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Summary 

Surface wave propagation in examples of unlayered and multilayered 
anisotropic media is examined numerically with a programme using an 
extension of the Thompson-Haskell matrix formulation. 

Surface wave propagation in an isotropic earth model containing an 
anisotropic layer in the upper mantle has been found, for the most part, to 
differ very little from propagation in a purely isotropic model. An exception 
is the propagation of the third generalized mode (corresponding to the 
second Rayleigh mode in isotropic structures), which has particle motion 
differing considerably from motion in isotropic media. Observations of 
such particle motion in the Earth have been made. 

Introduction 
The study of surface wave propagation in isotropic structures containing aniso- 

tropic layers is of importance to seismology in determining the presence or absence 
of anisotropic layers within the Earth. Most possible constituents of the Earth are 
anisotropic on a small scale, and mechanisms are present or have been present in the 
past, which could cause alignment of this anisotropy over wide areas, particularly in 
the upper mantle. This paper presents some numerical results of a programme, which 
uses the extension to anisotropic materials (Crampin 1970") of the Thompson-Haskell 
matrix formulation, for calculating the dispersion characteristics of surface waves in 
multilayered media. 

The object of this paper is to explore some examples of surface wave propagation 
in anisotropic media, and use these to interpret a possible geophysical structure. 
Surface waves in isotropic materials are degenerate forms of generalized surface wave 
propagation, and it is often not possible to interpret the behaviour in anisotropic 
media by analogy from the behaviour in isotropic media. 

Analytical procedure 
The matrix formulation (Crampin 1970) relates the six values of velocity and 

stress at the two interfaces of an isotropic or anisotropic plane-layer by a six-by-six 
matrix, whose elements can be evaluated numerically. The procedure then follows, in 
general outline, that suggested by Haskell (1953), although rather different in detail. 
The major differences arise from the need for complex arithmetic, and from modifica- 
tions due to the three body waves which propagate in anisotropic media. The three 
body waves are a quasi-longitudinal wave and two quasi-transverse waves, 
propagating, in general, with different velocities and particle motions, which vary 
with direction in the material. 

* This paper contains two copying errors: the line below equation (3.4) should read ' where for 
propagation in the xt-direction y3 = 0 ', and equation (6.3) should read. 

' A-' E(f(l),f(2),f(3), 0,050) = ( ( ~ c ) o ,  (*/C>o, O,O, ( G / C ) 0 9  0 )  '. 
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72 Stuart Crampin and David B. Taylor 

The velocities of the possible body waves contributing to the surface wave motion 
in each layer are obtained by substituting a plane wave uj = uj exp [ i o ( t - s i x i ) ]  into 
the equations of motion for the layer. Eliminating the amplitude coefficients leads 
to the slowness equation, which is a sextic in sl, s2, and sj. For any given apparent 
velocity and direction on the x1 x2 surface, s1 and s2 are determined and there are six 
roots of s j  occurring in pairs with positive and negative imaginary parts. If we con- 
sider the x,-axis positive into the material, the three roots with negative imaginary 
parts represent motion decreasing with depth. 

The normal unattenuated modes of surface wave propagation have components 
from the three roots of the slowness equation with negative imaginary parts in the 
half space. Attenuated modes have components from at least one root with a positive 
imaginary part. In both layered and unlayered structures there may be a number of 
combinations of the six roots in the half-space, which satisfy the surface wave 
boundary conditions. In many cases there are combinations which yield solutions 
with small attenuation with distance. These are the pseudo or leaking modes which 
may be observed seismically and in model studies. 

Numerical procedure 

The programme searches for zeros of a complex determinant relating the boundary 
conditions at the free surface to those at  depth. The velocity and frequency at  which 
the determinant is zero are the conditions under which a surface wave can propagate. 
If we assume that the frequency is always real, normal mode roots are found along the 
real velocity axis for simultaneous zero crossing of both real and imaginary parts of 
the determinant. Leaking modes may, in most cases, be recognized by minima of the 
absolute determinant value along the real velocity axis. True zeros lie off the real axis 
in the direction of positive imaginary part. The minima of these pseudo roots on the 
real axis may be very narrow and easily escape notice. If the pseudo root is a long way 
from the real axis, or if the pseudo:root otherwise does not produce a minimum on the 
real axis, more sophisticated and computer-time consuming techniques are required 
to detect the presence of the root. 

Table 1 
CrystaI Parameters 

c2323 = 75.6X109 Newtons m-' 
Copper (cubic) p = 8.950 g cm-3 
c l l l l  = 171.0 c1122 = 123.0 
orientation: (001) cut-direction measured from (100) angles. 
Sapphire (trigonal) p = 4.00 g 
c l l l l  = 496.8 

orientation: (001) cut-direction measured from (100) angles. 
Silicon (cubic) p = 2.332 g 
~ 1 1 1 1  = 165.7 
orientation: (1 11) cut-direction measured from (11T) angles. 
Zinc Oxide (hexagonal) p = 5.676 g 
c l l l l  = 209.7 c3333 = 210.9 
c1133 = 105.1 c2323 = 42.47 c1212 = 44.29 
orientation: (001) cut-transversely isotropic in this plane. 
Gold(isotropic) p = 19.3 gcrn-3 
h = 150.05 
Olivine (orthorhombic) p = 3.324 g ~ r n - ~  (Verma 1960) 
c l l l l  = 324.0 

c3333 = 498.1 c1122 = 1 6 3 . 6 ~ 1 0 ~  Newtons m-2 
C1133 = 110.9 C 1 1 2 3  Z= -23.5 C2323 = 147.4 

~ 1 1 2 2  = 63.9 c232J = 79.56 x lo9 Newtons m-2 

c1122 = 121.1 x109 Newtons m-2 

p = 28.5 x lo9 Newtons ni-z 

czZz2  = 198.0 c3333 = 2 4 9 . 0 ~ 1 0 ~  Newtons m-2 
C1122 = 59.0 C2233 = 78.0 C3311 = 79.0 
C1212 79'3 C2323 = 66.7 c1.313 81.0 
orientation: Fig. 6. (OOl), (loo), (010) cuts-directions measured from (loo), (OlO), and (001 

angles, respectively. Figs 7-11. (001) cut-direction measured from (100) angles. 

Positive directions are parallel to an interface or downwards. Changes of orientation are 
measured in a clockwise direction viewed from above. 
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74 Stuart Crampin and David B. Taylor 

The system of matrices giving the determinant must be completely re-calculated 
for every new trial velocity, whereas at a fixed velocity, new frequency trials alter 
each matrix by a simple diagonal multiplier. Thus, it may take less time to find the 
frequencies at which several modes travel at one velocity in a multilayered structure, 
than it does to find the velocity at which a surface wave propagates in a homo- 
geneous half-space. 

Fig. 1 is a lineprinter output giving the wave velocities for a range of directions 
on the (001) plane of copper (the elastic constants of all materials are listed in Table 
1). For each direction, there are three-body waves parallel to the surface, and a 
generalized surface wave. Rayleigh- and Love-type propagation is present along 
directions of symmetry. Some of these waves are attenuated, and are marked by a 
superimposed solidus. This calculation took about 4 min of IBM 360/50 time. 

Each velocity curve in Fig. 1 is a segment of a plane section of the slowness surface 
for that mode of propagation. It has been found that three-dimensional models of 
the slowness surfaces of each of the wave types in a particular material are a con- 
siderable aid in understanding the behaviour of the waves as the material is rotated. 

Group velocity 

The procedure we have outlined yields the phase velocity; that is the velocity 
perpendicular to the wave front. In anisotropic media there is a component of energy 
propagating parallel to the wave front, and, except in directions of anisotropic 
symmetry, the group velocity cannot be found by differentiating the phase velocity, 
as is the case in isotropic media. The energy propagates in a straight line from the 
source in the absence of a vertical discontinuity, and the phase velocity direction will 
show convolutions about this straight line. 

It may be shown by a simple extension of Sommerfeld’s method (Richter 1958) 
that the longitudinal and transverse components of the group velocity of an unattenu- 
ated surface wave are ao/aa, am/ap, where w is the angular frequency, and a and p 
are the wave numbers parallel to the propagation vector, and the wave front, 
respectively. In’isotropic structures, where for a given frequency there is no variation 
of wave number with directions, the wave numbers u and jl are inversely propor- 
tional to the direction cosines, and the expression for the group velocity can be 
written in the familiar aw/alc, where IC is the wave number in the direction of the 
propagation vector. 

By partial differentiation of m(a, p), we have 

where Am, Aa, and Aj? are small increments in w, a, and p, respectively. do/da is 
the group velocity resolved perpendicular to the wave front and can be determined by 
differentiation of the phase velocity. Am, Act, and Afl can be obtained by calculating 
the dispersion after having made an infinitesimally small change in direction of 
propagation on the structure. Substituting these values into (l), we have aw/ap, the 
component of the group velocity parallel to the wave front. The values of aw/au and 
amlap together determine the group velocity magnitude and direction. 

The procedure outlined above provides a way of determining the velocity and 
direction of energy propagation at any point on a wave front of a normal mode 
travelling in a given direction. The problem more pertinent to seismology of calcu- 
lating the velocity at which energy travels in a given direction, and the inclination of 
the wave front to this direction, requires a trial and error technique. It necessitates 
calculating the phase velocity dispersion in neighbouring directions until one has 
found the group velocity in the required direction. This can be done for the non- 
dispersed case of propagation on an homogeneous half-space, where the variation of 
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Propagation of surface waves in anisotropic media 75 

the group velocity is usually smooth, but finding the group velocity dispersion in a 
straight line on a layered structure requires considerable additional computation and 
this has not been attempted. 

In general, the variation of the phase velocity with material orientation, in both 
multilayered and unlayered half-spaces, is insufficient to make aw/a/3 very large, 
and the inclinations of the group and phase velocities will differ by only a few 
degrees and the absolute values by a few percent (see for example Figs 2, 6 and 10). 
However, it cannot be excluded that the group velocity direction, on some sections 
of higher mode dispersion in particular multilayered cases, might differ con- 
siderably from the phase velocity direction. 

(001) S a p p h i r e  ( I l l )  Si l i con  
o Love- t ype  I 

6 . 5  

5 . 5  ’. 

Angle from (100) 
100 200 2 0- 

Angle from (117) 
30 

FIG. 2. Wave velocities in sapphire and silicon half-spaces (see Table 1). The 
quasi-transverse body waves propagating paraIlel to the interface are labelled B1 

and B2. The quasi-longitudinal body waves are not shown. 
The group-velocity magnitude and direction is shown at the orientation of the 
phase velocity propagation. The inclination of the group velocity to the phase 

velocity is measured in a clockwise direction viewed from above. 
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76 Stuart Crampin and David B. Taylor 

Examples of propagation in anisotropic structures 

The propagation characteristics of surface waves on a variety of anisotropic 
structures have been calculated in order to gain some understanding of surface wave 
behaviour under anisotropic conditions. As an illustration, Figs 2-5 show the 
velocities of surface waves in various structures made up of gold, on zinc oxide, on 
silicon, on a sapphire half-space. The elastic constants and details of the structures 
are given in Tables 1 and 2. The orientations have been chosen so that there is no 
overall direction of anisotropic symmetry. The dimensions of the models used for 
Figs 3-5 are appropriate for experimental models. 

Fig. 2 shows wave propagation in half-spaces of sapphire (trigonal), and silicon 
(cubic) with the free surface along the (OOl), and (I  11) cuts, respectively. The quasi- 
longitudinal wave velocities are not shown. In both cases, the wave velocities are 
symmetrical in directions at  every 30". The condition for symmetry of the body wave 
velocities is a weaker condition than that for full elastic symmetry, which occurs in 
directions at every 60" in these materials. In directions of eIastic symmetry, when 
the free surface is also a plane of symmetry, the surface wave equation factorizes 
(Crampin 1970), and represents two independent waves propagating with Rayleigh- 
and Love-type particle motion. Figs 1 and 2, show such motion along directions of 
elastic symmetry. 

Fig. 2 also shows the group velocity of the generalized surface wave for any given 
direction of the propagation vector, and its inclination to the propagation vector. In 
unlayered half-spaces the group velocity of the generalized wave is greater than or 
equal to the phase velocity. Both half-spaces in Fig. 2 allow pseudo or leaking waves 

I I I I I i I I I 
200 400 600 800 1000 1200 1400 1600 

Frequency ( M H z )  

FIG. 3. Phase velocity dispersion of the first four generalized normal mode surface 
waves propagating in two directions in lop of silicon overlying a sapphire half- 
space (see Tables 1 and 2). B1 are the lowest velocities of body waves propagating 
parallel to the interface, and ' G ' are the generalized surface wave velocities in 

the half-space, a t  the appropriate orientations. 
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Propagation of surface waves in anisotropic media 77 

FIG. 4. Phase velocity dispersion of the first six generalized normal mode surface 
waves propagating in two directions in 30p of zinc oxide, on lop silicon, overlying a 
sapphixe half-space (see Tables 1 and 2). Group velocity is shown for the funda- 

mental mode in the 0" direction. 

to propagate. I t  became increasingly difficult to follow the pseudo root in sapphire 
as it approached the Love-type root on the direction of symmetry: the imaginary part 
of the velocity became very small, and the minimuin was very steep sided and narrow. 

There is very little velocity contrast between the lowest quasi-transverse wave of 
sapphire and the highest quasi-transverse wave of silicon. The closeness of these two 
velocities, result in some rapid changes in the dispersion curves of Fig. 3, which 
shows the first four normal mode surface waves propagating in a structure con- 
sisting of a layer of silicon on a half-space of sapphire. The dispersion curves are 
given at 0" and 30" from the orientations listed in Table 1. The fundamental modes 
tend to the surface wave velocity in the half-space as the frequency decreases. The 
higher modes have a high-velocity, low-frequency cut-off at the lowest quasi- 
transverse body-wave velocity in the half-space propagating parallel to the interface. 

A characteristic feature of dispersion in layered anisotropic structures is the 
pinching together of two modes, here the second and third modes. Each mode is a 
combination of the three body waves. In the half-space, there is one component from 
each body wave, and in a layer, there is a pair of components from each body wave- 
one travelling towards and one away from the surface. Generally, the particle motion 
of the two quasi-transverse body waves is perpendicular (the particle motions of the 
three body waves are mutually orthogonal). Typically, successive modes of surface 
waves have their largest transverse components in each strata from alternate trans- 
verse body waves, and they alternate in the size of their quasi-longitudinal com- 
ponents. The pinching together represents places where two adjacent modes 
interchange their relative holdings of each body wave, either in the half-space or in one 
of the layers. In structures where there is a direction of symmetry, as the propagation 
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Fig. 3 

Fig. 4 

Fig. 5 
Fig. 7 

Stuart Crampin and David B. Taylor 

Table 2 

Structural models 

l o p  silicon, on sapphire half-space 

30p zinc oxide, on l o p  silicon, on sapphire half-space. 

2p gold on 30p zinc oxide on lop silicon on sapphire half-space 

10km 2.7 5 . 8  3.4 
20km 2.9 6.6 3.8 

h P a  B 

3.324 olivine half-space (see Table 1). 

Figs 8-11 h p  U B 
lOkm 2.7 5 . 8  3.4 
2Okm 2.9 6 .6  3.8 
30 km 3.324 olivine layer 

3.6 9.0 5.4 

Composite models are made up with the orientations given in Table 1. 

FIG. 5. Phase velocity dispersion of the first six generalized normal mode surface 
waves propagating in the 0" direction in 2p of gold, on 30p of zinc oxide, on lop of 
silicon, overlying a sapphire half-space (see Tables 1 and 2). Group velocity is 

drawn for the fmt and second modes. 
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Propagation of surface waves in anisotropic media 79 

approaches this direction, a pinch becomes a place where the Rayleigh- and Love- 
type dispersion curves cross each other. Thus the pinches are some measure of the 
nearness of the elastic parameters to symmetry about the particular propagation 
direction, at the depths to which the motion of the pinched modes penetrates. The 
pinch in the 0" direction in Fig. 3 is tighter than the pinch in the 30" direction, 
because most of the energy propagates near the surface, and the surface layer is 
symmetric about the 0" direction. 

Fig. 4 shows the first six normal modes in directions 0" and 30" in a structure 
consisting of a layer of zinc oxide overlying the previous model (see Tables 1 and 2). 
The layer of zinc oxide is transversely isotropic for the given orientation, and the 
dispersion of the modes changes with direction only at lower frequencies, where a 
larger proportion of the energy travels beneath the upper layer in the more aniso- 
tropic deeper structures. The major differences with changes in direction, are the 
variation of the high-velocity, low-frequency cut-off at the body-wave velocities 
parallel to the interface in the half-space. Group velocities are drawn for some of the 
modes in Figs 4 and 5 to show the rapid variations to be expected when the phase 
velocity is near a pinch. 

Fig. 5 shows the first six normal modes in the 0" direction in a structure consisting 
of a thin layer of isotropic gold overlying the previous model. The computer program 
produced the general outline of this figure in eight minutes of IBM 360/50 time (the 
first six zero crossings at 20 given velocities). Computing the behaviour of the dis- 
persion in the neighbourhood of the pinches, which are extremely tight for this 
structure, took additional computing time. 

Examples of propagation in earth models with anisotropy in the upper mantle 

The remainder of the paper discusses the propagation of surface waves in an 
isotropic crust overlying (a) an olivine mantle, and (b) an isotropic mantle with a 
layer of olivine beneath the crust (see Tables 1 and 2) .  The olivine is taken to be 
crystalline with complete alignment. We shall first examine the propagation of surface 
waves in a homogeneous olivine half-space. 

01 ivine half-space 
Olivine is orthorhombic and for propagation in media with orthorhombic sym- 

metry, the two quasi-transverse body waves, propagating parallel to the surface, 
where one of the planes of symmetry is parallel to the free surface, are approximately 
quasi-SH and quasi-SV. These we shall label QSH and QSV, respectively. 
However, except along directions of symmetry, each wave has particle motion 
containing SHY SV and longitudinal components. Fig. 6 shows wave velocities for 
different directions on the three planes of symmetry of olivine. The quasi-longitudinal 
body waves have velocities between 7.7 and 9.9 km s - l  and are not shown. Pseudo 
waves were found only on the (100) cut. In this plane, the generalized surface wave 
continues the line of the pseudo wave, where the pseudo wave meets the quasi-SH 
body wave. At this point, the line of the generalized wave bends sharply, and follows 
the body wave to the direction of symmetry. 

The Rayleigh-type motion marked on the directions of symmetry are at the 
positions calculated by Stoneley (1963). The Rayleigh-type motion is on the 
continuation of the generalized surface wave for propagation on the (001) and (010) 
planes. On the (100) plane however, the Rayleigh-type motion is on the continuation 
of the pseudo wave, whose attenuation decreases until it is zero at the Rayleigh wave 
on the direction of symmetry. Thus although it is impossible for a generalized normal 
surface mode to propagate in an isolated direction on a crystal surface (Burridge 
1970), it is possible for unattenuated Rayleigh-type waves to propagate in isolated 
directions. 
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5 . 5 -  - 
(001) plane 

) 

60" 90' 

._ + Angle from (100) 
' 30" 60" 90" 

Angle from (010) 
30" GO" 90" 

Angle from (001) 

FIG. 6. Wave velocities in olivine half-spaces with each of the three planes of 
symmetry aligned parallel to the free surface (see Table 1). 

Isotropic crust overlying olivine mantle 

Fig. 7 shows the first four normal modes in four directions on a structure con- 
sisting of two isotropic layers, totalling 30 km in thickness, over an olivine half-space 
with the (001) cut as the interface (see Tables 1 and 2). Along directions of symmetry 
at 0" and go", the odd numbered generalized modes have Rayleigh-type particle 
motion in the sagittal plane, and the even modes have Love-type particle motion in 
the transverse horizontal plane. We see that the two distinct families of Rayleigh and 
Love modes in isotropic media are subsets of a family of degenerate generalized 
modes. 

The fundamental mode in Fig. 7 tends to the surface wave velocity in the half- 
space at long periods, and its general behaviour as the direction of propagation was 
varied could be predicted from the variation of the half-space velocity in the previous 
figure. The higher modes have velocities less than the lowest body wave velocity 
parallel to the interface, although there are leaking mode extensions into higher 
velocities. The odd modes, which have Rayleigh-type motion in symmetry directions, 
have their largest contributions from the quasi-longitudinal and QSV body waves, 
although there is a small contribution from QSH. The even modes have their largest 
contribution from the QSH body wave. (Behaviour of the even and odd modes is 
modified by the pinching that occurs between the higher modes). Thus, as the 
direction of propagation varies, the even modes rise and fall with the variation of the 
QSH body wave, and the third and higher modes rise and fail with the QSV body wave. 
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Isotropic crust overlying an isotropic mantle with an olivine layer in the upper mantle 
Fig. 8 shows the phase velocity of the first four normal modes in four directions 

on a structure consisting of two isotropic layers, totalling 30 km in thickness, over a 
30 km layer of olivine, overlying an isotropic half-space (see Tables 1 and 2). The 
velocities in the half-space were chosen so that unattenuated normal modes would 
propagate in all directions. 

The variation of the dispmion curves with changes of propagation direction is 
similar to that in the previous mJael, with the exception that the first and second 
modes show less variation with direction, particularly at longer periods, where a 
larger proportion of the energy travels in the isotropic half-space. 

Fig. 9 shows the group velocity dispersion corresponding to the phase dispersion 
given in Fig. 8. The group and phase velocities are parallel for propagation in the 
directions of symmetry at 0" and 90". The other group velocities shown are inclined 
to the propagation vectors at 30" and 60" by the period dependent angles in Fig. 10, 
which are positive in a clockwise direction viewed from above. These group velocity 
angles are all less than 5" for the modes examined, and the difference between the group 
velocity (given in Fig. 9) and its resolution along the propagation vector is less than 
1 per cent. 

The layer of olivine has been aligned so that the (001) plane of symmetry is parallel 
to the free surface. It can be shown by an extension of the method used in Section 6 
of Crampin (1970) that the generalized surface waves have elliptical particle motion 
in a vertical plane inclined to the direction of propagation, when propagating on 
structures made up of strata having planes of symmetry parallel to the free surface. 
In directions of crystal symmetry on these planes, the surface waves separate into 
Rayleigh- and Love-type modes with the more familiar particle motion of Rayleigh 
and Love waves in isotropic media. Fig. 11 shows the inclination of the plane 
containing elliptical particle motion at the surface to the propagation vector. The 
inclinations have been drawn, along propagation directions of 30" and 60", for retro- 
grade elliptical motion-subtraction of 180" would give the inclination of prograde 
motion. The inclinations have different scales in different sections of the figure. 

In Fig. 11, the first generalized mode, which yields the fundamental Rayleigh mode 
along directions of symmetry, has its largest divergence from the sagittal plane 
between periods of 20 and 30 s, where the maximum inclination is some 15". The first 
mode has more energy. ravelling in the anisotropic layer at these periods than at 
other periods. 

The second and fourth modes, which yield Love-type motion along directions of 
symmetry, have small vertical components of motion, and the inclination is only a few 
degrees away from pure transverse motion. In each of these modes there is one point 
on the dispersion curve where the small vertical component at the surface changes 
sign and passes through a zeio. This introduces a 180" change in the inclination of the 
the retrograde motion. For plotting convenience, the inclination of prograde motion 
has been continued after the sign change as a dashed line. 

The variation of the amplitude with depth of the third mode (analogous to the 
second Rayleigh mode of propagation in isotropic media), has one node. Typically, 
the lower lobe of motion has much greater amplitude than the lobe near the surface. 
In the structure from which Fig. 11 is derived, the third mode has the large lower 
lobe propagating in and around the layer of anisotropic olivine; thus the third modes 
have a large range of inclinations. This large range has been observed in seismology. 
The fourth modes have three lobes of amplitude with depth, but in this structure 
there is no one major lobe in the anisotropic layer. 

Stuart Crampin and David B. Taylor 
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Propagation of surface waves in anisotropic media 
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FIG. 10. Inclination of the group velocity in Fig. 9 to the propagation vector for 
propagation directions of 30" and 60". 
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Geophysical discussion 

The most probable place where aligned anisotropy occurs in the Earth on a 
sufficiently large scale to modify surface waves is the upper mantle. In the upper 
mantle crystalline structures could be aligned by the stresses associated with con- 
vection currents or with plate tectonics. 

The structure used for Figs 8-1 1 is not a realistic earth model. The layer of olivine 
and the half space have velocities which do not agree with seismic travel times. A 
more realistic model might be contrived using constituents other than olivine, by 
using cuts of olivine where the velocities are lower (such as the (100) plane, see Fig. 
6), or by using olivine where only a percentage of the crystals are aligned with the same 
orientation. However, the structure is a first approximation and may give some indica- 
tion of the effects of an anisotropic upper mantle on surface wave propagation. 

The majority of the effects are second-order variations of isotropic propagation. 
Observations of these phenomena would be difficult to separate from similar effects 
due to changes in layering, vertical discontinuities, and other inhomogeneities of an 
isotropic earth. 

As stresses in the upper mantle are in general either perpendicular or parallel to 
the surface, it is reasonable to suppose that any aligned anisotropy present would 
have a horizontal plane of symmetry. Thus, in the presence of anisotropy, we might 
expect the fundamental Rayleigh waves (first generalized mode) to have elliptical 
particle motion in a vertical plane inclined to the direction of propagation. In 
addition, if there is anisotropy with any alignment present, the fundamental Love 
waves (second generalized mode) would have a vertical component of particle motion. 
Both these phenomena have been observed. The Rayleigh waves have usually been 
interpreted as isotropic waves arriving from non great-circle path. 

One feature is markedly different in Fig. 11 from that of surface waves propagating 
on a similar isotropic model. This is the particle motion of the second Rayleigh 
waves (third generalized mode), which is elliptical in a vertical plane inclined to the 
propagation vector at widely varying angles. A similar phenomenon has been 
observed by Crampin (1967) for second modes along many continental paths crossing 
Asia. 

The behaviour of second modes is particularly sensitive to features of the upper 
mantle as more than 75 per cent of the energy, at the usually recorded frequencies, 
travels in the top 30 km of the upper mantle. However, long, large-amplitude second 
mode wave trains are infrequently recorded, mainly due to the need for long paths 
over homogeneous, shield-like regions. The longer wave trains contain much 
information about the nature of the upper mantle, which we may soon be in a 
position to interpret. 

The consequences of aligned anisotropy in the Earth should be borne in mind 
when making observations of surface waves. The following are some of the effects 
most likely to be observed. This list could be extended. 

Stuart Crampin and David B. Taylor 

1. Generation of fundamental and higher mode Love waves by underground and 
atmospheric explosions. 

2. Particle motion. Anisotropy may result in considerable departures from the 
retrograde elliptic and transverse particle motions of Rayleigh and Love waves in 
isotropic media. Rayleigh-type motion will include some transverse motion, and 
Love-type motion will include some longitudinal motion. 

3. Variation of seismic velocity with direction may alter the shape of the dis- 
persion curve as the direction of propagation varies. In particular it is possible for 
an anisotropic layer to act as a low velocity layer in some directions only. 
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Propagation of surface waves in anisotropic media 87 

4. If anisotropy is present, the azimuth of arrival of the wave front is not the same 
as the azimuth of arrival of the energy. That is to say, the phase velocity does not 

For directions of propagation having elastic symmetry, the effects listed above 
will be modified, and the motion will show more similarities with the Rayleigh and 
Love wave propagation of purely isotropic structures. 
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