Finally, y 
is unstable if it is not metastable. 

An analysis of the Weierstrass excess function for the constitutive class (1.4) 

yields the Maxwell line pictured in Figure 1. The stress a* is called the Maxwell 
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stress and e* and fl* are defined by, 

~(~*)=~*, ~*c[c~, c~), 
(5.31) 

~(/~*)=~*, /~*e(/~ 1,/~]. 

The deformations e* and fl* are the unique points on the e- and fl-branches, 

respectively, that satisfy g(fl*, ~*)=g(e*,  fi*) =-0, which is to say that the signed 
area between the curve a(u) and the Maxwell line is zero. 

Briefly summarized, the static theory implies that if 

cc u+ =u_ e[~, ~.*)w(fl*, fl], then y is absolutely stable; 
ft. u+ =a* or fl*, then y is neutrally stable; 

~,. u+ and u belong to [c~,e~)~(fll, fl], then y is metastable; 

6. u+ or u belong to [,~, ill], then y is unstable, 

Clearly, if y is absolutely stable, then u+ =u  , and no phase boundaries are 

present, Let us assume that we may impose compatibility of the dynamic theory 

with the static theory, when the initial data is a static solution. If u+ or u 

belong to [al, fll], the solution corresponding to ~0=0 is an unstable static 
solution, so we would expect never to observe it. For this reason, and others 

which will become clear in the next section, u+ and u have been chosen to lie 

on the fi- and s-branches, respectively, in the analysis of the Riemann problem. 

No definite prediction is delivered in the cases of metastability and neutral 

stability, and the absolutely stable solutions do not contain any phase bound- 

aries. Therefore, if u is assigned on the a-branch and u+ is assigned on the fl- 

branch, the existence of a one parameter family of solutions is compatible with the 

static theory. 

Finally, we note that in [1] the results found for the dead loaded homo- 

geneous bar were rather untypical. Slight inhomogeneities or body forces in the 

static theory tend to allow absolutely stable solutions to occur which contain 

one or more phase boundaries. The connection between these possibilities and 
the dynamic theory are as yet unclear. 

We shall now focus attention on the solutions obtained in part B of this 

section. The initial data for those solutions is always the static solution (u o, 0), 

and as before the bar may be regarded as loaded by a dead loading device, for 
sufficiently short times. The static theory implies that if 

~. Uo~[C~,~*)w(fi*,fi], then the initial data is an absolutely stable static 
solution; 

ft. uo=c~* or fi*, the initial data is neutrally stable; 

7. Uo~[e, ~l)u(f l  1, B], the initial data is metastable; 

6. Uoe[e ~, fill, the initial data is unstable. 

Contrary to the predictions of the static theory regarding the solutions with a 

single phase boundary, here the static theory is remarkably exclusive. That is , / f  

u0~[~, e*)u(fl*,fl] only the particular solution U=Uo, v = 0  is admissible from 

among the two parameter family (5.28). I f  Uo~[C~*, el)w(fll,  fl,), then the whole 
two parameter family is compatible with the static theory. 

In the construction of solutions containing two phase boundaries, the 

assignment UoS[Cd , fit] has been avoided. The reason for this exclusion is now 
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evident;  if such had  not  been the case, the infinite bar, after any  finite t ime had  

passed, would have  conta ined subintervals  on which were defined unstable  static 
solutions. 

2. Consistency with viscoelastic bar theory. Viscoelastic bar  theory  provides  an 

example  of  a theory f rom which elastic bar  theory can be easily obtained.  

Fur the rmore ,  while viscoelasticity embodies  a concept  of  dissipation,* it does 

not  require a decision on the nature  of  the head flux in the bar. The  simplest  

viscoelastic bar  theory follows by generalizing the const i tut ive function for the 
stress to 

~(u, fi) = a(u) + ~ fi, (5.32) 
which yields the equations,  

U ~ V  t 

(5.33) 
~) =a,,(u) u ' + ~  fi'. 

Here  the posi t ive constant  e is the viscosity. Let  u~(X, t), v~(X, t) be a solut ion of  

(5.33). We shall seek necessary condit ions that  a solut ion u(X,  t), v(X,  t) of the 

equat ions  of  elastic bar  theory  is the limit, as e-*0,  of  solutions of  the 

viscoelastic equation.  F r o m  the theorems of GREENBERG, MACCAMY 8r MIZEL 

[17], and DAFERMOS [18], we expect us, v~ to be at least twice cont inuous ly  

differentiable**. Also, studies of  the viscosity me thod  ([19], for example)  suggest 

that  (us, v,) will contain a subsequence (u~k, v J ~  ~_ 1, ek ~ 0  as k---, o% which tends 

a lmos t  everywhere  to a pair  of  functions (u, v) of  bounded  variat ion.  F r o m  these 

two facts follows the result that  (u, v) is a weak solut ion of the equat ions  of  

dynamic  elastic bar  theory. I shall a ssume the validity of  these s tatements .  Let  

u 

E (u, v) = �89 v 2 + ~ a(u) du (5.34) 

* The positiveness of the viscosity is a result of thermodynamic origins, which may 
be derived from an entropy inequality or a "second law". Otherwise the theory is purely 
mechanical in nature. 

** However, neither of these papers applies without alternation to the present 
situation; the first forbids the possibility that the constitutive function be non-monotone, 
and the second excludes the end conditions (5.1), (5.2). However, aspects of DAFERMOS' 
paper [18], in particular his theorem 3.1 of uniqueness, do apply to the situation at hand, 
but their relation to the solutions of the Riemann problem given in parts A and B of this 
section is hazy. For example, regarding the solutions obtained in part B, a solution of the 
corresponding viscoelastic problem is (u~,v~)=(uo,O), and by DAFERMOS' result this 
solution is unique. The limit of these solutions, as e--*0, is simply (Uo, 0). However, a two- 
parameter family of solutions has been produced in part B, and they all may be regarded 
as solving the same initial-boundary value problem for sufficiently short times. Osten- 
sibly, then, all those solutions except the static one are inadmissible as limits of viscosity 
solutions. Our feeling about the matter runs contrary to this conclusion. We think that in 
some cases, at least, some non-static members of the two-parameter family are observable 
solutions, but that their counterparts for the viscoelastic problem are not quite classical 
solutions of the initial-boundary value problem. Evidence for this prejudice comes from 
the viscoelastic problem with e replaced by e t (cf equation (5.33)), which admits solutions 

as functions of the single variable --.X Those equations appear to have solutions cor- 
t 

responding to non-static members of the two-parameter family (5.28). 
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denote the total energy, and let 
Q(u, v)= - v ~r(u) (5.35) 

denote the energy flux. Observe that E is not convex. A subscript e will be 

attached to E and Q when they are calculated for a solution of (5.33). Because 

the viscosity is positive it follows from (5.33) that 
" , ~ 1  2 t ,  E~ + Q~= 7 e(v~) . (5.36) 

Thus, for the limiting solution (u, v), the inequality 

/ ~ + Q ' < 0  (5.37) 

is satisfied in a weak sense. (That  is, the inequality which results when the 

following operations are performed on (5.37) is satisfied: multiplication by a 

smooth non-negative test function with compact support in ( - L , L ) x ( 0 ,  T), 

integration over [ - L ,  L] x [0, T], integration by parts.) If (X, t) is a point of 

differentiability of (u, v), then (5.37) is satisfied there as an equality. If X = Z(t) is 

a shock wave or phase boundary in the domain of (u, v), then the inequality 

z(E + - E _ ) > Q +  - Q _  (5.38) 

holds across it. By eliminating v from (5.38) and using the Rankine-Hugoniot 

conditions (1.7), we deduce that 

u 

in which W(u) = .f c~(s) ds, 

u + = u(z(t) + O, t), (5.40) 

. _  = u ( z ( t ) -  0, t). 
Let 

W(u+) -W(u  ) - ( u + - u _ )  Cr(u+)2~r(u-)). (5.41) d =  

We shall refer to (5.39) as the viscoelastic criterion of admissibility. On genuinely 

nonlinear portions of the constitutive function it is equivalent to LAX's entropy 

admissibility criterion, but it has other implications as well. If or(u+) is suf- 
ficiently close to or(u)  and the Weierstrass condition, 

g(u+, u _ ) > 0  (<0), (5.42) 

is satisfied with strict inequality, then a g > 0  (<0). Unlike the Weierstrass 

condition, the viscoelastic criterion cannot be analyzed explicitly for the con- 

stitutive class described here because its implications depend on the details of 

a.u(u)*. However, the solutions of the Riemann problem presented in parts A 

* A useful formula for the analysis of explicit constitutive relations is 
a2ae(v, u) (v-u) 

(~U 2 - -  2 %~(v). 

Regarding this equation as a differential equation for d(v,u) at fixed u, if the initial 
condition v o for v is assigned so that a(u)=o-(Vo), then ~r becomes the Weierstrass 
function initially, and c'~r 

0v (v~ u)= (u 2v2) cr,(Vo). 
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and B of this section do submit to analysis by the viscoelastic criterion of 
admissibility. 

We shall first concentrate on the admissibility of solutions to the Riemann 

problem containing a single phase boundary (part A). We focus attention on the 

phase boundaries in those solutions, since the shock waves are covered by LAX'S 

criterion for admissible shocks. Let u+ and u be the values of the initial data 

(5.2). When 6 is sufficiently close to 60, 6 o being determined by (5.3), the analysis 

of part A provides a solution to the Riemann problem. Recall from (5.3) that 6 o 

was determined up to a sign, and that either choice + led to a one parameter 

family of solutions. Suppose ~ ( u + ,  u )>  0. Then, by virtue of (5.39) the plus sign 

in (5.3) is preferred. It then follows that the viscoelastic criterion of admissibility 

holds for 6 near %. Therefore, of the two possible one-parameter families of 
solutions to the Riemann problem, the one with the phase boundary moving 
foreward is selected by the viscoelastic criterion of admissibility when 
d(u+, u_)>0.  Alternatively, when d(u+, u _ ) < 0  the phase boundary must move 
backward. Of course, the solution corresponding to ~0 = 0  is never excluded. If 

d d  (u , 
d(u+,u )=0, it may be true* that ~ + u_)Je0; in that case, one half of 

each of the one parameter families is preferred according to the viscoelastic 
criterion. 

In the special case a(u+)=a(u), it is possible to compare the predictions of 

both static stability theory and the viscoelastic criterion of admissibility. Recall 

that when a(u+)=a(u ), d(u+,u )=g(u+,u ). Therefore, by comparing the 

viscoelastic criterion with the results of the previous section on the Weierstrass 

function, we deduce that, according to the viscoelastic criterion, if a ( u + ) = a ( u )  

and 
1. i f u + > u _  and u ~[~,a*), then ~>0;  

2. if u + > u  and u_e(cr then ~<0. 

A physical description of this result is perhaps clearest. Suppose the initial 

data is a static solution containing a stationary boundary: 

a(u+) = a(u_ ) = a o = const. 
(5.43) 

00~0. 

If a0 >a*,  then the static theory predicts that this static solution is metastable, 

but that there is an absolutely stable solution for the same loading device in 

which the bar is homogeneously deformed in the /?-phase (i.e. u=const ,  on 

[0, T]  x [ - L , L ]  and u~(fl*,/?]). Under the same conditions the viscoelastic 

criterion implies that the Riemann problem must have solutions in which the 

phase boundary propagates with a non-positive velocity; that is, the viscoelastic 

criterion implies that either the solution remains static or that the phase 

~' By using (5.22), it is not difficult to show that 

dW (u+, u ) =  -(u+ -u_ )  
do 2 det {(c2+ -c2--(u+-u )c2+)(c_ +~o) 2 

+(d-d-lu+-u )d)(e+-%)'}. 
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boundary moves backward, so as to increase the amount  of /3-phase. Alter- 

natively, if a o < a*, the static theory predicts that a bar homogeneously deformed 

in the e-phase is absolutely stable, the phase mixture corresponding to the 

initial data for the Riemann problem being only metastable. The viscoelastic 

criterion forces the phase boundary either to remain stationary or to convert/3- 

phase into c~-phase. 

We turn now to the admissibility of the solutions containing two phase 

boundaries which were presented in part B. Those solutions were always 

uniformly close to the basic solution (Uo, rio). Since the basic solution was a static 

solution, d ( ~ ,  u o ) = ~ ( ~  Uo) and ~r t~)=~(u0, ~). We suppose, without loss of 

generality, that u 0 lies on the e-branch and t~ on the /3-branch. Suppose 

u0e[~,~* ) and consider the two parameter  family of solutions (5.28). Since 

d ( u  o , f i )=d(u  o ,~)<0,  it follows that ~(u+(6(6  ,6+)), ~(6 ,6+) )<0  for 6 and 
6+ sufficiently close to zero. 

Hence, the viscoelastic criterion is violated across the phase boundary which 

moves forward. Also, it is violated across the phase boundary which moves 

backward. By similar reasoning carried out for the /~-branch, we arrive at the 

following conclusion. I f  u0~[~, ~*)w(fl*,/3], that is to say, if the initial data is a 

constant, absolutely stable static solution, then the only solution among the (local) 

two parameter family which is admissible according to the viscoelastic criterion is 

the static solution (Uo, 0). On the other hand, if u0E(~*, ~] w[fl,/3*) it is easy to 

show that the viscoelastic criterion is satisfied across both phase boundaries 

present, if 6+ and .~ are sufficiently close to zero. Therefore, the whole (local) 

two-parameter family of solutions that begin from a constant, metastable static 

solution which is neither neutrally stable nor absolutely stable is admissible by the 

viscoelastic criterion. 

One other line of thought may prove useful in the investigation of these 

solutions. The viscoelastic criterion was merely a necessary condition that the 

purely elastic solution be possible as the limit of viscoelastic solutions. It may 

not be sufficient. For example, although the full two parameter  family of 

solutions with two phase boundaries was found to be admissible by the viscosity 

criterion, perhaps only one of that family, or some preferred subfamily, can be 

actually realized as limits of viscoelastic solutions as the viscosity vanishes. One 

way to investigate this possibility would be to replace the viscosity ~ by a 

viscosity of the form e t, e=const . ,  according to the suggestion of DAFERMOS* 

[19]. In that case the viscoelastic equations admit the invariance group X-~ v X, 

X 
t ~ v t ,  v=const . ,  so solutions depending upon the single variable - -  can be 

found. We shall not continue this line of thought here. t 

3. Consistency with the maximal rate of decay of entropy. In response to 

difficulties encountered in the application of the entropy criterion to constitutive 

* His equations do not quite fit into the form (5.33) with e replaced by at. He has also 
added the term ~ t u" to (5.33)a. While these alterations yield a neat existence theorem, we 
are reluctant to adopt the entire procedure for the purposes of admissibility, since (5.33)~ 
loses physical meaning. On the other hand, merely the replacement c---,e,t seems not too 
objectionable, especially for bounded intervals of time, and we would be inclined to trust 
the predictions. 
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relations which are not genuinely nonlinear, DAFERMOS postulates the "entropy 

rate admissibility criterion" in [16]. He justifies it on the grounds that it 

represents a natural extension of the notion of decrease of entropy in the 

descension from a broader theory, and that it only makes use of a single 
entropy. 

As it stands, DAFERMOS' criterion does not apply to the problem at hand 

because the entropy (mechanical energy) is required to be strictly convex. We 

can think of no convincing reason for this assumption. However, when the 

requirement of strict convexity is excluded from the criterion, the criterion 

remains useful and interesting, though perhaps a bit strong in its selectiveness. 

The details of the application of DAFERMOS' criterion to elastic bar theory 

are contained in his paper [16, part  4], I shall only briefly compare  those results 

to the ones given here in the preceding paragraphs. DAFERMOS shows that the 

rate of decay of entropy D+ H(,,~(z) calculated at time r for piecewise smooth 

solutions is given by 

D+H~.,~)(z)=- ~ 2(z)d(u+,u ), (5.44) 
shocks 

d ( u + ,  u ) being given by (5.41). DAFERMOS' criterion states that the rate of decay 

of entropy be not greater for the admissible solution than for any other solution 

of the same initial value problem. We shall refer to this criterion, exclusive of the 

part  which requires the energy to be strictly convex, as the condition for the 

maximal rate of decay of entropy. 

The solutions of the Riemann problem that have been produced in parts A 

and B of this section are local in character and are certainly not exhaustive; we 

could combine several of them together on adjacent domains in the X - t  plane 

to build up another solution. Therefore, we cannot use the condition for the 

maximal rate of decay of entropy to select solutions, but only to exclude them. 

The analysis of (5.44) proceeds along the lines already established in the 

preceding subsection, so we only record the rather exclusive result here. Accord- 

ing to the condition for the maximal rate of decay of entropy, a piecewise smooth, 

metastable, static solution, which is neither absolutely stable nor neutrally stable, 
cannot persist. 
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